SpringerLink
Forum Springer Astron. Astrophys.
Forum Whats New Search Orders


Astron. Astrophys. 356, 1089-1111 (2000)


Table of Contents
Available formats: HTML | PDF | (gzipped) PostScript

Trapping of dust by coherent vortices in the solar nebula

P.H. Chavanis

1 Laboratoire de Physique Quantique, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
2 Istituto di Cosmogeofisica, Corso Fiume 4, 10133 Torino, Italia

Received 13 July 1999 / Accepted 11 February 2000

Abstract

We develop the idea proposed by Barge & Sommeria (1995) and Tanga et al. (1996) that large-scale vortices present in the solar nebula can concentrate dust particles and facilitate the formation of planetesimals and planets. We introduce an exact vortex solution of the incompressible 2D Euler equation and study the motion of dust particles in that vortex. In particular, we derive analytical expressions for the capture time and the mass capture rate as a function of the friction parameter. Then, we study how small-scale turbulent fluctuations affect the motion of the particles in the vortex and determine their rate of escape by solving a problem of quantum mechanics. We apply these results to the solar nebula and find that the capture is optimum near Jupiter's orbit (as noticed already by Barge & Sommeria 1995) but also in the Earth region. This second optimum corresponds to the transition between the Epstein and the Stokes regime which takes place, for relevant particles, at the separation between telluric and giant planets (i.e. near the asteroid belt). At these locations, the particles are efficiently captured and concentrated by the vortices and can undergo gravitational collapse to form the planetesimals.

Key words: accretion, accretion disks – hydrodynamics – turbulence – planets and satellites: general – solar system: formation – solar system: general


© European Southern Observatory (ESO) 2000

Online publication: April 17, 2000

helpdesk.link@springer.de