Forum Springer Astron. Astrophys.
Forum Whats New Search Orders

Astron. Astrophys. 342, 601-609 (1999)

Table of Contents
Available formats: HTML | PDF | (gzipped) PostScript

Improved analysis of interplanetary HST-[FORMULA] spectra using time-dependent modelings

Horst Scherer 1, Maciej Bzowski 2, Hans J. Fahr 1 and Daniel Ruciski 2

1 Institut für Astrophysik und Extraterrestrische Forschung der Universität Bonn, Auf dem Hügel 71, D-53121 Bonn, Germany
2 Space Research Centre of the Polish Academy of Sciences, Bartycka 18 A, PL-00 716 Warsaw, Poland

Received 7 April 1998 / Accepted 25 October 1998


During a period of 18 months 5 Hubble-Space-Telescope GHRS interplanetary [FORMULA] glow spectra were obtained at different lines of sight from different positions of the earth on its orbit, but despite employment of a radiation transport model that takes into account the angle-dependent partial frequency redistribution, the self-absorption by interplanetary hydrogen, the realistic spectral profile of the solar [FORMULA] emission line, and a stationary hydrogen model with a heliospheric interface, no common parameter set for density, temperature and velocity of the interstellar hydrogen could be deduced (see our earlier paper Scherer et al. 1997). One possible explanation is the uncertainty in the interstellar hydrogen inflow direction, but even this would not completely dissolve some discrepancies between the theoretical predictions of spectral Doppler shifts and those observed in the HST [FORMULA] spectra. As we show here the theoretical predictions can be improved by using a time-dependent hydrogen model that also takes into account heliospheric interface effects, long-term variation of the [FORMULA] irradiance, its influence on the radiation pressure and the long-term variation of the hydrogen ionisation rate. The attempt at finding a common LISM parameter set, fitting 3 HST spectra is improved, though there still remain some discrepancies between data and the theoretical description, mainly manifest over time scales of the order of a year. This residual could be explained by possible variations in the spectral shape of the solar H Ly-[FORMULA] line profile adopted as constant to model the radiation pressure and the resonance intensities.

Key words: inteplanetary medium – radiative transfer

Send offprint requests to: Horst Scherer (hscherer@astro.uni-bonn.de)

© European Southern Observatory (ESO) 1999

Online publication: February 22, 1999