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Abstract. The non linear development of instabilities driven byKH instabilities in jets has been widely studied in the literature
the presence of an electric currentis investigated for magnetiZede for example Hardee et[al.”1997, Bodo €t al. 11998, Micono
jets using 3-dimensional MHD simulations. General magnetit al.[1998), unlike the CD modes.
equilibria for cold supermagnetosonic jets with constant veloc- In paper I, we have performed a linear stability analysis
ity are considered in order to study the influence of the initiaf cold supermagnetosonic jets for a large variety of magnetic
configuration on the non linear evolution. It is found that theonfigurations. It has been shown that the CD instabilities grow
current density is redistributed within the inner part of the jeapidly on time scales of order of the Afiw crossing time in the
radius with a characteristic time scale and an axial wavelengthénh frame, and they are therefore likely to modify the magnetic
agreement with the linear analysis. For equilibria having a pitstructure of the jet. However, they are internal modes since the
profile that increases with radius, an internal helical ribbon witladial displacement becomes very small at the jet surface as
a high current density is forming. It gives rise to considerabsown by the linear eigenfunctions. This led us to conclude that
dissipation which is radially localized, and may result in heatirthe CD instabilities would not disrupt the jet.
and particle acceleration within the jet. The aim of the present paper is to investigate the non lin-
ear development of CD instabilities for magnetized astrophys-
Key words: instabilities — magnetic fields — ISM: jets and outical jet. Magnetic configurations representative of the general
flows — galaxies: active — galaxies: jets classes defined in paper | are considered. We carry out numerical
computations using a 3-dimensional evolution code issued from
laboratory plasma physics (Lerbinger & Luciani 1991, Baty et
al.[T993) which was adapted to astrophysical jets. For numeri-
cal reasons, we mainly focus on early non linear phases that are
The current consensus on the nature of collimated astrophgsasi-ideal (the resistivity effect being negligible), and we only
ical jets from young stellar objects (YSO) and active galasuperficially investigate more resistive later stages.
tic nuclei (AGN) holds that their magnetic field and associated The paper is organized as follows. Magnetic equilibria as-
electric current may play a key role in their structure and dgumed for the jet configuration and their stability properties are
namics. While there is an exhaustive literature concerning jgesented in Se€il 2. The next section is devoted to the numerical
launching, collimation and propagation, the stability propertiggocedure and is followed by the results of the non linear simu-
of such current carrying magnetized jets have been investigakgitbns. Finally, consequences for jet structure are discussed in
only recently. Sect[5, and conclusions are drawn in 9éct. 6.

In a preceding paper (Appl et al. 2000, hereafter paper I),
we have addressed the stability of magnetized astrophysical jet
with respect to modes driven by the electric current density
distribution. These current-driven (CD) instabilities have been1. Magnetic configurations
suspected to disrupt (Eichler 1993, Lucek & Bell' 1996, Spruit et ) ) o o
al.[1997) or at least to affect the magnetic structure drasticall§!lowing paper I, we consider an infinitely long cylindrical
as the jet propagates (Todo et [al. 1993, Begelman|1998)J§hWith @ radiusr = R. Cylindrical coordinategr, ¢, 2) are
realistic magnetized jet configurations, magnetohydrodynantiged- We consider a jet with constant density and velocity, as
instabilities are generally a mixture of Kelvin-Helmholtz (KH)yveII as negligible thermal pressure and rotation. This excludes

pressure-driven, and CD modes. The non linear devempmen%qzssure—driven instabilities. The CD instabilities are then easily
' identified as they are internal modes, and KH ones only arise

Send offprint requests ttery@cp.dias.ie due to the vortex sheet at the jet boundary. Hence, cold jets with
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_________ value is still equal taP(0) = 1/3R. The variations of the pitch

e function for these three equilibria are plotted in Fig. 1.
06* P -

’ 2.2. Linear stability analysis

4 A global normal mode stability analysis of various unsta-
. ble magnetic configurations including those considered in the
- present paper has been carried out in paper I. We recall here the
_____ main results. It has been found that the dominant CD instability
=~ has an azimuthal mode numbet| = 1, with a range of unsta-
T~a ble axial wavenumberk. For example, the BFM configuration
0.2 ~o is unstable for positivé R values situated in the ranffg 1.04],
— Constant Picch for m = 1, with a maximum growth rate,,, = .035 ¢, ! at
-- Increasing Pitch i kR = 0.7. The Alfvén timet, = R/V, depends on the Al&n
— Decreasing Pitc velocity which is defined by2 = B2/ (p0p0) With By and pg
L being the magnetic field and the density on the magnetic axis.
% 0.5 1 For the other cases (CP, IP, DP), whete= —1 is dominant,
R range of unstablé R values is approximately given 09, 3].
r The fastest growing mode for general magnetic configurations
Fig. 1. Variations of the pitch profile®/ R as a function of the radial andP, = 1/3R exhibits a linear growth rate which is one order
coordinater. Solid, dashed and long dashed lines respectively cesf magnitude higher than for the BFM (see Table 1 in paper I).
resp_ond to constant (CP), increasing (IP) and decreasing (DP) pitch For the BFM and IP cases, a characteristic feature of the
profiles. lm| = 1 mode is given by its ability to satisfy a resonant con-
dition k - B = 0 somewhere in the plasma, whekteis the
force-free magnetic fieldd x B = 0 are retainedJ and B wavevector of the perturbation amd the equilibrium mag-
being the electric current density and the magnetic field resp8gtic field. The resulting resonant loci, that also correspond to
tively. In the linear phase, at sufficiently high fast-magnetosorficvanishing radial component of the magnetic field perturba-
Mach numbersi/ larger than unity), the jet boundary becometon, are called resonant surfaces. They are given by the roots of
effectively rigid for CD modes, and stability properties are simf:P” + m = 0 (See paper ). For example, for the BFM config-
ilar in the jet frame and for a static configuration bounded B¥fation, all unstablé values are resonant in the corresponding
a perfectly conducting wall (See paper I). We conjecture thigtervalr/R = [0.829, 1.]. These resonances correspond to sin-
these results remain true in the non linear regime due to the @arities in the linear MHD equations which are resolved by
ternal character of CD modes. Hence, the jet dynamics canip@'tia terms in the vicinity of the singular layers (Goedbloed
modeled by a static configuration bounded by a perfectly cof-Hagebeuk 1972). A givenfz| = 1, k) mode is related to a
ducting wall. Consequently, KH instabilities are excluded frofiadial displacement with a quasi-rigid shift of the central part
our computations. of the plasma situated inside the resonant magnetic surface for
In order to cover a wide range in physical conditions, wi&€e mode considered. The linear plasma perturbation gives then
consider various equi“bria asin paper |. We first retain asimwé] helical distortion of the Jet core situated inside the resonant
model well studied in other contexts, tBessel function model "adius, whichiis close to the jet radius whateveritivalue. Sim-
(BFM) which represents a linear force-free field= o B, with ilar results are obtained for the IP case, except that the radial
« being a constant. We use the same parameter as in papdiiplacement is less confined inside the resonant radius (due to
whereaR = 3.832. Cold magnetized configurations are fullyinertial effects since the growth rate is one order of magnitude
determined by the radial profile of only one function, which carger) vanishing only at the jet radius. The resonant radius (for
be taken to be the magnetic pitch functi&tr) = rB./B,, the dom_inant mode) is now located midway between the axis
whereB. andB,, respectively correspond to the poloidal and th@nd the jet boundary.
azimuthal components of the magnetic field. Next we consider For the CP and DP cases, the most unstathlesalues in-
aconstant pitc(CP) profile with a value o> = 1/3R which cluding the fastest growing one are non resonant. Consequently,
roughly corresponds to the average pitch of the BFM case. THhe radial component of the perturbed magnetic field is non
third and fourth equilibria are defined by mreasing(IP) and Zero everywhere and vanishes only at the outer radial boundary.
decreasindDP) pitch profile, with positive values for the pitch.Moreover, the radial displacement is very similar to the IP case.
More precisely, the DP case is given analytically in paper | by Hence, except for the BFM case, the radial displacement is
Eq. (5) withn = 2 andC = —1. The exact radial pitch profile independent of the type of the mode, resonant or not, while the
for the IP case has been chosen in order to make computatigiial component of the magnetic field vanishes exactly at the
tractable and has been obtained numerically. In the axial regi§§onant radius when it exists.
it follows Eq. (5) from paper | witm = 4, C' = 1 and has been
flattened in the outer part with(R) ~ 0.66 R. The central pitch
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3. The numerical model 8 azimuthal modes (respectively) after de-aliasing (Aydemir &

The computations of the non linear development of currenl%—ames; 1985), each mode with a band of 80 axial wavenumbers
P P centered around the fastest growing one.

driven modes are carried out using the cylindrical evolution
code, XTOR (Lerbinger & Luciani 1991). Initially, XTOR was
devoted to study the non linear evolution of (ideal and resi8-2. The numerical procedure

tive) kink and tearing modes in an axially periodic geometryy, investigate the non linear evolutions of the unstable configu-

Important results using XTOR in tokamak context have be?gtions described previously, we start the simulations by adding

obtained both in cylindrical geometry (Baty et[al. 1991) and '&nall|m| — 1 velocity perturbationd ~ 10414 to the differ-

toroidal geometry (Baty etal. 1993). In an axially periodic CONEnt linearly unstablé wavenumbers of the initial equilibrium.

figuration of IengthL_, allow_ed axial wayenumlt_)eisar_e 9VEN 61 eachk, a random phase is used. Since the CD instabilities
by k = 2an/L (n being an integer). A jet configuration is cer-

. SV e re ideal, the linear and the early non linear phases are computed
tainly not periodic in the axial direction, and consequently agké

the k val tb iori retained. H . ing t setting a vanishing resistivity coefficieng.,n = 0in Eq[4.
€k values must be a priori retained. HoWeVer, Increasing QR o guasi-linear phase characterized by an almost constant

![_engtlr; means add|?gt_mor‘ssleva_lutesf|n_ thetﬁermd'(_: Cznf'?ura'growth rate that is in agreement with the linearly most unstable
lon. From a computational point ot view, tne maximarmaue value, the non linear regime is followed using an increasing

is only I.|m|t.ed by the amount of memory storage. Folloyvmg ¢ iscosity coefficient in order to resolve small-scale velocity and
preceding idea, we are able to use a cylindrical version of t

- . . . eagnetic field structures (whose dimensions are of the order of
periodic code XTOR, with the highest possible length value e numerical resolution) that can form. It also allows to follow

prder tq mclude the highest possible numbet afavenumbers more clearly the possible saturation by dissipating the residual
in the simulations. oscillations around a bifurcated equilibrium (see below). Typ-
ically, the kinematic viscosity varies approximatively from
3.1. Equations and the numerical scheme 10~° at the beginning td0—3 at the end of this first stage of
EFe simulation. During the following second stage, a resistiv-
ity n and a viscosity coefficient, both of the orded0~3, are
used in order to follow the ensuing resistive relaxation process.

XTOR solves the full set of compressible and dissipative MH
equations, which can be written (in non-dimensional form):

op v —0 1 This value of the resistivity is optimal in terms of computational
ot +V - (pv) =0, @ efficiency, without allowing the equilibrium to diffuse too dras-

9 tically. We recall that the aim of the present work is not the
p [av +ov- Vv} =J x B—Vp+ prAwv, (2) careful study of the relaxation process.

t
% v Vp= -TpV-ov (3) 4 Theresults
5 4.1. The ideal phase
B

5 = V> (vxB)=Vx@J), (4) 4.1.1. The BFM case
J =V x B. (5) The CD instabilities have been followed by using two periodic

length valued. /R = 44, and88. As previously explained, de-
Here,p is the mass density, the plasma pressure,the fluid termines the: values included in simulations via= 27n/L,
velocity.n andv are the magnetic diffusivity and the kinematie: being an integer. Therefore, computations retain 7 and 14
viscosity respectively, anfl' is the ratio of specific heats (akR values in the unstable randg@ 1.04] for L/R = 44 and
value 5/3 is used). The equations are made dimensionlessIb\R = 88 respectively form = 1. Only theL/R = 88 re-
setting the jet radiugz, the equilibrium density, the mag- sults are reported in the present paper since results for the two
netic field on the axifBy, as well asug, to unity. The energy length values are similar. After a quasi-linear phase character-
equation is as simplified as possible, describing only energgd by an almost constant growth rate, which approximately
convection (Ed.J3) because the aim of the present simulaticorresponds to the linear growth rate of the fastest= 1, k)
is to understand primarily the dynamics. The MHD equatiorggowing modeyn > 1 modes are non linearly driven. This is
(@{5) are integrated in time using a second order semi-implidlustrated by Figd2 and 3, where the time evolution of kinetic
scheme, which allows large time steps limited only by the n@md magnetic energies of the differemtmodes integrated over
linear physical plasma phenomena (Lerbinger & Ludiani 1998l k£ values are plotted. These figures also show that a quasi-
Radially, finite differences on two staggered meshes are ussaturated state is attained at the end of this ideal phasat
Variables are expanded in double Fourier seriesamdz and ¢ = 650 ¢,. This state corresponds to constant levels for mag-
operations are performed using fast Fourier transform (FFTgtic energy and oscillations in kinetic energy. We have checked
In this study, 100 radial grid points are retained. As concertisat adding more viscosity, with a final valuemwf= 10~2 (in-
the § x z directions,16 x 160 and24 x 128 grid points are stead ofr = 10~3), suppresses these oscillations by dissipating
used corresponding then toi®.,m = 0, £1, £2, £3, £4, and kinetic energy. Viscous relaxation allows to avoid numerical os-
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Fig. 2. Kinetic energy for differentn modes {n = 1to4) as function Fig.4. Magnetic energy for different. modes fn = 1to 4) as a
of time for the Bessel force free model (BFM) case during the idefinction of the normalized axial wavenumbeR when the BFM con-
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Fig. 5. Radial profile of the axial component of the current density at
a given z. The dashed line corresponds to the initial equilibrium while
solid line stands for the saturated BFM case. For a gisttie azimuthal

angle is chosen such that the amplitude of the perturbation is largest.

Fig. 3. Magnetic energy for differemt modes{n = 1to4) asfunction
of time for the BFM case during the ideal phase.

cillations around the secondary equilibrium. For the saturated

state, we have investigated the distribution of magnetic energy We have also investigated the corresponding magnetic and
among the different: wavenumbers included in the simulaelectric current structures. Our results show the development of
tion. The results, displayed in Fid. 4, indicate two importar current concentration along the jet configuration, as shown in
features. Firstly, the inclusion of# azimuthal mode numbersFig.[8 for the axial currentdensity. Its maximum is radially local-
in the simulation is sufficient, since the level of the = 4, k) ized at the resonance of the linearly dominant mode. In the jet,
modes is very small with respect to the dominamt = 1, k) this concentration takes the form of an helical ribbon of intense
ones. Secondly, the saturated state is dominated by the fastegitive current superposed on the contribution coming from
linearly growingm = 1 mode, even though the non linearlythe initial equilibrium. The helicity corresponds to the pitch of
drivenm = 2 mode is far from being negligible. The presencthe dominantm = 1, k) mode. This quasi-singular structure re-
of m > 1 modes are indeed necessary for the non linear ssembles the current sheet found when an internal kink mode ide-
uration mechanism to be at work through a cascading procelg saturates in a tokamak (Rosenbluth efal.”1973). However,
towards small length scales. The free magnetic energy is therhis latter periodic configuration, as only ofwe = 1, k)
transferred from the linearly unstable smiallavenumbers (i.e. resonant mode is generally linearly unstable, the non linear har-
high axial wavelengths) of: = 1 mode towards higher linearly monics are then given byn, mkg). As a consequence, all the
stablek wavenumbers of, = 2, 3, .. modes. non linearly driven modes are resonant at the same radial loca-
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Fig. 6. Magnetic energy for differents modes fn = —1 to —7) as Fig. 7. Magnetic energy of the differemt modes{n = —1to —7) as

a function of time for the constant pitch (CP) case, during the ide |funct|0n of the normalized §X|al Wav.enum.tidﬁ atthe end of the
ideal phase for the constant pitch configuration.

phase.
° \\
tion giving rise there to a discontinuity in the magnetic field and -~~~ Initial State
to a singularity in the electric current density. In fact, this situga ' Non Linear Phasq

tion is not physical and a non-zero resistivity (even very sma@

is enough to regularize the singularity. In the present jet co-
figuration, a range ofm = 1, k) resonant modes are linearly
unstable, and again a wider range(of, k) modes are conse- £ 2
quently driven. Since all these modes resonate at different racfl
positions, the non linear current structure should be affected-y
a radial enlargement compared with the tokamak current sh%t. 0
However, the radial resonant regiopR = [0.83, 1] is rather
limited and therefore the current concentration is little enlarged,
as seen in Fid]5.

DP

0.5
4.1.2. The other magnetic configurations r/R

As concerns the non linear develooment of CD modes idé:ég'g' Radial profile of the axial component of the current density for
P ( the DP case at givenandd at the end of the ideal phase. The dashed

phase) for the three other classes (CP, DP, and IP), again tWOIFr’%’corres L e : o

. . . ponds to the initial equilibrium while solid line stands for
riodic Ieng_th val_ues areused, il/R = 15.7and31.4inorder .~ . ideal phase configuration.

to respectively include 7 and 4R values form = —1 (most

unstable now) in the intervdl, 3] in the simulations. Again,

similar results for the two length values have been found, orilg., ¢ = 30 ¢, exhibits the essential features of the non linear
the larger casel{/ R = 31.4) is presented here. However, conideal state. The repartition of the magnetic energy among the
trary to BFM case, a higher number of azimuthal modes (7 vaiferent & wavenumbers included in the simulations has been
ues have beenretained) mustbe includedas —2, —3,—4,.. examined. The corresponding results are plotted in[fig. 7 and
modes are linearly unstable (see paper I). The time evolutionshiow that the non linear state is dominated by the= —1

the magnetic energy is plotted in Hig. 6 for the CP case ambde, but with a more important relative contribution of higher
shows thatm| > 1 modes are again non linearly driven. How}m| modes with respect to the BFM results. Similar results have
ever, the saturation is less clear even when a higher viscodigen found for DP and IP cases.

coefficientr (~ 10~2) is used. The cascading process towards As concerns the current structure, it has been found that
smaller scales probably requires the inclusion of higheérand CP and DP configurations only exhibit a weak non linear de-
k wavenumber values in this case in order to clearly reach tteemation of current density, as shown in Fig. 8, without the

saturation. formation of large magnetic gradients (see the intense current
Nevertheless, since the magnetic energy level ofrithe:  concentration for the BFM case for comparison).
—7mode is three orders of magnitude smaller thamthe —1 This is not the case for the IP configuration, where a strong

one, the non linear state obtained at the end of this ideal phaserent concentration non linearly develops as shown il Fig. 9.
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Fig. 9. Spatial variation of the axial component of the current density
J for the IP case for a section of the jet at the end of the ideal pha

The corresponding contour plots are displayed. gfice of a non-zero small resistivity. For example, in a periodic

tokamak configuration, the effect of the resistivity is to lead

to the diffusion of the singular current sheet that is forming in

In this figure that represents the spatial variation of the axidle limit of vanishing viscosity, to some non-zero finite thick-
component of the current densitl in a section of the jet, a ness current concentration determined by the resistivity value.
negative current sheet appears inside the jet at the resonarfegensuing process takes the form of a stationary magnetic re-
of the linearly dominant mode. Indeed the corresponding t®nnection, with a magnetic island growing in the plasma core.
current layer plotted in Fif. 10 at the end of our ideal phase sfilhe time scale of the process is intermediate between théilfv
displays a negative spike similar to the BFM case. However, taad the resistive ones (Kadomtsev 1975). The relaxation pro-
current concentration is less peaked than in the BFM case wit#ss stops when the configuration has reached a stable state of
a broader radial structure. lower magnetic energy which was inaccessible in ideal MHD.

These results can be explained by the non resonant nature ofin order to follow the instability further, a numerical resistiv-
the dominant CD modes for DP and CP cases, contrary to IP diychas been applied in cases where intense magnetic gradients
BFM configurations where the fastest linearly growing mode &e formed (IP and BFM cases). The resistivity has been turned
resonant. Secondly, it has been found that the different lineadly at the end of the previous ideal phase when the smallest
unstable(m = —1, k) modes for IP case resonate everywhemagnetic scale approaches the grid resolution. It corresponds
between the axis and the outer limit. The resulting non linetime to¢ = 650 ¢, for the BFM case and te = 30 ¢, for
current structure is strongly broadened compared to BFM catie three other configurations. An optimal valye- 10~2 has
However, it remains an internal structure within the jet. been used. Higher resistivity values would lead to unrealistic

The preliminary conclusion based on the maximum linedissipation of the whole configuration and smaller ones would
growth rate of thém| = 1 mode to measure the importance obe prohibitively time consuming. Unfortunately, due to compu-
CD instability can be extended by taking the characteristic tint&tional limitations, it was not possible to fully reach the relaxed
scale necessary to reach the non linear ideal state. Indeed, stige with the resistivity we have been using. This is mainly due
characteristic time scale, which is of the order of 500 Atv to the increase with time of the number of modes driven to high
time forthe BFM case, is approximately 30 for the other unstakaeplitudes. It corresponds in our code to a drastic reduction of
magnetic configurations with a pitch value aroun@R. the time step, preventing us from following instabilities on long
time scales. The memory storage limits have also prevented us
from a further increase in the number of modes.

The previous effect can be explained by the increase of the
An important point concerns the ensuing relaxation process. umber of linearly unstable modes. Indeed, a non zero resistivity
deed, small scale magnetic structures as obtained in BMF driggers the development of purely resistive tearing-like modes
IP cases would certainly lead to non negligible diffusion in presshich were ideally stable. This drives an efficient coupling be-

4.2. The relaxation process
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tween various (ideal and resistive) modes. A large number wfiform external pressure. The variations of the magnetic field
modes are consequently non linearly driven, leading to a statieere the jet becomes cylindrical and the corresponding pitch
that corresponds to the beginning of the turbulent cascadec#n be derived. With this model, pressure and velocity gradi-
process similar to the one observed here and called the dynants are present contrary to the present work. However, it is
action is observed in the RFP, and can be described in terimsnd that the model produces various types of pitch profiles
of turbulent relaxation (Taylor 1986, Biskarmnp 1996). The effthat can always be classified following the general types shown
ciency of the coupling between nonlinearly interacting mod@sthe present study.e., with increasing, constant and decreas-
depends on the resistivity value (Nordlund & Mazur1994). limg pitch. The most realistic angular velocity profiles,, with

the present work, a rather high resistivity value compared k&plerian rotations, give rise to increasing pitch profiles. This
the expected one is employed mainly for computational reasasprecisely the kind of magnetic profile which develops helical
leading probably to a too efficient coupling. Nevertheless, veeirrent sheets.

can conclude that one expects a strong localized (radially) dis- Finally, our results have bearing on the integrity of the MHD
sipation when the magnetic structure of the jet is given byjets. The perturbation associated with the CD instabilities re-
globally increasing pitch. main confined to the inner parts of the jet also in the non linear
regime. We therefore conclude that the CD modes also non lin-
early are internal instabilities which will notlead to a destruction
of the jet, but only to a modification of the magnetic structure.

It has been shown that non linear instabilities develop on rapifiis is in good agreement with Todo et al. (1993) and Begel-
time scales and therefore should affect internal magnetic str@an (1998). Our work also supports the 3D jet stability study by
tures. This is not the case for the BFM configuration that cdrosen et al[(1999) who have found that the jet is more dissipa-
responds to a very particular equilibrium of minimal magnetiéve and less easily disrupted for important azimuthal magnetic
energy which has been used for illustration purposes (see field configurations. Therefore, nothing in our results indicate a
per 1). When a current sheet forme., in the IP case, a kinked Possible disruption of the jet by the CD instabilities as suggested
inner tube should appear due to helical distortion. Reconn&-Eichler (1993), Lucek & Bell (1996) or Spruit et &l. (1997).
tion and turbulence in such a configuration are likely to occur
and could accelerate particles in the vicinity of this surface. T%e
ensuing saturated configurations may look like a hollow tube
as observed in some jets. As has been shown in the previdhe subject of the present paper is the nonlinear evolution of
section, this state of developing turbulence should have its arisrrent-driven MHD instabilities in astrophysical jets. Since the
gin in a strong coupling between different ideal and resistiyecise magnetic structure of jet configurations is not known
modes. We have conjectured that this turbulent phase indicatessently, various equilibria characterized by their magnetic
that the system would further undergo a relaxation process. Uhitch and previously studied in the linear regime have been in-
fortunately, we have not been able to explore more deeply thisstigated. In particular, these are configurations with a constant
guestion, because of the limited resolution in our calculatiopitch (CP), with radially increasing (IP) and radially decreasing
However, we can conclude that jets with increasing pitch prpitch (DP), and a linear force-free field (BFM). The BFM case
files should give rise to important dissipation, acceleration tépresents a very particular equilibrium of minimum magnetic
non-thermal particles, and relaxation towards a state of lowarergy that has merely served for illustration purposes, since
magnetic energy. its evolution can be followed over longer time scales. A 3D
Also, the turbulent state can probably lead to a local dissipasolution MHD code for cylindrical equilibria of fusion plasma
tion of energy and therefore to heating along the current laye¢$OR has been adapted and applied to astrophysical jet config-
within the jet core. Hence the magnetic instabilities could heation. We are mainly interested in the current-driven instabil-
at the origin of an heating mechanism in jets. This may helles, that are suspected to change drastically the jet structure.
understand some YSO jets observations where the local tem-An important result is that the dominant unstable modes are
perature decreases more slowly than expected, or where témese which possess the fastest linear growth rate in the non-
perature increases are not followed by analogous increasebriear regime. This implies that a linear analysis well predicts
density close to the source (e.g. at about 200 AU, Bacciotti atie characteristic time scale to obtain a non linear state and the
Eisloffel 1999). Such a localized current is not observed if thaxial wavelength of the resulting deformation. This is true even
unstable modes are non resonant (CP and DP cases). Intentedn the instability has grown to a large amplitude. Unstable
helical features in jets can therefore arise as a consequencmofles can either be resonant or not, according to whether the
current-driven instabilities depending on whether their magneéquilibrium contains a resonant magnetic surface or not. Both
structure possess a radially increasing or decreasing profileresonant and non resonant modes show a similar (linear) heli-
The magnetic equilibria used in the present study are siroal radial displacement of the inner parts of the plasma column
lar to realistic jet models. As an illustrative case, comparisoaad the axial electric current distribution adjusts itself within
can be made with the Given Geometry model (Lery et al. 1998js region. The initially more centrally peaked current is re-
1999, Lery & Frank 2000), that has been recently proposdibtributed within the inner part as the instability develops non
for outflows from rotating magnetized objects confined by lamearly, while the outer parts remain unaffected. It is found

5. Astrophysical consequences

Conclusions
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that equilibria which contain a resonant surface (IP and BFB&cciotti F., Eisbffel J., 1999, A&A 342, 717

cases), non linearly develop a negative current spike at the @aty H., Luciani J.F., Bussac M.N., 1991, Nuclear Fusion 31, 2055
onant radius. The perturbed configuration has the form of Baty H., Luciani J.F., Bussac M.N., 1993, Phys. Fluids B 5, 1213
internal helical ribbon with a high current density, which magegelman M.C., 1998, ApJ 493, 291

give rise to an important dissipation. Ultimately, this probablg'Skamlo D., 1996, Ap&SS 242, 165

: : . 0 G., Rossi P., Massaglia S., et al., 1998, A&A 333, 1117
leads to the heating of the jet plasma or to the acceleration Xhler D., 1093, ApJ 419, 111

non-thermal particles. . Goedbloed J.P., Hagebeuk H.J.L., 1972, Phys. Fluids 15, No. 6, 1090
The results presented in this work are valid for magnetic. yoo pE Clarke D.A. Rosen A. ApJ 1997, 485, 533

configurations where the jet velocity is constant. This was doRgqomtsev B.B., 1975, Sov. J. Plasma Phys. 1, 389

in order to spatially separate KH and CD modes, and to focUrbinger K., Luciani, 1991, J. Comput. Phys. 97, 444

only on the effects of the later ones. However, in more realisery T., Frank A., 2000, ApJ, in press

tic jets, the velocity gradients should cause coupling betweksry T., Heyvaerts J., Appl S., Norman C.A., 1998, A&A 337, 603
these instabilities. Moreover, pressure gradients could give risgy T., Heyvaerts J., Appl S., Norman C.A., 1999, A&A 347, 1055
to sausage typer{ = 0) instabilities which could play a role Lucek S.G., Bell A.R., 1996, MNRAS 281, 245

in the knotty aspect of jets. We plan to study these effects irMiFOS”O M., Massaglia S., Bodo G., Rossi P, Ferrari A., 1998, A&A

future study. 33,989
Nordlund P., Mazur S., 1994, Phys. Plasmas 1, 4032
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