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Abstract. The non linear development of instabilities driven by
the presence of an electric current is investigated for magnetized
jets using 3-dimensional MHD simulations. General magnetic
equilibria for cold supermagnetosonic jets with constant veloc-
ity are considered in order to study the influence of the initial
configuration on the non linear evolution. It is found that the
current density is redistributed within the inner part of the jet
radius with a characteristic time scale and an axial wavelength in
agreement with the linear analysis. For equilibria having a pitch
profile that increases with radius, an internal helical ribbon with
a high current density is forming. It gives rise to considerable
dissipation which is radially localized, and may result in heating
and particle acceleration within the jet.
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1. Introduction

The current consensus on the nature of collimated astrophys-
ical jets from young stellar objects (YSO) and active galac-
tic nuclei (AGN) holds that their magnetic field and associated
electric current may play a key role in their structure and dy-
namics. While there is an exhaustive literature concerning jet
launching, collimation and propagation, the stability properties
of such current carrying magnetized jets have been investigated
only recently.

In a preceding paper (Appl et al. 2000, hereafter paper I),
we have addressed the stability of magnetized astrophysical jets
with respect to modes driven by the electric current density
distribution. These current-driven (CD) instabilities have been
suspected to disrupt (Eichler 1993, Lucek & Bell 1996, Spruit et
al. 1997) or at least to affect the magnetic structure drastically
as the jet propagates (Todo et al. 1993, Begelman 1998). In
realistic magnetized jet configurations, magnetohydrodynamic
instabilities are generally a mixture of Kelvin-Helmholtz (KH),
pressure-driven, and CD modes. The non linear development of
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KH instabilities in jets has been widely studied in the literature
(see for example Hardee et al. 1997, Bodo et al. 1998, Micono
et al. 1998), unlike the CD modes.

In paper I, we have performed a linear stability analysis
of cold supermagnetosonic jets for a large variety of magnetic
configurations. It has been shown that the CD instabilities grow
rapidly on time scales of order of the Alfvén crossing time in the
jet frame, and they are therefore likely to modify the magnetic
structure of the jet. However, they are internal modes since the
radial displacement becomes very small at the jet surface as
shown by the linear eigenfunctions. This led us to conclude that
the CD instabilities would not disrupt the jet.

The aim of the present paper is to investigate the non lin-
ear development of CD instabilities for magnetized astrophys-
ical jet. Magnetic configurations representative of the general
classes defined in paper I are considered. We carry out numerical
computations using a 3-dimensional evolution code issued from
laboratory plasma physics (Lerbinger & Luciani 1991, Baty et
al. 1993) which was adapted to astrophysical jets. For numeri-
cal reasons, we mainly focus on early non linear phases that are
quasi-ideal (the resistivity effect being negligible), and we only
superficially investigate more resistive later stages.

The paper is organized as follows. Magnetic equilibria as-
sumed for the jet configuration and their stability properties are
presented in Sect. 2. The next section is devoted to the numerical
procedure and is followed by the results of the non linear simu-
lations. Finally, consequences for jet structure are discussed in
Sect. 5, and conclusions are drawn in Sect. 6.

2. Jet equilibria and stability

2.1. Magnetic configurations

Following paper I, we consider an infinitely long cylindrical
jet with a radiusr = R. Cylindrical coordinates(r, φ, z) are
used. We consider a jet with constant density and velocity, as
well as negligible thermal pressure and rotation. This excludes
pressure-driven instabilities. The CD instabilities are then easily
identified as they are internal modes, and KH ones only arise
due to the vortex sheet at the jet boundary. Hence, cold jets with
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Fig. 1. Variations of the pitch profilesP/R as a function of the radial
coordinater. Solid, dashed and long dashed lines respectively cor-
respond to constant (CP), increasing (IP) and decreasing (DP) pitch
profiles.

force-free magnetic fieldJ × B = 0 are retained,J andB
being the electric current density and the magnetic field respec-
tively. In the linear phase, at sufficiently high fast-magnetosonic
Mach numbers (M larger than unity), the jet boundary becomes
effectively rigid for CD modes, and stability properties are sim-
ilar in the jet frame and for a static configuration bounded by
a perfectly conducting wall (See paper I). We conjecture that
these results remain true in the non linear regime due to the in-
ternal character of CD modes. Hence, the jet dynamics can be
modeled by a static configuration bounded by a perfectly con-
ducting wall. Consequently, KH instabilities are excluded from
our computations.

In order to cover a wide range in physical conditions, we
consider various equilibria as in paper I. We first retain a simple
model well studied in other contexts, theBessel function model
(BFM) which represents a linear force-free fieldJ = αB, with
α being a constant. We use the same parameter as in paper I
whereαR = 3.832. Cold magnetized configurations are fully
determined by the radial profile of only one function, which can
be taken to be the magnetic pitch functionP (r) = rBz/Bφ,
whereBz andBφ respectively correspond to the poloidal and the
azimuthal components of the magnetic field. Next we consider
a constant pitch(CP) profile with a value ofP = 1/3R which
roughly corresponds to the average pitch of the BFM case. The
third and fourth equilibria are defined by anincreasing(IP) and
decreasing(DP) pitch profile, with positive values for the pitch.
More precisely, the DP case is given analytically in paper I by
Eq. (5) withn = 2 andC = −1. The exact radial pitch profile
for the IP case has been chosen in order to make computations
tractable and has been obtained numerically. In the axial region
it follows Eq. (5) from paper I withn = 4, C = 1 and has been
flattened in the outer part withP (R) ' 0.66R. The central pitch

value is still equal toP (0) = 1/3R. The variations of the pitch
function for these three equilibria are plotted in Fig. 1.

2.2. Linear stability analysis

A global normal mode stability analysis of various unsta-
ble magnetic configurations including those considered in the
present paper has been carried out in paper I. We recall here the
main results. It has been found that the dominant CD instability
has an azimuthal mode number|m| = 1, with a range of unsta-
ble axial wavenumbersk. For example, the BFM configuration
is unstable for positivekR values situated in the range[0, 1.04],
for m = 1, with a maximum growth rateγm = .035 t−1

a at
kR = 0.7. The Alfvén timeta = R/Va depends on the Alfv́en
velocity which is defined byV 2

a = B2
0/(µ0ρ0) with B0 andρ0

being the magnetic field and the density on the magnetic axis.
For the other cases (CP, IP, DP), wherem = −1 is dominant,
range of unstablekR values is approximately given by[0, 3].
The fastest growingk mode for general magnetic configurations
andP0 = 1/3R exhibits a linear growth rate which is one order
of magnitude higher than for the BFM (see Table 1 in paper I).

For the BFM and IP cases, a characteristic feature of the
|m| = 1 mode is given by its ability to satisfy a resonant con-
dition k · B = 0 somewhere in the plasma, wherek is the
wavevector of the perturbation andB the equilibrium mag-
netic field. The resulting resonant loci, that also correspond to
a vanishing radial component of the magnetic field perturba-
tion, are called resonant surfaces. They are given by the roots of
kP + m = 0 (See paper I). For example, for the BFM config-
uration, all unstablek values are resonant in the corresponding
intervalr/R = [0.829, 1.]. These resonances correspond to sin-
gularities in the linear MHD equations which are resolved by
inertia terms in the vicinity of the singular layers (Goedbloed
& Hagebeuk 1972). A given (|m| = 1, k) mode is related to a
radial displacement with a quasi-rigid shift of the central part
of the plasma situated inside the resonant magnetic surface for
the mode considered. The linear plasma perturbation gives then
an helical distortion of the jet core situated inside the resonant
radius, which is close to the jet radius whatever thek value. Sim-
ilar results are obtained for the IP case, except that the radial
displacement is less confined inside the resonant radius (due to
inertial effects since the growth rate is one order of magnitude
larger) vanishing only at the jet radius. The resonant radius (for
the dominant mode) is now located midway between the axis
and the jet boundary.

For the CP and DP cases, the most unstablekR values in-
cluding the fastest growing one are non resonant. Consequently,
the radial component of the perturbed magnetic field is non
zero everywhere and vanishes only at the outer radial boundary.
Moreover, the radial displacement is very similar to the IP case.

Hence, except for the BFM case, the radial displacement is
independent of the type of the mode, resonant or not, while the
radial component of the magnetic field vanishes exactly at the
resonant radius when it exists.
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3. The numerical model

The computations of the non linear development of current-
driven modes are carried out using the cylindrical evolution
code, XTOR (Lerbinger & Luciani 1991). Initially, XTOR was
devoted to study the non linear evolution of (ideal and resis-
tive) kink and tearing modes in an axially periodic geometry.
Important results using XTOR in tokamak context have been
obtained both in cylindrical geometry (Baty et al. 1991) and in
toroidal geometry (Baty et al. 1993). In an axially periodic con-
figuration of lengthL, allowed axial wavenumbersk are given
by k = 2πn/L (n being an integer). A jet configuration is cer-
tainly not periodic in the axial direction, and consequently all
thek values must be a priori retained. However, increasing the
length means adding morek values in the periodic configura-
tion. From a computational point of view, the maximumk value
is only limited by the amount of memory storage. Following the
preceding idea, we are able to use a cylindrical version of the
periodic code XTOR, with the highest possible length value in
order to include the highest possible number ofk wavenumbers
in the simulations.

3.1. Equations and the numerical scheme

XTOR solves the full set of compressible and dissipative MHD
equations, which can be written (in non-dimensional form):

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

ρ

[
∂v

∂t
+ v · ∇v

]
= J × B − ∇p + ρν4v, (2)

∂p

∂t
+ v · ∇p = −Γp ∇ · v (3)

∂B

∂t
= ∇ × (v × B) − ∇ × (ηJ), (4)

J = ∇ × B. (5)

Here,ρ is the mass density,p the plasma pressure,v the fluid
velocity.η andν are the magnetic diffusivity and the kinematic
viscosity respectively, andΓ is the ratio of specific heats (a
value 5/3 is used). The equations are made dimensionless by
setting the jet radiusR, the equilibrium densityρ0, the mag-
netic field on the axisB0, as well asµ0, to unity. The energy
equation is as simplified as possible, describing only energy
convection (Eq. 3) because the aim of the present simulation
is to understand primarily the dynamics. The MHD equations
(1-5) are integrated in time using a second order semi-implicit
scheme, which allows large time steps limited only by the non
linear physical plasma phenomena (Lerbinger & Luciani 1991).
Radially, finite differences on two staggered meshes are used.
Variables are expanded in double Fourier series inθ andz and
operations are performed using fast Fourier transform (FFT).
In this study, 100 radial grid points are retained. As concerns
the θ × z directions,16 × 160 and24 × 128 grid points are
used corresponding then to 5,i.e.,m = 0,±1,±2,±3,±4, and

8 azimuthal modes (respectively) after de-aliasing (Aydemir &
Barnes 1985), each mode with a band of 80 axial wavenumbers
centered around the fastest growing one.

3.2. The numerical procedure

To investigate the non linear evolutions of the unstable configu-
rations described previously, we start the simulations by adding
small|m| = 1 velocity perturbation (v ≈ 10−4VA) to the differ-
ent linearly unstablek wavenumbers of the initial equilibrium.
For eachk, a random phase is used. Since the CD instabilities
are ideal, the linear and the early non linear phases are computed
by setting a vanishing resistivity coefficient,i.e.,η = 0 in Eq. 4.
After a quasi-linear phase characterized by an almost constant
growth rate that is in agreement with the linearly most unstable
k value, the non linear regime is followed using an increasing
viscosity coefficient in order to resolve small-scale velocity and
magnetic field structures (whose dimensions are of the order of
the numerical resolution) that can form. It also allows to follow
more clearly the possible saturation by dissipating the residual
oscillations around a bifurcated equilibrium (see below). Typ-
ically, the kinematic viscosityν varies approximatively from
10−5 at the beginning to10−3 at the end of this first stage of
the simulation. During the following second stage, a resistiv-
ity η and a viscosity coefficientν, both of the order10−3, are
used in order to follow the ensuing resistive relaxation process.
This value of the resistivity is optimal in terms of computational
efficiency, without allowing the equilibrium to diffuse too dras-
tically. We recall that the aim of the present work is not the
careful study of the relaxation process.

4. The results

4.1. The ideal phase

4.1.1. The BFM case

The CD instabilities have been followed by using two periodic
length valuesL/R = 44, and88. As previously explained,L de-
termines thek values included in simulations viak = 2πn/L,
n being an integer. Therefore, computations retain 7 and 14
kR values in the unstable range[0, 1.04] for L/R = 44 and
L/R = 88 respectively form = 1. Only theL/R = 88 re-
sults are reported in the present paper since results for the two
length values are similar. After a quasi-linear phase character-
ized by an almost constant growth rate, which approximately
corresponds to the linear growth rate of the fastest(m = 1, k)
growing mode,m > 1 modes are non linearly driven. This is
illustrated by Figs. 2 and 3, where the time evolution of kinetic
and magnetic energies of the differentm modes integrated over
all k values are plotted. These figures also show that a quasi-
saturated state is attained at the end of this ideal phasei.e., at
t = 650 ta. This state corresponds to constant levels for mag-
netic energy and oscillations in kinetic energy. We have checked
that adding more viscosity, with a final value ofν = 10−2 (in-
stead ofν = 10−3), suppresses these oscillations by dissipating
kinetic energy. Viscous relaxation allows to avoid numerical os-
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Fig. 2. Kinetic energy for differentm modes (m = 1 to 4) as function
of time for the Bessel force free model (BFM) case during the ideal
phase.
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Fig. 3. Magnetic energy for differentm modes (m = 1 to4) as function
of time for the BFM case during the ideal phase.

cillations around the secondary equilibrium. For the saturated
state, we have investigated the distribution of magnetic energy
among the differentk wavenumbers included in the simula-
tion. The results, displayed in Fig. 4, indicate two important
features. Firstly, the inclusion of 4m azimuthal mode numbers
in the simulation is sufficient, since the level of the(m = 4, k)
modes is very small with respect to the dominant(m = 1, k)
ones. Secondly, the saturated state is dominated by the fastest
linearly growingm = 1 mode, even though the non linearly
drivenm = 2 mode is far from being negligible. The presence
of m > 1 modes are indeed necessary for the non linear sat-
uration mechanism to be at work through a cascading process
towards small length scales. The free magnetic energy is then
transferred from the linearly unstable smallk wavenumbers (i.e.
high axial wavelengths) ofm = 1 mode towards higher linearly
stablek wavenumbers ofm = 2, 3, .. modes.
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Fig. 4. Magnetic energy for differentm modes (m = 1 to 4) as a
function of the normalized axial wavenumberkR when the BFM con-
figuration is saturated.
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Fig. 5. Radial profile of the axial component of the current density at
a given z. The dashed line corresponds to the initial equilibrium while
solid line stands for the saturated BFM case. For a givenz the azimuthal
angle is chosen such that the amplitude of the perturbation is largest.

We have also investigated the corresponding magnetic and
electric current structures. Our results show the development of
a current concentration along the jet configuration, as shown in
Fig. 5 for the axial current density. Its maximum is radially local-
ized at the resonance of the linearly dominant mode. In the jet,
this concentration takes the form of an helical ribbon of intense
negative current superposed on the contribution coming from
the initial equilibrium. The helicity corresponds to the pitch of
the dominant(m = 1, k) mode. This quasi-singular structure re-
sembles the current sheet found when an internal kink mode ide-
ally saturates in a tokamak (Rosenbluth et al. 1973). However,
in this latter periodic configuration, as only one(m = 1, k0)
resonant mode is generally linearly unstable, the non linear har-
monics are then given by(m, mk0). As a consequence, all the
non linearly driven modes are resonant at the same radial loca-
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Fig. 6. Magnetic energy for differentm modes (m = −1 to −7) as
a function of time for the constant pitch (CP) case, during the ideal
phase.

tion giving rise there to a discontinuity in the magnetic field and
to a singularity in the electric current density. In fact, this situa-
tion is not physical and a non-zero resistivity (even very small)
is enough to regularize the singularity. In the present jet con-
figuration, a range of(m = 1, k) resonant modes are linearly
unstable, and again a wider range of(m, k) modes are conse-
quently driven. Since all these modes resonate at different radial
positions, the non linear current structure should be affected by
a radial enlargement compared with the tokamak current sheet.
However, the radial resonant regionr/R = [0.83, 1] is rather
limited and therefore the current concentration is little enlarged,
as seen in Fig. 5.

4.1.2. The other magnetic configurations

As concerns the non linear development of CD modes (ideal
phase) for the three other classes (CP, DP, and IP), again two pe-
riodic length values are used, i.e.L/R = 15.7 and31.4 in order
to respectively include 7 and 14kR values form = −1 (most
unstable now) in the interval[0, 3] in the simulations. Again,
similar results for the two length values have been found, only
the larger case (L/R = 31.4) is presented here. However, con-
trary to BFM case, a higher number of azimuthal modes (7 val-
ues have been retained) must be included asm = −2,−3,−4, ..
modes are linearly unstable (see paper I). The time evolution of
the magnetic energy is plotted in Fig. 6 for the CP case and
shows that|m| > 1 modes are again non linearly driven. How-
ever, the saturation is less clear even when a higher viscosity
coefficientν (≈ 10−2) is used. The cascading process towards
smaller scales probably requires the inclusion of higher|m| and
k wavenumber values in this case in order to clearly reach the
saturation.

Nevertheless, since the magnetic energy level of them =
−7 mode is three orders of magnitude smaller than them = −1
one, the non linear state obtained at the end of this ideal phase,
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Fig. 7. Magnetic energy of the differentm modes (m = −1 to −7) as
a function of the normalized axial wavenumberkR at the end of the
ideal phase for the constant pitch configuration.
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Fig. 8. Radial profile of the axial component of the current density for
the DP case at givenz andθ at the end of the ideal phase. The dashed
line corresponds to the initial equilibrium while solid line stands for
the non linear ideal phase configuration.

i.e., t = 30 ta, exhibits the essential features of the non linear
ideal state. The repartition of the magnetic energy among the
differentk wavenumbers included in the simulations has been
examined. The corresponding results are plotted in Fig. 7 and
show that the non linear state is dominated by them = −1
mode, but with a more important relative contribution of higher
|m| modes with respect to the BFM results. Similar results have
been found for DP and IP cases.

As concerns the current structure, it has been found that
CP and DP configurations only exhibit a weak non linear de-
formation of current density, as shown in Fig. 8, without the
formation of large magnetic gradients (see the intense current
concentration for the BFM case for comparison).

This is not the case for the IP configuration, where a strong
current concentration non linearly develops as shown in Fig. 9.
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Fig. 9. Spatial variation of the axial component of the current density
Jz for the IP case for a section of the jet at the end of the ideal phase.
The corresponding contour plots are displayed.

In this figure that represents the spatial variation of the axial
component of the current densityJz in a section of the jet, a
negative current sheet appears inside the jet at the resonance
of the linearly dominant mode. Indeed the corresponding IP
current layer plotted in Fig. 10 at the end of our ideal phase still
displays a negative spike similar to the BFM case. However, the
current concentration is less peaked than in the BFM case with
a broader radial structure.

These results can be explained by the non resonant nature of
the dominant CD modes for DP and CP cases, contrary to IP and
BFM configurations where the fastest linearly growing mode is
resonant. Secondly, it has been found that the different linearly
unstable(m = −1, k) modes for IP case resonate everywhere
between the axis and the outer limit. The resulting non linear
current structure is strongly broadened compared to BFM case.
However, it remains an internal structure within the jet.

The preliminary conclusion based on the maximum linear
growth rate of the|m| = 1 mode to measure the importance of
CD instability can be extended by taking the characteristic time
scale necessary to reach the non linear ideal state. Indeed, this
characteristic time scale, which is of the order of 500 Alfvén
time for the BFM case, is approximately 30 for the other unstable
magnetic configurations with a pitch value around1/3R.

4.2. The relaxation process

An important point concerns the ensuing relaxation process. In-
deed, small scale magnetic structures as obtained in BMF and
IP cases would certainly lead to non negligible diffusion in pres-
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Fig. 10.Radial profile of the axial component of the current densityJz

for the IP case at the end of the ideal phase. For a givenz the azimuthal
angle is chosen such that the amplitude of the perturbation is largest.
The dashed line corresponds to the initial equilibrium while solid line
stands for the non linear ideal phase configuration.

ence of a non-zero small resistivity. For example, in a periodic
tokamak configuration, the effect of the resistivity is to lead
to the diffusion of the singular current sheet that is forming in
the limit of vanishing viscosity, to some non-zero finite thick-
ness current concentration determined by the resistivity value.
The ensuing process takes the form of a stationary magnetic re-
connection, with a magnetic island growing in the plasma core.
The time scale of the process is intermediate between the Alfvén
and the resistive ones (Kadomtsev 1975). The relaxation pro-
cess stops when the configuration has reached a stable state of
lower magnetic energy which was inaccessible in ideal MHD.

In order to follow the instability further, a numerical resistiv-
ity has been applied in cases where intense magnetic gradients
are formed (IP and BFM cases). The resistivity has been turned
on at the end of the previous ideal phase when the smallest
magnetic scale approaches the grid resolution. It corresponds
in time to t = 650 ta for the BFM case and tot = 30 ta for
the three other configurations. An optimal valueη = 10−3 has
been used. Higher resistivity values would lead to unrealistic
dissipation of the whole configuration and smaller ones would
be prohibitively time consuming. Unfortunately, due to compu-
tational limitations, it was not possible to fully reach the relaxed
state with the resistivity we have been using. This is mainly due
to the increase with time of the number of modes driven to high
amplitudes. It corresponds in our code to a drastic reduction of
the time step, preventing us from following instabilities on long
time scales. The memory storage limits have also prevented us
from a further increase in the number of modes.

The previous effect can be explained by the increase of the
number of linearly unstable modes. Indeed, a non zero resistivity
triggers the development of purely resistive tearing-like modes
which were ideally stable. This drives an efficient coupling be-
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tween various (ideal and resistive) modes. A large number of
modes are consequently non linearly driven, leading to a state
that corresponds to the beginning of the turbulent cascade. A
process similar to the one observed here and called the dynamo
action is observed in the RFP, and can be described in terms
of turbulent relaxation (Taylor 1986, Biskamp 1996). The effi-
ciency of the coupling between nonlinearly interacting modes
depends on the resistivity value (Nordlund & Mazur 1994). In
the present work, a rather high resistivity value compared to
the expected one is employed mainly for computational reasons
leading probably to a too efficient coupling. Nevertheless, we
can conclude that one expects a strong localized (radially) dis-
sipation when the magnetic structure of the jet is given by a
globally increasing pitch.

5. Astrophysical consequences

It has been shown that non linear instabilities develop on rapid
time scales and therefore should affect internal magnetic struc-
tures. This is not the case for the BFM configuration that cor-
responds to a very particular equilibrium of minimal magnetic
energy which has been used for illustration purposes (see pa-
per I). When a current sheet formsi.e., in the IP case, a kinked
inner tube should appear due to helical distortion. Reconnec-
tion and turbulence in such a configuration are likely to occur
and could accelerate particles in the vicinity of this surface. The
ensuing saturated configurations may look like a hollow tube
as observed in some jets. As has been shown in the previous
section, this state of developing turbulence should have its ori-
gin in a strong coupling between different ideal and resistive
modes. We have conjectured that this turbulent phase indicates
that the system would further undergo a relaxation process. Un-
fortunately, we have not been able to explore more deeply this
question, because of the limited resolution in our calculation.
However, we can conclude that jets with increasing pitch pro-
files should give rise to important dissipation, acceleration of
non-thermal particles, and relaxation towards a state of lower
magnetic energy.

Also, the turbulent state can probably lead to a local dissipa-
tion of energy and therefore to heating along the current layers
within the jet core. Hence the magnetic instabilities could be
at the origin of an heating mechanism in jets. This may help
understand some YSO jets observations where the local tem-
perature decreases more slowly than expected, or where tem-
perature increases are not followed by analogous increases in
density close to the source (e.g. at about 200 AU, Bacciotti and
Eislöffel 1999). Such a localized current is not observed if the
unstable modes are non resonant (CP and DP cases). Internal
helical features in jets can therefore arise as a consequence of
current-driven instabilities depending on whether their magnetic
structure possess a radially increasing or decreasing profile.

The magnetic equilibria used in the present study are simi-
lar to realistic jet models. As an illustrative case, comparisons
can be made with the Given Geometry model (Lery et al. 1998,
1999, Lery & Frank 2000), that has been recently proposed
for outflows from rotating magnetized objects confined by a

uniform external pressure. The variations of the magnetic field
where the jet becomes cylindrical and the corresponding pitch
can be derived. With this model, pressure and velocity gradi-
ents are present contrary to the present work. However, it is
found that the model produces various types of pitch profiles
that can always be classified following the general types shown
in the present study,i.e.,with increasing, constant and decreas-
ing pitch. The most realistic angular velocity profiles,i.e.,with
Keplerian rotations, give rise to increasing pitch profiles. This
is precisely the kind of magnetic profile which develops helical
current sheets.

Finally, our results have bearing on the integrity of the MHD
jets. The perturbation associated with the CD instabilities re-
main confined to the inner parts of the jet also in the non linear
regime. We therefore conclude that the CD modes also non lin-
early are internal instabilities which will not lead to a destruction
of the jet, but only to a modification of the magnetic structure.
This is in good agreement with Todo et al. (1993) and Begel-
man (1998). Our work also supports the 3D jet stability study by
Rosen et al. (1999) who have found that the jet is more dissipa-
tive and less easily disrupted for important azimuthal magnetic
field configurations. Therefore, nothing in our results indicate a
possible disruption of the jet by the CD instabilities as suggested
by Eichler (1993), Lucek & Bell (1996) or Spruit et al. (1997).

6. Conclusions

The subject of the present paper is the nonlinear evolution of
current-driven MHD instabilities in astrophysical jets. Since the
precise magnetic structure of jet configurations is not known
presently, various equilibria characterized by their magnetic
pitch and previously studied in the linear regime have been in-
vestigated. In particular, these are configurations with a constant
pitch (CP), with radially increasing (IP) and radially decreasing
pitch (DP), and a linear force-free field (BFM). The BFM case
represents a very particular equilibrium of minimum magnetic
energy that has merely served for illustration purposes, since
its evolution can be followed over longer time scales. A 3D
evolution MHD code for cylindrical equilibria of fusion plasma
XTOR has been adapted and applied to astrophysical jet config-
uration. We are mainly interested in the current-driven instabil-
ities, that are suspected to change drastically the jet structure.

An important result is that the dominant unstable modes are
those which possess the fastest linear growth rate in the non-
linear regime. This implies that a linear analysis well predicts
the characteristic time scale to obtain a non linear state and the
axial wavelength of the resulting deformation. This is true even
when the instability has grown to a large amplitude. Unstable
modes can either be resonant or not, according to whether the
equilibrium contains a resonant magnetic surface or not. Both
resonant and non resonant modes show a similar (linear) heli-
cal radial displacement of the inner parts of the plasma column
and the axial electric current distribution adjusts itself within
this region. The initially more centrally peaked current is re-
distributed within the inner part as the instability develops non
linearly, while the outer parts remain unaffected. It is found
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that equilibria which contain a resonant surface (IP and BFM
cases), non linearly develop a negative current spike at the res-
onant radius. The perturbed configuration has the form of an
internal helical ribbon with a high current density, which may
give rise to an important dissipation. Ultimately, this probably
leads to the heating of the jet plasma or to the acceleration of
non-thermal particles.

The results presented in this work are valid for magnetic
configurations where the jet velocity is constant. This was done
in order to spatially separate KH and CD modes, and to focus
only on the effects of the later ones. However, in more realis-
tic jets, the velocity gradients should cause coupling between
these instabilities. Moreover, pressure gradients could give rise
to sausage type (m = 0) instabilities which could play a role
in the knotty aspect of jets. We plan to study these effects in a
future study.
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