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Abstract. One of the more significant results from observa-
tional astronomy over the past few years has been the detection,
primarily via radial velocity studies, of low-mass companions
(LMCs) to solar-like stars. The commonly held interpretation
of these is that the majority are “extrasolar planets” whereas the
rest are brown dwarfs, the distinction made on the basis of ap-
parent discontinuity in the distribution ofM sin i for LMCs as
revealed by a histogram. We report here results from statistical
analysis ofM sin i, as well as of the orbital elements data for
available LMCs, to test the assertion that the LMCs population
is heterogeneous. The outcome is mixed. Solely on the basis
of the distribution ofM sin i a heterogeneous model is prefer-
able, although no unique best-fit mixture can be determined. On
the basis of the distribution of orbital periods and eccentricities
a homogeneous model is strongly preferable. Overall, we find
that a definitive statement asserting that LMCs population is het-
erogeneous is, at present, unjustified. In addition we compare
statistics of LMCs with a compatible sample of stellar binaries.
We find a remarkable statistical similarity between these two
populations. This similarity coupled with marked populational
dissimilarity between LMCs and acknowledged planets moti-
vates us to suggest a common origin hypothesis for LMCs and
stellar binaries as an alternative to the prevailing interpretation.
We discuss merits of such a hypothesis and indicate a possible
scenario for the formation of LMCs.

Key words: stars: binaries: spectroscopic – stars: formation
– stars: low-mass, brown dwarfs – stars: planetary systems –
stars: statistics

1. Introduction

The rising accuracy of radial velocity techniques has resulted
in detection of numerous unresolved low-mass companions to
solar type stars. So far (as of early 1999), surveys revealed 17
objects (Marcy et al. 1999) for which a projected mass,M sin i,
of a companion is smaller than 12MJ. The anglei is that be-
tween an observer’s line-of-sight to a star and the normal to
the orbital plane of the companion/star system. Because of their
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small projected masses, and thus expected small actual masses
assuming random orientation of orbital planes in space, these
companions have been classified as extrasolar planets (EP) or
planet candidates (Marcy & Butler 1998; Marcy et al. 1999). In
addition, 10 objects with17MJ < M sin i < 70MJ have been
found (Mayor et al. 1997) and classified as brown dwarf candi-
dates (BD), again on the basis of their expected masses being
sub-stellar but substantially higher than the mass of Jupiter. Al-
though this dual classification of low-mass companions (LMCs)
is based solely on the magnitude of their projected masses, it
has been also widely assumed (see the aforementioned refer-
ences) that it reflects differences in origin. Specifically, it has
been assumed that EPs formed via the process essentially iden-
tical to what is postulated for the formation of Jupiter in the
Solar System – buildup by aggregation from a protoplanetary
disk, whereas BDs formed presumably via cloud fragmentation,
just like the stars. In this paper we address two distinct, yet in-
terconnected issues. First, the mass distribution of LMCs and
whether their division into EPs and BDs is statistically justified.
Second, the statistics of LMC’s orbital elements and what they
may imply regarding the origin of LMCs.

We start by enumerating the principal arguments advanced
for dividing LMCs into EP and BD:

Mass distribution of LMCs. This argument as generally
presented stems from a histogram ofM sin i from all available
LMC data (Marcy & Butler 1998; Mazeh et al. 1998; Marcy
et al. 1999). Such a histogram shows a spike in the first bin
containing LMC with the smallest masses followed by subse-
quent bins containing very few objects (see Fig. 2). Because
histograms are supposed to portray the underlaying probability
distribution function (PDF), the proponents of the dual character
of LMCs argue that the actual PDF ofM sin i is discontinuous
at some small value ofM sin i providing a natural divide and
observationally defining two sub-populations of LMC.

However, in cases where a number of objects in the sample
is relatively small and there is reason to believe that the underly-
ing PDF is skewed, histograms are poor indicators of an actual
PDF. In this paper we infer thefunctional formof the PDF from
the empirical cumulative distribution function (CDF), and de-
termine theparametersof the PDF using maximum-likelihood
estimation (MLE).
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Minimum mass of brown dwarf. This argument stems
from the alleged lower limit to the mass of brown dwarfs based
upon the concept of opacity-limited fragmentation. Estimates
of this mass limit yield values of about 10MJ (Rees 1976; Silk
1977), although lower estimates are possible if fragmentation
occurs in a disk (Boss 1998). Such a limit could provide theo-
retical support to the notion of duality of the LMC population,
provided it falls near the purported mass cutoff. However, this
limit must be considered as highly uncertain quantitatively .
Additionally, the “minimum mass” argument ignores the pos-
sibility that evolutionary effects such as mass exchange have
altered the masses of the closer companions. The strength of
this argument as support for a heterogeneous LMC population
is marginal at best.

Mass-eccentricity relation. This argument arises from
plotting LMC projected masses versus their eccentricities. Sup-
porters of the dual character of LMCs have pointed out that
LMC below a certain mass have low eccentricities, and those
above that mass have high eccentricities, again revealing a “dis-
continuity” that suggests the existence of two sub-populations
(Mayor et al. 1998). This argument seems to be a historical foot-
note as new data do not conform to the alleged mass-eccentricity
relation.

Metallicity. The fourth argument given for a dual charac-
ter of LMCs comes from the metallicities of stars with LMCs.
Stars with LMC designated as EP are metal rich compared to
field stars (Gonzalez 1998; Gonzalez et al. 1999). However, as
no direct comparison of metallicities between parent stars of
designated EP and parent stars of designated BD has been pub-
lished, the metallicity argument does not at present contribute
to the question of homogeneity or heterogeneity of the LMC
population.

The case for the existence of two distinct species in the
population of LMC is deserving of a more extensive treatment
than it has received in the literature to date. In this paper we
concentrate on evaluating two of the above arguments using
statistical analysis of data relating to all 27 LMC. Our goal is to
estimate from available data the underlying PDFs for projected
masses, periods, and eccentricities of LMC.

Our approach will be to employ aparametric statistical
model in which the data is assumed to be drawn from a mixture
of two PDFs (one describing putative EP and the second describ-
ing putative BD) each having a specific form (inferred from the
empirical CDF), but undetermined parameters. In addition, the
parameter describing the relative contribution of two compo-
nents to the overall mixture is undetermined. MLE is used to
determine all unknown parameters. This approach distinguishes
our work from that of Heacox (1999) who employed a nonpara-
metric statistical model to analyze distributions of various LMC
quantities.

Sect. 2 discusses data adjustments and Sect. 3 contains a de-
scription of our statistical analysis. In Sect. 4 we present re-
sults pertaining to projected masses. Separately, in Sect. 5 we
present results pertaining to periods and eccentricities. Finally,
in Sect. 6, we present conclusions and discussion.

2. Data adjustments

LMC data considered in this paper come from several differ-
ent surveys. This fact puts in question the representativeness
of the overall LMC sample and thus its suitability for statistical
analysis. To alleviate this problem some adjustments are needed
when joining LMC data from different surveys into a single set.
In the context of low-mass and stellar-mass companions such
adjustments are discussed by Mazeh et al. (1998). The correc-
tions take into account the effects due to instrumental precision
and number of stars examined in the various radial velocity sur-
veys. In addition, Mazeh et al. (1998) correct for thesin i factor
because they are interested in a distribution of an actual mass
of companions rather than a distribution of a projected mass.

We collect our LMCs sample from numerous surveys, but
it is only necessary to consider two distinct categories, objects
obtained from relatively low precision (∼ 300 m/sec) survey
of 570 stars by Mayor et al. (1997) and objects obtained from
relatively high precision (∼ 10 m/sec) surveys of about 300
stars (see Marcy et al. 1999 and references therein).

A correction protocol described by Mazeh et al. (1998) is
valid assuming that low and high precision surveys are compat-
ible, statistically independent and unbiased. However, due to
differences in target selection criteria, different surveys are not
entirely compatible, and are likely not to be statistically indepen-
dent. Therefore, it is not clear what adjustment protocol, if any,
is the most appropriate. Given these uncertainties we use both
unadjusted and adjusted LMCs data to infer the distribution of
M sin i. We do not correct the data for thesin i factor because we
restrict ourselves to studying the distribution ofprojectedmass
only. This is dictated by the small size of LMCs sample. Thus,
the names EP and BD have to be taken with caution inasmuch
asM sin i is used as a surrogate for an actual mass. Finally, only
unadjusted data is used to infer distributions of LMCs orbital
parameters.

3. Statistical model

We look for the underlying PDFs for projected masses, periods,
and eccentricities using the MLE. Such an estimation maxi-
mizes the probability of drawing a particular datum that was in
fact obtained. This approach requires specifying the functional
form of the PDF and estimating the values of free parameters.
The form of the PDF can be deduced from the empirical CDF
constructed for LMC quantities. Let̄y = (y1, y2, ..., yN ) be a
list of either projected masses, periods, or eccentricities forN
LMCs and assume that̄y has been already sorted by size in
increasing order. Then the empirical CDF, denoted byF (y) is
defined by

F (y) =

{ 0, y < y1
i
N , yi ≤ y < yi+1
1, yN ≤ y

(1)

The estimation process is complicated by the fact that we
have to allow for the existence of two sub-populations in the
overall population of LMC. We assume thatȳ is drawn from a
mixture of two PDFs,f1(y|θ1) which describes the distribution
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of quantityy for “planets,” andf2(y|θ2) which describes the
distribution of quantityy for “brown dwarfs,” whereθ1 andθ2
are lists of parameters characterizing respective PDFs. Thus, the
PDF for the entire LMC population can be expressed as follow,

f(y|θ1, θ2, ε) = (1 − ε)f1(y|θ1) + εf2(y|θ2) (2)

where0 < ε < 1 is a mixture parameter. Drawing (observing),
say projected massesM sin i from a total LMC population dis-
tributed according to (2) can be interpreted as a two step process.
First a Bernoulli random variableb is drawn taking a value of
1 with probability(1 − ε), or value 2 with probabilityε. Ac-
cording to the value ofb, M sin i is then drawn from one of
the two sub-populations with PDFsf1(y|θ1) andf2(y|θ2). We
assume that the “allocation” variableb is not directly observed.
This means that we don’t a priori put any labels on the data. The
labels, if any, can be put a posteriori if indicated by statistical
analysis. The complete data is thusz̄ = (z1, z2, ..., zN ), where
zj = (yj , bj). The PDF given by (2) can be interpreted asg(z|θ)
with θ = (θ1, θ2, ε). The log-likelihood function formed from
the data is

log L = log
N∏

j=1

g(zj |θ) =
N∑

j=1

log g(zj |θ) (3)

A MLE is a value ofθ denoted byθ̂ that maximizeslog L.
In general, obtaininĝθ is a nontrivial undertaking becauseθ
is a vector of potentially many dimensions andg(z|θ) can be
a complicated function. We use the Expectation-Maximization
(EM) numerical algorithm (Dempster et al. 1977) to find a MLE.
Note that this estimate contains the mixture parameterε. If the
estimation ofε is close to zero, a homogeneous population is
indicated.

4. Projected masses

We carried out calculations for several cases set apart by differ-
ent adjustments to the LMC data, no adjustments, adjustment for
sample size, and adjustments for both sample size and precision.
Adjustments are achieved by enlarging the population of objects
in a certain projected mass range by an appropriate factor. To
correct for sample size we enlarged the population of EP by the
factor of 2. Following Mazeh et al. (1998) we correct for instru-
mental precision by further enlarging the population of planets
with M sin i < 1MJ and BD with10MJ < M sin i < 30MJ
by another factor of 2. It should be noted that Mazeh et al. use
a 2σ (whereσ is a measurement error) criterion for establish-
ing the minimum detectable EP signal (4σ peak-to-peak). This
is in contrast to the4σ semi-amplitude criterion suggested by
Marcy & Butler (1998) and used by us later in this paper. Use
of this more stringent detection criterion would yield a modest
increase in the correction factor for the low end of the EP data
set, but it would not alter the conclusion.

The first step is to calculate an empirical CDF for LMC pro-
jected masses. Displaying a CDF on the log-linear scale makes
an identification of the underlying PDF easier. In such a scal-
ing any straight line corresponds to a PDF having a power-law

form, f ∼ y−p, with the indexp = 1. Convex departures from
the straight line indicate PDF in the form of the power-law with
p < 1, whereas concave departures from the straight line indi-
cate power-law PDF withp > 1. Similarly, PDFs in other forms
(for example, normal distribution, log-normal distribution etc.)
have their own characteristic CDF signatures. In the case when
the gradient of the empirical CDF changes abruptly, a mixture
of two PDFs is indicated.

The empirical CDF for projected masses of LMCs (regard-
less of considered adjustments) can be best characterized as
either a single smooth curve quite close to a straight line, or
a piecewise-smooth curve with two component curves. Thus,
we infer from the data that the PDF of projected masses has a
functional form that is either a single power-law, or a mixture
of two power-laws. Of course the empirical CDF constructed
from only 27 data points cannot be used to unambiguously in-
fer the underlying PDF and it is conceivable that the data came
from a distribution having functional form different from what
we have inferred. Newertheless, a power-law provides the least
structured candidate for the underlying PDF. Therefore we adopt
the following form for the PDF of LMC projected masses

f(M sin i|θ) = (1 − ε)A1(M sin i)−p1H1

+ εA2(M sin i)−p2H2 (4)

whereH1 andH2 are cut-offs defined in terms of the Heaviside
step functionH,

H1 = H[M sin i − (M sin i)min
ep ]H[(M sin i)max

ep − M sin i]

H2 = H[M sin i − (M sin i)min
bd ]H[(M sin i)max

bd − M sin i],
(5)

In other words, the PDF consists of two components, the EP
component which is a power-law with the indexp1 and valid
for projected masses between(M sin i)min

ep and(M sin i)max
ep ,

and the BD component given by a power-law with the in-
dex p2 and valid for projected masses between(M sin i)min

bd

and (M sin i)max
bd . Values of (M sin i)min

ep = 0.3MJ and
(M sin i)max

bd = 70MJ are set by observations, but there are
no a priori assumptions about values of(M sin i)max

ep and

(M sin i)min
bd ; the distributions may, in principle, overlap, con-

nect, or there may be a gap between them. The parameter
list θ has five components,p1, p2, (M sin i)max

ep , (M sin i)min
bd ,

and ε, because we decided to fix values of(M sin i)min
ep and

(M sin i)max
bd . ConstantsA1 andA2 are to assure that contribut-

ing PDF s integrate to 1. They are expressible in terms of already
defined parameters.

Our goal is to determine the MLE ofθ. We set up our calcula-
tions as follows. We allow both(M sin i)max

ep and(M sin i)min
bd

to be any value from 5MJ to 50MJ in steps of 2.5MJ. Thus,
there are altogether192 = 361 possible PDFs under considera-
tion. For each possible PDF with the pre-defined mass domain
we employ the EM algorithm which finds the MLE ofp1, p2,
andε and record the corresponding (maximized) value oflog L.
Note that, in principle, the EM algorithm should be able to find
the MLE of the entireθ, without auxiliary cycling through two
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Fig. 1.The summary of testing the hypothesis that the PDF ofM sin i for LMCs are given by a single power-law against the alternative hypothesis
that it is given by a mixture of two power-laws. Possible mixture PDFs are indexed by(M sin i)max

ep and(M sin i)min
bd ). The single power-law

hypothesis is accepted over the mixture hypothesis for mixtures in the white region. The mixture hypothesis is accepted at the significance level
s ≤ 1 for mixtures in the gray region. The black subset of the gray region contains mixtures accepted ats ≤ 0.05. These, best fit models, can
be grouped into several types as indicated by arrows. The panels from left to right are for the unadjusted LMC data, data adjusted for sample
size, and data adjusted for both sample size and instrumental precision.

of its components. However, due to the special character of
these parameters (they define cut-offs of PDFs) we find such
a straightforward application of the EM algorithm difficult to
implement. We also calculate the MLE ofθ0 = p and record the
maximized value oflog L for a PDF given by a single power-
law, f ∼ (M sin i)−p, over the entire domain of masses.

In the above context, the best way to address the main
issue of heterogeneity versus homogeneity of the LMC pop-
ulation is to test the hypothesis that the PDF ofM sin i is
given by a single power-law against the alternative hypothe-
sis that it is given by a mixture of two power-laws. The test
is simple, we compare the value of(log L)sg for the MLE-
determined single power-law PDF with values of(log L)mix

k

for all k = 1, . . . , 361 MLE-determined mixture PDFs. A
mixture PDF hypothesis is a contender only for such mix-
tures (indexed byk) for which (log L)mix

k > (log L)sg. For
all contending mixtures we calculate a significance level,s =
1 − CDFχ2 [−2((log L)sg − (log L)mix

k )], using theχ2 distri-
bution. The value ofs is a probability that the single power-law
hypothesis is falsely rejected. The level at which one accepts
the heterogeneous hypothesis is, of course, subjective. Statistics
textbooks (for example Mack 1967) give following guidline; a
significance level of 0.05 is equated with “just significant” and
a level of 0.01 with “highly significant.”

Fig. 1 shows the results of the test. Each point on
the graph corresponds to a mixture PDF indexed by
[(M sin i)max

ep , (M sin i)min
bd ] instead ofk. The white area cor-

respond to mixture PDFs for which(log L)mix < (log L)sg and
the gray area indicate contending mixtures. The subset of con-
tending mixtures for whichs ≤ 0.05 is colored black. Thus, the
black regions indicate mixture models that should be accepted
over the best homogeneous fit.

The first result is that, in all considered cases, our formal
procedure locates some mixture models that are better fits than
the best single power-law model. However, there is nounique
best-fit mixture, instead, in all cases, the best mixture fits can be
grouped into several types set apart by their overall character.

The best single power-law fit to the unadjusted LMC data
has an indexp = 0.89 (±0.018). Three distinct mixture types
yielding significantly better fit than the single power-law model
can be identified. Type I is a mixture with a power-law break
at M sin i about 5-10MJ. The PDF for small projected masses
(before the break) is steeper than after the break. Type I fits sug-
gest a heterogeneous LMCs population with a character much
like the one usually implied in the literature (for example Marcy
et al. 1999). In a Type II mixture the power-law index is close
to 1.0 over the entire range of LMCs projected masses but the
EP PDF ends atM sin i ≈ 22MJ and the BD PDF starts at
M sin i ≈ 35MJ. Type II fits would be consistent with the
findings of Mazeh et al. (1998). Finally, in the Type III fit the
power-law index is also close to 1.0 over the entire range of pro-
jected masses, but the high end of the EP PDF overlaps with the
low end of the BD PDF in the region ofM sin i ≈ 35 − 40MJ.

The formally best fit to the unadjusted LMC data is of Type
II with s = 0.008. Fig. 2 shows best fits for a single power-law
model and for all types of preferred mixtures. CDFs are the best
tools to visualize a fitness of a model to the data. We have, how-
ever, also constructed histograms based on corresponding mod-
els. Such histograms are constructed by integrating the model
PDF between the cutpoints defining the bins and rounding re-
sults to the nearest integer. Comparison between data-derived
and model-derived histograms offer an alternative way to visu-
ally judge the fitness of a model.

The best single power-law to the sample size adjusted LMC
data has an indexp = 1.06 (±0.014). As was the case with the
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Fig. 2. Estimations of the PDF ofM sin i using unadjusted LMC data. Four panels correspond to four different estimations. All panels show
the empirical CDF forM sin i, black dots indicate contribution from EP and gray dots contributions from BD. The histogram with white bars
is produced from observations. Solid lines show CDFs corresponding to indicated MLE-determined PDFs. Upper left panel is for a single
power-law PDF, other panels are for best mixture models as indicated by their type and significance level. The histogram with gray bars is
produced from corresponding PDF.

unadjusted LMC data, Type I and II mixture fits are statistically
superior to a homogeneous fit, but Type III fits are not. A new
type of heterogeneous fit, Type IV, is present. Type IVs are
similar to the Type I fits, but with the power-law break located
at M sin i = 12 − 15MJ. The formally best fit to the sample
size adjusted LMC data is of Type I withs = 0.004.

Finally, the best single power-law to the sample size and
precision adjusted LMC data has an indexp = 1.15 (±0.007).
In such case only Type I and II mixture are better than the
single power-law. The formally best fit to the size and instrument
precision adjusted LMC data is of Type I withs = 0.02.

Overall, our calculations show that heterogeneous models
can be found that fit the LMC data better than a homogeneous
model. However, given presently available data we cannot pin-
point an unique mixture model. Two mixture types seem to
offer comparable fits. One (Type I) suggests the LMCs popula-
tion divided roughly at the theoretical lower limit to the mass of
brown dwarfs based upon the concept of opacity-limited frag-
mentation. A second (Type II) suggests possible discontinuity at
M sin i of about 20-35MJ. This result is robust inasmuch as it is
independent of possible data adjustments. Evidently more ob-
servations are needed to settle this issue. Note that single power-
law models offer reasonable, although formally worse, fits. Fits

to the adjusted LMC data sets yield steeper single power-law
models, although, the range fromp = 0.89 (±0.018), for un-
adjusted data, top = 1.15 (0.007), for the most adjusted data,
is not dramatic.

Clear resolution of the nature of the projected mass dis-
tribution awaits the results from a comprehensive survey of a
large number (∼1000) stars using one instrument. Such a survey
is just beginning in the Southern Hemisphere (Queloz, private
communication).

5. Periods and eccentricities

Studying the projected mass distribution of LMCs is the way
(apart from thesin i difficulty) of addressing the issue of their
character that has been emphasized by other workers. However,
examining distributions of the orbital periods and eccentricities
of the LMCs may provide a clearer sense of the nature of these
objects as these observables have no ambiguities associated with
their value. Additionally, they are relatively, but not completely
immune to the question of completeness as the entire range of
values that these variables can take is accessible to all surveys.
The exception to this lies in the longer periods, but that is not
likely to influence the results that are discussed below. Toward
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that end we have constructed empirical CDFs for periods and
eccentricities of LMC.

Note that the character of the problem for periods and ec-
centricities is qualitatively different from that for the projected
masses. In the case of the projected mass distribution, one could
imagine a mixture PDF with components PDFs having mostly
separated domains, with some possible overlap. However, in the
case of periods and eccentricities, if actual PDFs are mixtures,
their components overlap over the entire domain. Nevertheless,
the EM algorithm can still be used to test homogeneity versus
heterogeneity of the sample.

We use the same technique as described in Sect. 4 to test
the homogeneity versus the heterogeneity of the population
of LMCs with respect to distributions of their orbital periods
and eccentricities. The empirical CDF for the orbital periods of
LMCs, plotted on the log-linear scale can be best characterized
as either a single straight line or a piecewise-smooth curve with
two components. Thus we infer from tha data (see also Sect. 4)
that the functional form of the PDF of LMC periods is a binary
mixture (2) withf1 andf2 given by power-laws with different in-
dices, but having the same domain consisting of the entire range
of observed periods. We calculate the MLE ofθ = (p1, p2, ε).
Calculations reveal that the log-likelihood function (3) is mini-
mized forε = 0 andp = p1 = 0.98 (±0.01). Therefore, there
is no evidence of two populations in the LMC in the available
period data. Fig. 3 (the left panel) shows the empirical CDF for
the orbital periods of all LMCs companions together with the
MLE-estimated fit.

Also shown in Fig. 3 is the empirical CDF for orbital pe-
riods of selected stellar companions to solar-type stars. The
particular selection of 15 binaries, due to Heacox (1999), is
designed to be compatible with LMCs. It is a subset of the bina-
ries in the Duquennoy & Mayor (1991) survey constrained by
the requirement that primaries are population I and semi-major
axes are less than 3 AU. Note that the empirical CDF for peri-
ods for stellar companions seems to be indistinguishable from
that defined by the LMC. Formally, the MLE-estimated single

power-law PDF for periods using the Heacox binaries data has
p = 0.89 (±0.05). We have also constructed the empirical CDF
for orbital periods of secondaries using all 52 spectroscopic bi-
naries from the survey by Duquennoy & Mayor (1991). Again,
the shape of the empirical CDF suggest a single power-law, and
the MLE-estimated power-law index isp = 0.87 (±0.004).

The empirical CDF for eccentricities of LMCs, plotted on
the log-linear scale can be best characterized as either a sin-
gle convex curve or a piecewise-smooth curve with two com-
ponents. Thus, we infer from the data (see also Sect. 4) that
the functional form of the PDF of LMC eccentricities is a bi-
nary mixture of two power-laws with different indices and a
common domain. The log-likelihood function is minimized for
ε = 0. Therefore, as in the case of periods distribution, there
is no evidence of two populations in the LMC in the avail-
able eccentricity data. The MLE-estimated single power-law
PDF for eccentricities using all LMCs withe > 0.001 has
p = 0.64 (±0.03). Fig. 3 (the right panel) shows the empir-
ical CDF for eccentricities of all LMCs companions together
with the best power-law fit. Also shown in Fig. 3 is the CDF
for eccentricities of secondaries in the aforementioned sample
of stellar binaries. As in the case of orbital periods, the empir-
ical CDFs for eccentricities for stellar companions and LMCs
are very similar. Formally, the MLE-estimated single power-law
PDF for eccentricities using the Heacox binaries withe > 0.001
hasp = 0.63 (±0.08). We have also constructed the empirical
CDF for eccentricities of secondaries using all 52 spectroscopic
binaries from the survey by Duquennoy & Mayor (1991). Sin-
gle power-law is indicated, and the MLE-estimated power-law
index isp = 0.63 (±0.04) identical to that obtained for the
Heacox subset. It appears that LMCs and stellar binaries have
orbital elements distributed alike. We shell return to this key
facet of the LMCs in the discussion section.

So far we have considered individual distributions of pro-
jected masses and orbital elements of LMC and stellar com-
panions. However, we can also study dual correlations between
these quantities. The clearest correlation is that between peri-
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Fig. 4.P−e (upper panel) andM sin i−
e (lower panel) diagrams. Square sym-
bols denote EP, triangle symbols denote
BD, and pentagon symbols denote stel-
lar companions. Because of logarithmic
scale objects withe = 0 are plotted as
e = 0.001. The EP on the upper panel
are labeled by their projected mass (in
units of MJ) and the EP on the lower
panel are labeled by their periods (given
in days). The solid line on theP − e
diagram represents the least square fit
using all data points except those with
e = 0.001. Dashed curves denote se-
lected detectability limits.

ods and eccentricities. Black (1997) has previously noted this.
Fig. 4 (upper panel) shows theP − e diagram composed of all
LMCs and selected stellar companions. The insert lists correla-
tion coefficients for various sub-groups of the data. The Spear-
man coefficient,ρs, measures the correlation between rankings
of periods and eccentricities, it gauges the strength of the as-
sociations between two variables. Perfect concordance of both
rankings yieldsρs = 1 and indicates a directcausal relationbe-
tween both quantities. Smaller values ofρs indicate an existence
of a trend rather than a one-to-one relation,ρs = 0 indicates no
association. The fact thatρs /= 0 for all entries in the insert is
statistically significant at thes = 0.05 level, except for the BD
population, for which it is significant, but only at thes = 0.25
level. This has been determined using the fact that the quantity
ρs

√
(n − 1)/(1 − ρ2

s ) has a Student t-distribution withn − 2
degrees of freedom. These correlations have been calculated
from the data set excluding objects in orbits suspected of being

altered by stellar tides, i.e., those with orbital periods of a few
days. The least square fit to this data is shown in Fig. 4 (upper
panel). Fitting to LMC data alone, or separately to EP or BD
data yields similar results.

The existence of theP − e relation could, in principle, stem
solely from the detectability limit. The expression for the semi-
amplitude,K, of the stellar radial velocity, induced by a com-
panion orbiting a star with massM?, can be written in the fol-
lowing form,

F(K, M sin i, P, e) =

K −
(

2πG

P

)1/3
M sin i

(M? + M)2/3

1

(1 − e2)1/2 = 0 (6)

According to Marcy & Butler (1998), a confident detection re-
quires that the semiamplitude be∼ 4 times the Doppler error,
orKmin ≈ 40 m s−1. Thus, a companion with a given projected
mass(M sin i)0 can only be detected if its(P0, e0) is located
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above the curveF(Kmin, (M sin i)0, P, e) = 0, on theP − e
diagram. Three examples of such curves are plotted on ourP −e
diagram. We applied this criterion to all LMC and have found
that the only object with a location on theP − e diagram near
its detectability limit is HD 210277 withM sin i = 1.36MJ,
P = 437 days, ande = 0.45. Thus, the existence of theP − e
relation is not an artifact of the detectability limit; the observed
LMC (with the possible exception of HD 210277) could, in
principle, have lower eccentricities and still be detectable. The
general absence of LMCs with low eccentricities for periods in
excess of a few tens of days is remarkable.

Fig. 4 (lower panel) is the often discussedM sin i − e di-
agram. The insert lists correlation coefficients for various sub-
groups of the data withe > 0.001. The entries in brackets
give correlation coefficients for the data excluding additional
objects in orbits suspected of being altered by stellar tides and
thus having eccentricities lower than the nominal values. Ex-
cluded objects areυ Andromedae (P = 4.621 days), 51 Pegasi
(P = 4.2308 days), and HD 283750 (P = 1.79 days). The
statistical significance ofρs /= 0 is s = 0.02(0.17) for EP,
s = 0.84(0.62) for BD, ands = 0.05 for stellar companions.
To be detectable, the location,((M sin i)0, e0), of a companion
with the periodP0 on theM sin i − e diagram must be above
the curveF(Kmin, M sin i, P0, e) = 0. Three examples of such
curves are plotted on ourM sin i−e diagram. Only HD 210277
is at the limit of detectability, and thus theM sin i − e diagram
is not altered by the detectability limit.

The association betweenM sin i ande in the LMC and stel-
lar companions populations is weak to non-existent. Most likely,
these quantities are uncorrelated. Contrary to earlier claims
(Mayor et al. 1998) the LMC population cannot be divided into
two sub-populations on the basis of orbital eccentricity.

Overall, our calculations suggest that the LMC population is
homogeneous with respect to statistics of orbital elements. EPs
and BDs share a common PDF for orbital periods and eccentric-
ities, they also share a common period-eccentricity correlation,
as well as the same lack of significant mass-eccentricity corre-
lation. Furthermore, the entire LMC population displays orbital
elements statistics very similar to that of compatible stellar com-
panions.

6. Discussion and conclusions

We have conducted a statistical analysis of LMC projected
masses and orbital elements in an effort to assess whether the
existing data provide unambiguous evidence for the presence
of two populations of objects in the LMCs. Two of the four ar-
guments presented to assert that there are two populations are
beyond the scope of this paper, but the two central arguments
involving the mass distribution of LMCs and a possible corre-
lation between the mass and orbital eccentricities of the LMCs
have been tested. Our findings are as follows:
(1) With respect to the projected mass distribution of LMCs, we
have found indeed that there exist heterogeneous models that
offer statistically significant better fits to the available data than
a homogeneous model. In other words, thereis an indication of

a break in the projected mass distribution of LMCs. However,
we also have found that there are at least two families of such
heterogeneous models, set apart by the location of the power-
law break and values of power-law indices that offer comparable
fits to the data. One such family of models is compatible with
the usual concept of EP and BD, but the other is not. Moreover,
the scarcity of data makes it likely that the superiority of one
or both types of heterogeneous models is due to a particular
sample realization, and not necessarily indicative of the actual
mass distribution. The best fit to a single power-law model has
p ≈ 1.
(2) Adjusting data for sample size and instrumental precision
does not alter qualitatively the overall result. It does result in
slightly steeper power-law in the case of a homegeneous model.
(3) All LMCs have the same orbital eccentricity and orbital
period distribution functions. A homogeneous model is strongly
suggested.
(4) The only clear correlation among LMC observables is be-
tween eccentricity and period. One cannot divide LMC into two
sub-populations on the basis of orbital eccentricity as previously
claimed.
(5) There is a striking populational similarity between LMCs
and compatible stellar secondaries. The underlying eccentricity
and period distribution functions, as well as correlations, for
LMCs are indistinguishable from those constructed for stellar
secondaries in the Heacox (1999) sample. Moreover, the distri-
bution of projected masses of these secondaries is best approx-
imated by a single power-law with an index ofp ≈ 1, a value
about the same as that obtained while fitting a single power-
law to the LMCs data. It cannot be overstressed that this does
not require that LMCs and stellar secondaries share the same,
monotonically decreasing,∼ M−1, mass function, only that the
pieces of the mass function in the domains of stellar secondaries
and LMCs have the same functional form.

These results, taken alltogetherput in question the preva-
lent assertion that the present data demonstrate existence of EP
and BD as separate populations. In general, our findings are in
agreement with those of Heacox (1999) who performed a sim-
ilar analysis using a different statistical method. Use of empiri-
cal CDFs distinguish ours and Heacox’s analysis from previous
assessments which relied on histograms, a very subjective tech-
nique especially in the case of a small sample. However, it is
also important to recall that our (as well as all previous) statis-
tical analysis cannot be consider definitive because of possible
bias of available LMC sample despite adjustments (see Sect. 2).

Apart from the possible existence of a break in the projected
mass distribution of LMCs, all other evidence suggests a homo-
geneous population, possibly somehow related to the population
of stellar companions. Populational similarity between LMCs
and stellar secondaries is in striking contrast to marked dissimi-
larity between statistics of LMCs and those of secondary objects
believed to have formed via accretion in a circumprimary disk.
Such objects are the planets in our own planetary system, the
regular satellites of the planets Jupiter, Saturn, and Uranus, and
possibly the companions to the pulsar PSR 1257+12 (Wolszczan
& Frail 1992).
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Our findings invite questions about the origin of LMCs. The
surprising populational similarity in orbital elements between
EP and BD on the one hand, and the entire LMCs population
and binaries on the other hand, implies a common cause or
causes. The observed distributions can be functions of evolu-
tion (see discussion in Heacox 1998 and Heacox 1999), forma-
tion mechanism, or a combination of formation and evolution
(Black 1997). Common formation mechanisms for all LMCs
and some stellar secondaries is certainly a viable hypothesis,
even if further observations strengthen the evidence for a break
in the mass distribution, as long as the distributions of orbital
elements noted here remains.

Note that the break in the mass distribution (if real) is, by
itself, insufficient evidence for asserting a dual origin for LMCs.
For example, it is thought that all planets in the solar system
have a common accretionally based origin, and yet constructing
a histogram of planetary masses would reveal a division into
terrestrial and giant planets.

Given the present observations, a common origin hypothe-
sis has no less merit than the prevalent hypothesis according to
which EP formed in a process fundamentally different (i.e., as
do planets) from BD and stellar companions. The term “com-
mon origin” is here taken to imply a similar, but not necessary
identical, set of processes. We discuss one possible example
later in this section.

In addition to being supported by the available orbital ele-
ments observations, the common origin hypothesis also has the
virtue of simplicity. If we look at the LMC population from this
perspective its allegedly “peculiar” properties suddenly look
very ordinary. The location of Jupiter-size objects at very close
distances from stars and moving in elliptical orbits are “natural”
in a population related to stellar companions. Perhaps, the pe-
culiarity of the objects popularly known as “extrasolar planets”
is only due to misconception about their origin.

This simplicity is in contrast to what is required in the frame-
work of the EP hypothesis. Orbital migration mechanisms have
to be invoked to account for location of EP, but as such mech-
anisms would sweep a planet into the star, the addition of stop-
ping processes is necessary. In addition many different mecha-
nisms have been proposed to generate the observed eccentric-
ities. (References to some of the work on the aforementioned
mechanisms can be founded in Marcy et al. 1999). Although in-
dividually each of these mechanisms is theoretically viable, as
a set, they have to be viewed as an adroitly chosen construct to
support the standard planet hypothesis. Also, it is not clear how
to account for giant planets in the Solar System in the frame-
work of such a schemata! On the other hand, in the common
origin hypothesis there is only a single outstanding problem of
how to form Jupiter-mass analogs to stellar companions.

Interestingly, an idea, rooted in the planetary origin, but
formally belonging to the category of the common origin hy-
pothesis, has been proposed by Artymowicz et al. (1998). They
discussed a possibility that all LMC began as planets. Their nu-
merical calculations suggest that a growing protoplanet, while
causing a gap in a disk, can continue to accumulate mass and
grow to perhaps a brown dwarf-size object – a superplanet. To

support their scenario, Artymowicz et al. (1998) pointed out
that disk-planet interactions would naturally lead to superplan-
ets having large eccentricities and regular planets having small
eccentricities as inM sin i − e relation based on circa 97 data.
However, as noted above, the current data do not support such
division. Moreover, it is not clear how this scenario can account
for the P − e relation discussed here and in Black (1997). In
addition, it is difficult to see how the LMC population formed
that way can acquire statistical properties virtually identical to
those of stellar companions unless we are willing to extend su-
perplanets all the way to stellar masses.

The theoretical challenge is to come up with a feasible sce-
nario for the common origin hypothesis. Here we offer some pre-
liminary thought on one such scenario. Adams & Benz (1992)
considered the possibility of forming binary companions by
means of gravitational instabilities in circumstellar disks. Their
scenario works as follows. At some early stage the disk mass
is comparable to the stellar mass, which at that stage is much
smaller than its final mass. Under such conditions, gravitational
instabilities occur leading to the formation of a Jupiter-mass
companion around a small star. Subsequent infall augment both
the star and its companion to produce a typical binary system.
According to Adams & Benz, this mechanism can, in principle,
form binaries with separations anywhere in the range from the
stellar radius to100 AU. The character of such binaries depends
on initial condition, timing, and a manner in which subsequent
infall material is shared between the star and its companion.
Perhaps, under most conditions, stellar binaries form, but under
certain, less likely conditions or differing circumstances, LMCs
form. At present, this scenario is only a suggestion that has to
be considered more closely.

The possibility that the origin of some or all of the low-
mass component of the LMCs is not a standard planet formation
mechanism brings the issue of what the name “planet” signifies.
We suggest that a definition of the term “planet” should center
on how they are formed. Thus, if the further studies confirm
that LMC form via a process fundamentally different from what
is currently accepted, perhaps we should rethink calling them
extrasolar planets.

In summary, in addition to presenting the results of our sta-
tistical analysis, the major goal of this paper is to raise the
awareness of the fact that, although intellectually fascinating,
the standard planetary hypothesis is not the only possible hy-
pothesis for the origin of the LMCs. Based on statistics of LMCs,
the common origin hypothesis is a viable alternative to the EP
hypothesis. Because such a hypothesis was not presented be-
fore, its theoretical underpinning are not yet well developed,
but this should change, especially if new observations continue
to support our statistical findings.
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