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Abstract. Basic equations of motion and ablation of a single
non-fragmenting body through the atmosphere were solved with
ablation and shape-density coefficients as general functions of
time. This solution was applied to 22 photographically recorded
meteoroids with very precise data available, such meteoroids
which did not yield solutions by using the gross-fragmentation
model. Extremely high values of the shape density coefficient,
K, at the early parts of the luminous trajectory are the main rea-
son for non-existing gross-fragmentation solutions. Reasons for
such high values ofK are examined in some detail, including
analysis of spectral records available for one of the meteoroids.
Also positive values of acceleration well outside standard devi-
ations were documented for several meteors. Such cases cannot
be interpreted by our model. We suspect that electric forces
originating from the atmospheric charges and from meteoroid
charges (which were not included in the drag equation) are re-
sponsible for the observed very high values of the shape-density
coefficient at the early parts of meteoroid trajectories.
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1. Introduction

In our paper on meteoroid atmospheric fragmentation (Ce-
plecha et al. 1993), we recognized that most of the photograph-
ically recorded meteoroids (double- or multi-station records)
behaved according to the single body theory with constant ab-
lation and shape-density coefficients throughout the entire tra-
jectory. About 40% of the studied cases with precision better
than±30 m for one measured distance along the meteor trajec-
tory exhibited no fragmentation (NF), another 40% exhibited
one gross-fragmentation at one point (1F), and about 20% frag-
mented consecutively at more than one point (MF). The for-
malistic gross-fragmentation solution for these MF cases was
found to be “unrealistic”, i.e. the solution usually called for
adding mass to the main body at a point instead of releasing
part of mass as fragments. We were aware that some of the
MF cases with “unrealistic” solutions may not be only due to
more fragmentation points, but rather reflect some changes of
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the ablation and shape-density coefficients (σ andK). In order
to study these two coefficients as function of time, we need to
use very precise records with distances along the trajectory (and
heights) derived with precision of about±10 m. We also noted
that going to few observations with higher precision, we were
not able to apply the gross-fragmentation model at all: both the
realistic and the “unrealistic” solutions yielded systematic time
dependence of residuals.

In this paper we will derive a complete general solution of
the single body theory with ablation coefficient,σ, and shape-
density coefficient,K, both as function of time. We will then ap-
ply this solution to the most precise photographic observations
of meteor trajectories available, in order to derive time change of
ablation and shape-density coefficients. We were able to find 22
photographic meteors with such high precision of their records.
In all 22 cases we were able to find numerical solutions with
precision corresponding to the high precision of geometrically
derived data. The smallest standard deviation for one measured
point among these 22 cases was found±4 m; there are 7 cases
with standard deviation of±10 m or lower; majority of standard
deviations of the used meteors is between±10 m and±15 m.

2. Basic equations

The motion and ablation of a single non-fragmenting body
through the atmosphere can be given by three differential equa-
tions (linear trajectory; gravity neglected; curved Earth’s surface
approximated by an osculating sphere, Ceplecha et al. 1993):
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Two independent parameters of the problem can be expressed
as

the ablation coefficient σ =
Λ

2ξΓ
(6)

the shape-density coefficientK = ΓA%
−2/3
d (7)

For a meteoroid at an arbitrary point of its trajectory, the notation
has the following meaning:v ≡ velocity;t ≡ time (independent
variable);m ≡ mass;h ≡ height;l ≡ distance along the trajec-
tory; % ≡ air density;z ≡ zenith distance of the radiant (slope
to vertical);Γ ≡ drag coefficient;Λ ≡ heat transfer coefficient;
A = Sm−2/3%

2/3
d is the shape factor;S ≡ head cross-section;

%d ≡ bulk density of meteoroid;ξ ≡ energy necessary for ab-
lation of a unit mass;A, B, C are constants of the geometrical
position of the trajectory.

3. Solutions of the basic equations with constantσ and K

These solutions forσ = constant, K = constant can be found
in Pecina & Ceplecha (1983, 1984). They contain 4 parameters
of unknown values to be determined from observations:v∞, σ,
v0, l0, i.e. initial velocity, ablation coefficient, velocity att = 0,
distance along the trajectory att = 0, respectively. We can
transform the problem of computing them from the observed
distances along the trajectory as function of time into the fol-
lowing linear equation for small increments of these unknowns
parameters

lobs − l =
∂l

∂l0
∆l0 +

∂l

∂v0
∆v0 +

∂l

∂v∞
∆v∞ +

∂l

∂σ
∆σ (8)

The partial derivatives in (8) can be written as closed ex-
pressions and can be found in Pecina & Ceplecha (1983, 1984).

The solution for one gross-fragmentation point, i.e. with
K = constant, σ = constant1 before fragmentation,σ =
constant2 after fragmentation, was published by Ceplecha et
al. (1993), and contains 6 parameters of unknown values to be
determined from observations, i.e.v∞1, v∞2, σ1, σ2, v0, l0.
In addition two more parameters emerge during the computa-
tional procedure, i.e. the position of the fragmentation point on
the trajectory, and the relative amount of the fragmented mass,
making the total number of parameters to be determined equal
to 8. We can once more again convert the problem of computing
these parameters into linear equation for their small increments
(equations defining the partial derivatives: see Ceplecha et al.
1993) as follows:

lobs − l =
∂l

∂l0
∆l0 +

∂l

∂v0
∆v0 +
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∂v∞1
∆v∞1 + (9)

+
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∆v∞1, ∆σ1 ∆l0, ∆v0 ∆v∞2, ∆σ2

before fragmentation at fragment. after fragment.

More about these two solutions and about their application
to observations can be found also in Ceplecha et al. (1998).

4. General solution of the basic equations
with σ = σ(t), K = K(t)

Eliminating mass between Eqs. (1) and (2) we arrive at

log
K

K0
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1
3
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dt )

+ log
%0v2

0

(−dv
dt )0

, (10)

where
1
3

∫ v

v0
σ v dv is the ablation term and
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− log %0v2
0

(− dv
dt )0

is the deceleration term.

Herelog means natural logarithm. If the ablation term is identi-
cally (for all time instants) equal to the deceleration term, then
K = constant.

Eq. (10) andt − t0 =
∫ l

l0
dl
v represent a complete solution.

Similar numerical procedure as for the case with constantσ and
K can be applied to fit the computed distances along the trajec-
tory to the observed distances, except that the partial derivatives
cannot be written in a close form and have to be computed by
numerical procedures only.

Eq. (10) contains two unknown functionsσ = σ(t), K =
K(t). Assuming one of them, the other is resulting from (10).
If we could determinev = v(t) as well asdv

dt = dv
dt (t) from

the observed distances, we would be able to computeσ = σ(t)
and then from Eq. (10) alsoK = K(t). This will be described
in details in the next section.

Once we have solved Eq. (10), mass and ablation are given
as

m =
K3 %3 v6

(−dv
dt )3

(11)

and

dm

dt
= σ m v

dv

dt
(12)

5. Numerical procedures and their testing

In order to find out the most suitable procedure for numerical
handling of Eq. (10), we computed several “theoretical mete-
ors”. By this term “theoretical meteor” we denote a case, when
we have chosenσ andK as a-priori-known functions of time,
and then solving Eqs. (1) to (7) by Runge-Kutta method, we de-
rived the “observed” distances along trajectory and “observed”
heights as function of time. To such “observed” values, we ap-
plied then computational procedures intended to be used for ap-
plication of Eq. (10) to observations. We have examined several
such cases (originating from different combinations of increas-
ing and decreasingσ with increasing and decreasingK). This
allowed us to find out the best procedures for application to
really observed meteors, and also to formulate several general
rules in junction with these solutions.

Our initial idea was to compute parameters for one func-
tion of time (given by one formula) applied to all points of the
observed trajectory, i.e. to the observed distances along trajec-
tory, lo, and to the observed heights,ho. But such procedures
(e.g. using interpolation polynomials) proved to be very much
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dependent on the chosen function. This was already found by
Pecina & Ceplecha (1983) for constantσ andK, and we only
generalized this forσ andK being variable with time. We also
learned thatσ cannot be computed for the early parts of a trajec-
tory, where velocities and decelerations are almost independent
of σ. Even a precision of±0.1 m used for theoretical meteors
did not allow to determineσ during the first third of the tra-
jectory (for range of meteoroid masses we were interested in).
This defines our first limitation in applying Eq. (10) even to very
precise observational data: for the early parts of a trajectory we
must chose only an average value ofσ corresponding to the
meteoroid type. This limitation has not much influence onK
during the early parts of the trajectory, becauseσ andK are
there almost independent.K at the early parts of the trajectory
is mostly given by velocity and deceleration, and these can be
derived from observed distances along trajectory as function of
time.

If we would knowv and dv
dt from observations,σ could be

computed from them, and then alsoK can be computed from
Eq. (10) so as to fit the computed distances along the trajectory,
lc, to the observed distances,lo. We should be aware that the
primary measured values on the photographic records of a me-
teor, are distances along the trajectory,lo, and thus fitting them
to the computed values by the least squares solves our problem
completely. As the best procedure we were able to find, proved
to be fittinglo to lc for small parts of the trajectory, as small as
possible from the point of view of precision. Description of this
procedure follows.

We haven consecutive points with known time,ti, and, at
them, we have the observed distances along the trajectory,lo,i,
and heights,ho,i, wherei = 1, 2, ..., n. We will chose consec-
utive subsets ofm consecutive values fromi = 1 to m, from
i = 2 to (m+1), and so on until fromi = (n−m+1) to n. We
will fit lo,i to lc,i for each of these subsets by the least squares
using a polynomial function

lc,i = q1 + q2ti + q3t
2
i + q4t

3
i + q5t

4
i , (13)

whereq1 toq5 are constants to be determined from the respective
subset oflo,i values so that sum of(lo,i−lc,i)2 is at its minimum
value.

Using Eq. (13) is equivalent to using a quadratic expression
for approximating deceleration inside the short time intervals of
each of the chosen subsets. We will assume that this is strictly
valid only for the average time of each of the subsets: thus only
q1, q2, andq3 are important for the computed distances along
trajectory, and computed velocities and decelerations; the rest
is important for computing standard deviations of these values.
Thus for each of the above subsets, i.e for average time,tk, of
each subset, we havevk and (dv

dt )k (k = 1, 2, ..., (n − m +
1)) from Eq. (13) including their standard deviations. Because
generally the average timestk of the subsets need not to coincide
with the actually observed timesti at which we have available
lo,i, we can integrate velocitiesvk using the originalti values
and determine one integration constant for the entire trajectory
in order to fit these computed distanceslo,i to the observed
distanceslc,i for the whole trajectory.

Now, the initial values ofσ can be computed from any two
neighboring or nearby points on assumption thatσ andK are
constant on a short time difference. If suffix for the first point
is 1, and suffix for the second point 2, thenσ is given by (log is
natural logarithm)

σ =
6[log(−K1v

2
1ρ1(dv

dt )2 − log(−K2v
2
2ρ2(dv

dt )1]
v2
1 − v2

2
, (14)

wheret, v, anddv
dt are actually thetk, vk and(dv

dt )k, i.e. the aver-
age values of each subset. For the start we can choseK1 = K2,
while at the second step, when we already computed values of
K from Eq. (10), we can useK1 andK2 as different values. We
can improve this procedure by taking into account all possible
pairs providing thatt1 andt2 are separated by small time inter-
val, and chose then the best determined values ofσ andK (with
the relatively smallest standard deviations). We finish withσ
andK which best fit the observed distances along the trajectory
and correspond to Eq. (10).

In solving Eq. (10) we also need to knowK0, i.e. the value of
K at a point, where we start the integration (values ofK are only
relative in this sense). In our computations we used statistical
average ofK for the corresponding meteoroid type asK0, and
we have chosen the point at whichK = K0 so thatσ at this
point is also the statistical average for the corresponding type
(types I, II, IIIA and IIIB). Numerical values of these constants
are in the next section.

6. Application of our model to precise photographic data
on individual meteoroids

It is not easy to find out observational data with enough preci-
sion for application of Eq. (10) using the procedure described
in the preceding section. We inspected several photographic
archives of double- and multi-station meteor photographs with
the aim not only to find out precise records (with geometrical
precision of the trajectory better than±20 m), but also records
which yielded either no solution for the gross-fragmentation
model (or single-body model), or a solution with significant
time dependence of residuals, or an “unrealistic” solution. From
inspecting over 1000 events by using the gross-fragmentation
model (mainly in European and the U.S. archives; McCrosky et
al. 1976, 1977; Ceplecha & McCrosky 1997; Spurný 1997), we
were able to find out 22 such cases. The results on them are sum-
marized in Table 2. Meaning of individual symbols in Table 2 are
as follows:ε0 is the standard deviation for one measured point as
derived by application of the gross-fragmentation model (con-
stantσ andK): residuals show large systematic changes with
time for all meteors in Table 2.ε is the standard deviation for one
observed point according to solutions presented in this paper,
i.e. withσ andK as functions of time: these residuals are almost
random with time for all meteors in Table 2.vB , vE , andmB

are velocity at the first point, velocity at the last point, and mass
at the first point, respectively. Trajectory parts are denoted: B
the beginning-, C the central-, and E the end-part. H stands for
relatively “high” value, L stands for relatively “low” value, and
V stands for “very”. “dec-abl” contains the difference between
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Table 1. Average values ofσ and K for different meteoroid types
(groups) on assumption ofΓA = 1.1

type %d σ K
g cm−3 s2 km−2 c.g.s.

I 3.7 0.014 0.46
II 2.0 0.042 0.69
IIIA 0.75 0.10 1.33
IIIB 0.27 0.21 2.63

the deceleration term and the ablation term (it reflects the dif-
ference of our present solution against solution with constantσ
andK. Symbol “–” means that deceleration term is less than the
ablation term, symbol “+” means that the deceleration term is
greater than the ablation term, and symbol “=” means that both
terms are about equal.

In all computations we used CIRA 72 (1972) model of atmo-
spheric densities using them according to the months in which
the meteor was recorded. We found also several cases with pre-
cise data, which clearly exhibit large positive (and oscillating)
values ofdv

dt , and cannot be explained in scope of Eqs. (1) to (7)
(Fig. 10).

Becauseσ cannot be computed for the beginning parts of a
trajectory from observations at all, at such points we assumed
averageσ value corresponding to the meteoroid type. As stan-
dard deviation of so-definedσ value we took 50% of its value
(corresponding to statistical uncertainties of the group defini-
tions). Such average values ofσ were also used at extreme end
of a trajectory in case they were not available from observa-
tions (the precision ofv and dv

dt is also low at extreme end of
a trajectory and may not be sufficient for determination ofσ).
We definedK0 as corresponding to the meteoroid type, and we
started integration of Eq. (10) at a point, whereσ corresponded
also to the meteoroid type. The numerical values used are in
Table 1.

Publishing detailed results would need about 10 plots of dif-
ferent values as function of time for each case. Thus we decided
to put all these plots on the Web (Ceplecha et al. 2000). As an
example of our results we present data on meteoroid O 27471
in Figs. 1 to 9. In Fig. 10 we presentdv

dt for one of the cases we
found with positive and oscillating values of acceleration. There
is not possible any interpretation of thesedv

dt in the scope of our
basic equations.

7. Results

7.1. σ andK as function of time

Table 2 reveals the main reason, why these 22 meteoroids with
precise data derived from photographic records did not yield
gross-fragmentation solutions with constantσ andK, and with
residuals independent of time. In 20 cases from these 22,K
is enormously large during the initial part of the trajectory. The
gross-fragmentation model assumesK constant, and makes thus
the residuals time dependent. We can generalize: if the gross-
fragmentation solution proves to be time dependent, we may be

Fig. 1.Residuals for model with constantσ andK. Strong time depen-
dence of residuals is evident. Horizontal lines are the average0±21 m
(the standard deviation for one observed value).

Fig. 2.Residuals for model withσ andK as function of time. Residuals
are random with time. Standard deviation for one observed value is
±4 m.

Fig. 3. Velocity as function of time. Standard deviation for each value
is given.
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Table 2.Survey of results on photographic meteors with precise data.

meteor no. date time UT type ε0 ε vB vE mB σ K dec–abl
yymmdd hhmmss m m km s−1 km s−1 kg C E B C E B C E

O 24421 60 03 24 21 50 02 II ±5 ±4 18.2 13.8 0.43 VH L H L L – – =
O 27471 60 10 27 00 13 04 I/II ±21 ±4 26.1 14.1 1.7 H L VH L L – = =
O 32202 61 11 02 20 26 36 II ±16 ±10 31.4 27.6 2.4 H L H L L – = +
PN 38737 64 12 07 04 52 12 II ±24 ±16 17.2 10.6 180 L VH H L L – + =
PN 38768 65 01 08 05 01 32 II ±23 ±13 17.6 11.6 60 L H H L L – + +
PN 38827 65 03 08 10 49 39 I ±45 ±15 29.3 19.5 0.18 H L H L L – = =
PN 39122 65 12 28 03 18 48 II ±19 ±7 22.5 9.6 80 L H VH H L – = +
PN 39154 66 01 29 03 53 40 II ±19 ±13 21.0 19.5 86 L H VH H L – – =
PN 39197 66 03 13 07 31 52 I ±14 ±4 28.6 25.3 0.02 L H L H L = – =
PN 39424B 66 10 26 11 10 57 II ±17 ±12 26.7 23.2 3.0 H L VH L L – – =
PN 39476 66 12 17 04 05 28 I ±23 ±15 19.6 10.9 0.94 H L H L L – = =
PN 39499 67 01 09 07 54 18 I ±94 ±14 12.4 7.5 80 L H H L VL – = +
PN 39509C 67 01 19 09 42 24 IIIA ±12 ±11 15.5 12.6 14 L VH VH H L – = +
PN 39608 67 04 28 06 32 54 II ±24 ±14 19.6 15.6 6 H L H L L – = +
PN 39820B 67 11 26 02 04 57 II ±41 ±11 16.7 9.4 16 H H H L L – = +
PN 39828 67 12 04 01 23 05 II ±39 ±12 13.6 9.2 6.4 L H H L L – = +
PN 39938B 68 03 23 06 00 30 II ±16 ±13 11.9 8.9 0.84 L L H L L – = =
PN 40379A 69 06 07 08 10 22 I ±14 ±12 16.9 8.9 0.74 L H H L L – = =
PN 41280 71 11 25 05 49 40 II ±17 ±10 13.3 5.8 500 H L H L L – = =
PN 41432 72 04 25 10 34 41 II ±16 ±8 12.7 7.9 160 VH L H H L – – =
PN 41593 72 10 03 09 25 32 II ±57 ±18 22.2 12.6 280 H VH L H L – – =
PN 41827 73 05 25 03 17 41 II ±27 ±8 14.1 8.3 3.1 L H H H L – – =

Fig. 4. Deceleration as function of time. Standard deviation for each
value is given.

almost sure that the reason lies in very large values ofK at the
trajectory beginning. The highest value ofK we found 54±20
for PN 39122, 42±24 for PN 39154, 19±7 for O 27471, and
16±8 for PN 39424B.

On the other handσ behaves differently. About half of the
cases possess high values ofσ at center of the trajectory and half
of the cases at the trajectory end. In this sense we can use change
of σ as an additional criterion for meteoroid classification into
types (I, II, IIIA, IIIB), dividing these types into cases with high
continuous fragmentation at the center of the trajectory, and
into cases with high continuous fragmentation at the terminal

Fig. 5. Ablation coefficient as function of time. Standard deviation for
each value is given.

parts of the trajectory. It is well to note that the 2 exceptional
cases, whenK at the beginning is not high, exhibit the high
continuous fragmentation at the terminal part (highσ value at
the end of trajectory). In these 2 exceptional cases this seems
to be the main reason for not obtaining the gross-fragmentation
solutions with time independent residuals.

7.2. Spectral clues

A high resolution spectrum of the bolide O 27471 has been pho-
tographed. The spectrum was described by Ceplecha & Padevět
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Fig. 6. Shape-density coefficientK as function of time. Standard de-
viation for each value is given.

Fig. 7. Comparison of ablation and deceleration terms.

Fig. 8. Height as function of time.

Fig. 9. Mass as function of time. Standard deviation for each value is
given.

Fig. 10. Acceleration for meteor O 63511 shows regular oscillations
outside standard deviations, and into positive values. The smooth line
corresponds to solution withσ andK constant. This solution is far
from reality. Eq. (1) and procedures of this paper cannot be used for
explaining the atmospheric interaction of this meteor.

(1969). For the purpose of this paper we re-measured and re-
analyzed the spectrum by the new method of Borovička (1993).
The spectrum covers the heights from 84 to 55 km, correspond-
ing to the time from−0.43 to 1.03 s. However, the only visible
line at the beginning is the sodium doublet at 5890 and 5896Å.
We were able to analyze the spectrum in detail only between
0.37 and 1.03 s, after the meteor brightened enough to show a
sufficient number of spectral lines on the photographic plate. In
this interval,K varied nearly by a factor of three, between 0.5
to 1.5 (see Fig. 6).

The spectrum shows no obvious anomalies and no dramatic
changes. The lines of Nai, Mg i, Sii, Cai, Caii, Cri, Mn i and
Fei are present. The excitation temperature of the radiating gas
was found to be 4800± 200 K along the studied part of the
trajectory. The line of Sii is rather strong in this spectrum in
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Fig. 11.Blue part of the spectrum of meteor O 27471 at different times.
Individual spectra have been shifted vertically for clarity. The lines
mentioned in the text are identified. The features marked by asterisk
are due to an interfering star trail.

comparison to the spectra of other meteors. Also Mgi is rel-
atively strong, while Nai is somewhat weaker than in other
spectra, though still the brightest line in this spectrum. These
facts suggest that the meteor was produced by a silicate rich
stony meteoroid.

The spectrum shows two minor changes along the trajectory.
They can be seen in Fig. 11. Firstly, the low-excitation inter-
combination lines, in particular Fei multiplet 2, are enhanced
at 0.50 s, at the brightest point of the meteor. Inter-combination
lines are commonly seen to be bright in meteor spectra, espe-
cially in the meteor wake. O 27471 does not show significant
wake and those lines probably originate in the outer parts of the
radiating region which are not in thermal equilibrium.

The second change is the increasing strength of calcium lines
relatively to other lines toward lower heights. Calcium is under-
abundant in the radiating gas due to incomplete evaporation
but the evaporation efficiency increases at lower heights. Also
this effect is common in meteors of similar velocity (Borovička
1993; Ceplecha et al. 1998).

In summary, in this spectrum we did not find any evidences
which could explain the changes of the shape-density coefficient

K. The changes ofK are not represented in the radiation of the
meteor, at least in the visual range and above our sensitivity
limit.

7.3. Large values ofK at the start of luminous trajectories

The largeK at the start of almost all examined cases with pre-
cise observational data calls for explanation. There are several
possibilities.

1. All the effect is from changing bulk density (outer layers
composed of low density material.

2. Changing head cross-section e.g. due to rotation.
3. The air density is widely and systematically different from

the used model (CIRA 72)
4. Eq. (1) is not valid and needs some large additional term at

the trajectory start

Explanation 1 should be recognizable in spectral records.
Even if we are not definitive with our limited spectral analysis,
we feel this explanation of so large values ofK very improbable.
Explanation 2 may be well right, but some of theK values are
so large that only an extremely flat shape could explain them,
and we are not much inclined to assume that these cases corre-
spond to meteoroids thin as a sheet of paper. Something which
is in favor of explanation 2: periodic changes of decelerations
and ofK at the early parts of the trajectories may well repre-
sent rotation of the body. We found periods between 2 and 4
rotations per second for different events. Explanation 3 seems
very improbable. One needs changes of the air density against
the CIRA 72 model by a factor of the order of 10 on a height
differences of the order of 10 km. All these explanations 1 to 3
may act together. But if we take into account that large values
of K are typical explanation of almost all differences from the
assumption of constantK andσ, and if we draw our attention to
anomalous cases with positive values ofdv

dt during an extensive
part of the trajectory (e.g. Fig. 10), we are inclined to accept
explanation 4 as the most probable.

Revision of the basic differential equations is not in the scope
of this paper, but we feel that some hints on what is omitted in
Eq. (1) are necessary. It should be a rather large additional term,
having occasionally about the same value as the existing term at
the beginning of trajectories. Omitted gravity term is insignif-
icant in this sense for all examined cases. In this respect some
authors in the past mentioned reverse rocket effect (Levin 1961;
Bronshten 1983). However, there is another possibility: a mete-
oroid penetrating through the ionospheric layers is electrically
charged (in addition to its original interplanetary charge) and
then interferes with much larger volumes of the atmosphere
than it would be in case of only aerodynamic drag, and inter-
feres also with the atmospheric electrical charges alternatively
decelerating or accelerating the meteoric body.

This problem adds more uncertainty to results on individual
meteoroids. Many times in the past we mentioned that mete-
oroids in the atmosphere behave very individually. It has no
sense to speak about an average meteoroid (inclusive meteor
showers). Now we are adding another “individualism”, the state



1122 Z. Ceplecha et al.: Dynamical behavior of meteoroids in the atmosphere

of the ionospheric layers and electric charge of the meteoroid,
which could change atmospheric meteoroid trajectory so much
like do the differences among them. In any case we want to
devote more attention to this problem in some of our future
studies. Very precise trajectories observed, immediate state
of the entire atmosphere from all aspects, and good luck for
anomalous events to be recorded, this is all we need to proceed
to some more general insight into problems of meteoroid
interaction with the atmosphere.
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Spurńy P., 1997, Proc. SPIE 3116, 144


	Introduction
	Basic equations
	Solutions of the basic equations with constant $sigma $ and $K$
	General solution of the basic equationshfill penalty -@M with $sigma = sigma (t)$, $K = K(t)$
	Numerical procedures and their testing
	Application of our model to precise photographic datahfill penalty -@M on individual meteoroids
	Results
	$sigma $ and $K$ as function of time
	Spectral clues
	Large values of $K$ at the start of luminous trajectories


