![]() | ![]() |
Astron. Astrophys. 358, 1058-1068 (2000) 3. Method of analysis3.1. Computer codesFor each nebula in the sample, a photo-ionization model was
constructed to fit the published intensities of the emission lines.
The nebula is approximated as a spherical shell defined by an inner
and outer radius, a total mass, a radial density distribution and a
radial velocity field. The central star is modelled using a black-body
atmosphere. The free parameters of the photo ionization model are
adjusted to obtain a good agreement between the observed and
calculated H Subsequently, a radial velocity profile is assumed, with the
velocity varying smoothly with radius. The predicted profile for the
emission line is calculated by integrating the velocity field over the
ionization equilibrium and resulting line emission coefficients. The
slit parameters and seeing are used as input parameters for this
calculation. Comparing the predicted profile with the observations
allows one to correct the assumed velocity field. The photoionization
model requires knowledge of stellar and nebular parameters as initial
parameters. Distances and radii are mostly taken from Van de Steene
& Zijlstra (1994), however other values are sometimes adopted. The
effective stellar temperature and luminosity are taken from the
literature, but are often slightly changed during the fit in order to
reproduce the observed H The computer codes as well as the recipe for modelling the nebulae are described elsewhere. Below we list the most important limitations: for further details we refer to Paper I. 3.2. Model simplificationsThe model fits as performed in this paper allow more freedom than those in papers I and II, firstly because less is known for most objects from our sample, and secondly because only one spectral line was observed. Most of the PNe in our sample have small angular diameters and high-resolution images are not available. Therefore the density distribution (especially the inner radius) cannot be determined from imaging data. For all objects, we used a density distribution in the shape of an inverted parabola, with the central density twice as large the density at the edge. This is closer to predictions from hydrodynamical models than a constant density (e.g. Marten & Schönberner 1991). The inner nebular radius is taken as 0.4 of the outer radius. Because we only have data for the [OIII ] line which mainly probes the inner nebular region, the fitted velocity field was limited to a linearly increasing velocity. Whenever possible we assumed a constant velocity. There are some indications of a steeper velocity gradient in the outer regions (as shown by wings on the line profile), but these can not be accurately modelled without information from lines formed in the outer regions, e.g. [NII ]. Our calculated spectral lines are affected by thermal and instrumental broadening. The thermal broadening is calculated from the electron temperature indicated by the photoionization calculations and is different for each PN. The instrumental broadening corresponds to the spectral resolution of the instrument and is adopted as 0.17 Å. Additional turbulent motions may be present in a few nebulae, especially in those with [WC]-type nuclei (see Gesicki & Acker 1996), but this can be proven only by comparing the line widths from different ions (especially hydrogen is desirable). We therefore neglect the effects of possible turbulence. 3.3. Uniform velocitiesThe models relate the line profile to a `true' expansion velocity. Previously, expansion velocities were determined directly from the line profiles. For the case of a constant velocity throughout the nebula, we can quantify the difference between the expansion velocity as obtained from the line profile, and the `true' model velocity. (For a non-uniform velocity the relations are very complicated.) The observed line profile will depend on whether the slit resolves the nebula, e.g. line splitting is only seen for a spherically symmetric nebula if the slit width is smaller than the object. The effect of the relative size of the aperture on the derived expansion velocity is illustrated in Fig. 1, showing the calculated emission line profile for an artificial nebula with all parameters constant with radius. The line profiles in the figure correspond to circular apertures of different sizes. Table 1, lists, for different apertures, the ratio between the true expansion velocity, and the velocity derived from (i ) line splitting, (ii ) half width at half maximum (HWHM), (iii ) half width at ten per cent of maximum (HWTP).
Table 1. The expansion velocities defined for the models shown in Fig. 1, determined from line splitting (e.g. Weinberger 1989), half width at half maximum (Robinson et al. 1982) and the half width at ten per cent (Dopita et al. 1985), divided by the true expansion velocity. Most catalogued PNe expansion velocities are derived from the line
splitting as 3.4. Velocity gradientsFig. 1 illustrates another important feature: the emission profile
from a shell with uniform emissivity and constant expansion velocity
is flat-topped when the nebula is unresolved. It would be rectangular
in shape without line broadening (thermal, turbulent or instrumental):
the flat top is visible when the expansion velocity is larger than the
broadening. This can be seen as follows. When the spherical nebula
expands with a constant velocity After performing the integration over
Consider the uniformly spaced intervals in the velocity dv. Because equal intervals dv in velocity correspond to equal volumes dV. Therefore the fluxes emitted in each velocity interval are equal and the spectral line is rectangular in shape. Such flat-topped lines are not observed, indicating that the velocity in our objects is more complicated. This is clear even from only one [OIII ] line formed near the nebular center. The velocity fields presented in papers I and II, based on two or three lines, mostly show two components with a slowly increasing velocity in the inner nebula but steeply increasing in the outer parts. In Fig. 2 we present an example of this. For the nebula H 1-35 spectral lines of both [NII ] 6584 Å (Acker, priv. comm.) and [OIII ] 5007 Å are shown. The bold line indicates a fit using only the [OIII ] line assuming a linear velocity field (this case is exceptional in that a constant velocity gives a reasonable fit). This fit fails for [NII ]: instead the thin line shows a velocity profile which fits both lines. The nitrogen line shows evidence for a fast acceleration in the outer nebula. If only the [OIII ] line is available, the inner region of the nebula is well determined but the outermost velocities may be poorly constrained. This limitation should be kept in mind for the remainder of the paper.
© European Southern Observatory (ESO) 2000 Online publication: June 20, 2000 ![]() |