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Abstract. The 3D radiative transfer equation for differentiallymodification of the opacity due to the motions that has to be
moving media is derived upon the assumption that the motioesployed to Rosseland’s formula for the flux, may be quite
are sufficiently slow. Its solution is then applied to the limitindgarge. Subsequently, the problem has been addressed — mainly
case of large optical depths, i.e. to the diffusion approximatian.the context of supernova explosions, spectra and light-curves
Although the effective extinction for static 1D media has beene.g. by Eastman & Kirshner (1989)6Hich (1990,/1995),
derived by Rosseland already in 1924, it is for the first timidoflich et al. [(1998), Eastman & Pinto (1993), Blinnikov &
in this Paper that for moving 3D media with many spectr&8artunov|(1998), Jeffery (1995), Blinnikov (1996a,b), Baron et
lines general expressions for radiative quantities are derived iala(1996), and recently Pinto & Eastman (2000). These authors
rigorous way. Given are simple to use monochromatic as wellmske use of the particular conditions in these objects as e.g.
wavelength-integrated expressions for the flux and the radiatthe small intrinsic width of the lines and the coincidence of the
acceleration, and a generalized version of the Rosseland meéiaactions of the velocity and of the temperature gradients.
opacity. The essential effects of the motions upon the radiative Here we present the first paper of a series which is devoted
flux are discussed for the simple case of a single spectral lioethe discussion of the effects of differential motions on the
on a continuum. radiative quantities in optically thick absorbing and scattering
media of general shape with arbitrary non-relativistic velocities.
Key words: diffusion — radiative transfer — stars: interiors 4n particular the directions of the flow and of the temperature
stars: novae, cataclysmic variables — stars: supernovae: gergnadient may be different which introduces additional compo-
nents to the flux vector. The expressions are derived in arigorous
way from the comoving-frame transfer equation. Our approach
leads to the correct limit of static media, and can handle spec-
tral lines of arbitrary shape and strength as well as edges and
There are many differentially moving, optically thick astronomeontinua. In addition, it allows easy physical interpretations of
ical objects in which the radiation field is important for the erthe effects of the motion on the radiative quantities.
ergy and/or momentum balance and therefore the total fluxes In Sect[2 ofthis paper we first recall the results of the long
and/or radiative accelerations have to be calculated accurateipwn “conventional”, static diffusion limit and give the defi-
in a modeling. Typical celestial systems of this kind are novaeifions of the radiative quantities, the abbreviations etc. used in
supernovae, collapsing molecular clouds, and accretion digbss series. In Seditl 3 we derive the transfer equatioslawly
Ideally, one would solve the full appropriate radiative transfelifferentially moving 3D media. In the diffusion limit it is suf-
equationwhichis possible only numerically and is unfortunateficient in most cases to consider small velocitiesince only
extremely CPU time and memory consuming if many spectnatlocity differences over one free mean path length in the con-
lines contribute to the opacity; in fact, in non-stationary modefiuum are relevant. This simplifies the equations significantly
this solution is virtually impossible. However, in many caseas only first order terms i = v/c (¢ velocity of light) have to
one can exploit the large optical thickness and derive a simpber considered. In addition, the aberration/advection terms are so
form of the solution of the transfer equation that is valid only iamall that they can be neglected, and the characteristics continue
this limit: the radiation diffusion equation. to be straight lines. Subsequently, in SELt. 4 we obtain the solu-
For static 1D media the problem has been solved alredityn of the transfer equation for the limit of large optical depths,
many years ago (Rosseland 1824). Karp efal. (1977) were #mel in Secf.b give expressions for the flux and the radiative
first to discuss differentially moving media. They used infinitelforce in the diffusion limit, and present a generalized version
narrow lines and showed that tlexpansion opacityi.e. the of the Rosseland opacity valid for differentially moving media.

- ) o The essential effects of the velocity field upon the flux are then
Send offprint requests t®. Wehrse (wehrse@ita.uni-heidelberg.de)
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demonstrated in Se€l. 6 on the basis of a numerical evaluatic %7
of the simple case that the extinction is due to a continuum an 0.6
a single line only. Finally, Se¢f] 7 contains the conclusions anc0.5
an outlook. 0.4
In Paper Il of this series we discuss the radiative quantitiesit 03
the diffusion approximation for moving media for theiting
cases ofarge as well as ofsmall velocity gradients for deter-
ministic spectral lines ofinite width. Paper Il then will deal
with stochastidistributions of lines (of finite width) described
by a Poisson point process which has been shown by Wehrse
al. (1998) to be flexible and adequate for the treatment of very
many spectral lines. In Paper Mfinitely sharplines — which Fig. 1. Weighting functionG/(so, §) = (%/%&m) exp(§) as
had e.g. been used by Karp et al. (1977) in their discussionfafction of for h/(kT) = 1.
the expansion opacity — will be considered.

-2 -1 0 1 2
g

In the following we need also the wavelength-integrated
Planck function denoted by

The aim of our diffusion calculations is to derive simple expres-

2. Static case and nomenclature

sions for the radiative flux and radiative acceleration at positioBs= B(T') = / B(T, &)etde = IS8 4 (5)
far away from the surface in a medium —00 g
(i) thatis optically very thick, with ogp being the Stefan-Boltzmann constant, the spatial
(i) inwhich the extinction coefficient hardly varies over a phoderivatives ofB(T’ §) and B(T'), respectively,
ton mean free path, and
' B B(T T
(i) in which the variation of the source function can be a 0 G(T’ 3 n-VT = %% =g(s,&,mn), (6)
proximated by a linear function in the neighborhood of the OB(T) OB(T) T 5 00
point sy where the radiative quantities are to be calculated.aiT n-VT = T / g(s,&,mn)ecd¢

For this purpose we start with the general form of the transfer = g(s,n) 7)
equation for astatic3D medium for the monochromatic inten-
sity I = I(s, &, n) at a wavelength\ along a ray described bywith dB(T) /0T = 405512 /7, and the weighting function

s or the unit vectom, respectively,

ar
ds —
HeresS is the source function angthe monochromatic extinc- This weighting function, which enters the Rosseland mean opac-
tion coefficient comprising absorption as well as scattering. ity (Eq. (19)), is normalized according tb™._ G(s,{)d¢ = 1

n-Vi=—x(I-5). (1) g(s,n) oT oT

cartesian coordinates EQl (1) reads and isindependenbf n. It decreases exponentially withfor
very large as well as for very small(Fig.[1).
nzg +n or + nzg = —x(I-25) 2) In terms of these quantities the source function in the neigh-
ox Yoy 0z borhood ofs, can be written — see assumption (iii) above —

with n = {n,,ny,,n,} = {cospsind, sinpsin, cos v} (cf. as

Oxenius_1986). B = + (s —sgp) . 9
We introducdogarithmicwavelengths (5:6) =#(80,£) + (oo, &ym) - o = 50) ©)

Herep = B(so,&) and

E=InA €)
. . . 9B(s,§)
which are mostly used throughout this paper in place of the usgégo, &, n) = s
wavelengths\ in order to obtain Doppler shifts that depend S0
only on spatial coordinates and angles. THeR= dA/), d\ = _ 9B(T,¢) Lory o(s0,6m)  (10)
exp(f)d{. or T(s0) Os R T

In the diffusion limit, the mean intensities are very close to - ) )
thePlanck functionB(T', ¢) of the local temperatur® = T'(s). are sufficientlyslowlyvarying functions ofs, over a few mean

This implies that LTE conditions prevail and the source functidfé€ photon paths/x. (in the continuum).
is identical to the Planck function, In order to clarify the nomenclature, we present the relevant

staticradiative quantities first (cf. Cox & Giuli 1968, Mihalas
S = B(T,¢). (4) 1978, Mihalas & Weibel-Mihalas 1984).
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2.1. Radiative flux being themonochromati@acceleration. Here the role of the anti-
symmetric average of the intensities is the same as that occurring

Thetotal flux in the flux. Analogously we write

Fioi(s) = F(s, efd 11) 1

wlo) = [ Rl < O 5,97 (5,6 = traa(s.6). a7)

is obtained by integration over all wavelengths from the vector

of themonochromatidlux, 2.3. Static radiative quantities in the diffusion limit

F(s,&) = /I(S,& n)n dw For a static medium we find from the well-known solution of
Eqg.[d) along a ray at a position well inside the medium

4

™ 27 cos psin v s

- i —x(£) (£=s0)
//I(s,&gp,ﬁ) (singpsinﬁ) dy sin ¥dv F(s0.8) = s(}ll)noo (/ e X X(§)B(L,§)dl
00

cosv (5=s0)—00 \7%0
©/2 2 ,/ e*X(E)'(SO*e)X(g)B(€7 §)d£>
~ [ [[1c00) - 16,604 70~ 772)] 0
0 0 = lim (/ e X (E=s0)y (¢)
cos psin v (gi%;;foo 50
x | sinpsind | dpsinddd. (12)
cos ¥ X (p(soaﬁ) +q(s0,&) (£ — So)>d€
It is evident from Eq[{12) that the essential physics is con- _ /SO e X(E)(s0=0 (¢)
tained in theantisymmetricaverage of the specific intensities 0
[(I(s,&0,9) — I(s,§, o+m,9—7/2)] which has a flux-like
character (cf. Mihalas 1978). In fact, it is the (monochromatic) X (p(So, €) + q(s0,8) (L — 50))655
flux in the two-stream approximation. In the following we there-
fore will concentrate on this average and — in order to simplify _ o 4(s0,§&,m) _g(s0,§m)
: . =2 = (18)
the notation — subsequently write x(§) x(§)
I(s,6,0,9) — I(s,&, 0+ m09 —1/2) The wavelength-integrated flux can be expressed in terms

- of the (static)Rosselangnean opacitygr, which is defined b
=T (s,6) —~T*(5,6) = F(s,&)  (13) (staticRR pacityr y

1 < G(s,9)
and — z/ d 19
) W@ Joxeo® 49
Frot(s) = / F(s,€)etde. (14)  with G(s, £) being the weighting function given in EF] (8). Then
- we obtain from Eqs[{14) anf (1L8)
2.2. Radiative acceleration Frot(s) =2 /OO 9(s,&,n) ofde = 2 9}8, n) ’ (20)
.. . . —00 X(svg) XR(S)
The vector of the net radiative acceleration (force per unit vol-
ume) has the same direction as that of the flux so thaitae 2nd from Eq[(IP)
radiative acceleration is
- Fiot(s) = Fiot(s) ndw
47
tion(s) = [ avuals e (15) 1 9B(T)
- = 2 — T / (n-VT)ndw
with \ Xr.(5) omr) "
T 1
1 = = VT, 21
rna(5.6) = + [ x5 165, &) mlo 3 Xn() oT ey
dm the classical result of Rosseland (1924).
1 /2 2m According to Eq.[(dl7) the expressions for the radiative ac-
= 7/ /[I(s,f, ©, ) celeration become
C
2 OB(T
00 arad(&f):79(87£7n):2%nvj‘7 (22)
~I(5,&,p+ 79— 7/2)] ¢

and according to Eqs$.(L5) arid [16)

cos @ sin v
x x(s,€) sin:gsim? dpsinddd  (16) 4 tot(s) = 4m 0B(T) VT, (23)
(30519 rac,to 30 8T
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3. Radiative transfer equation for slowly moving 3D media with

In order to obtain the transfer equation fommvingmedium,  ~n - V(B-n). (33)

we start from the static equation for a 3D medilith (1) and apply

to it the “simplified” Lorentz transformation Thus the motions of the medium enter the transfer equation only
in the form of the “velocity gradientiv, and consequently all

Ao = A1+ no), (24) their effects upon the radiative quantities can be expressed in

ng = n, (25) terms ofw. We further emphasize that in a moving medium

hecomovingrame is the relevant “natural” description for the

whph, in fact, is a Galilei transfo_rmauon n combination W'.tr}adiative transfer equation since in particular all thermodynamic
the linear Doppler formula. Quantities referring to the Comov"@;}antities are defined in this frame

frame are denoted by the subscript 0 here (in this section only). Expressed in terms af, the condition((Z) for the diffusion
By applying [24) and[{25) we restrict ourselves to suffiﬁmit now reads ’

ciently small velocities3 = v/c so that we may assume for

the Lorentz factorl /4/1 — 32 = 1, and furthermore neglect |w| < x. (34)

the aberration and advection, i.e. kaepnchanged. These as- . _

sumptions are justified as long as the velocity change over $HBCE[w| iS at most of the order afj3/ds.

mean free path length/x. of the photons in the continuum  E9-[32) has the sammathematicalstructure as thd.D

(denoted bye) or, equivalently, over a distance correspondinfPMoving-frame transfer equation used by Baschek et al.
to unit optical depthdr, — yeds ~ 1, in the continuum is (1997Db) for plane-parallel and spherical media so that its analyt-
sufficiently small, i.e. ifc ¢ ’ ical solution (Baschek et al. 1997a,b) can also be applied here.

That equation was derived as limiting case for sr¥adind for

1 |dB| _ |dB <1 (26) the directiong: = 41 from the full (spherically symmetric) rel-
Xc | ds dr, ' ativistic transfer equation given by Mihalas & Weibel-Mihalas
In the diffusion limit of radiation fields this condition is usually(1984)' We note that t.he meaning of the coefficients in the two
fulfilled. papers, however, is different: oyrin Eq. [32) read$x — 5w)

jg_ Baschek et all(1997b), and theiris simply equati3/ds.

In the diffusion limit, however, at which we aim in this Pa-
Jer, we can neglect the terfw ! in the transfer equation since
X > Xx. and hencdw| < x from the condition[(3}). (Inci-
dentally, the “transport-type” terisw 1, acting as an additional
x(s) = X(x0(5)7 )\O(S)> . (27) extinction, would not appear in the transfer equation if the rel-

ativistically invariant intensity\>I had been used instead bf

Then the nabla operator in EQl (1) has to be replaced by  cf. also Wehrse & Baschék 1999.)

0

Proceeding with the derivation of the comoving-frame tran
fer equation, we now consider any veckdr) to depend on the
variablesxg and )\ rather than directly on the length variabl
s, 1.e.

Ao) =— 28 . - . .
V.= VH(T) 0o (28) 4. Solution in the limit of high optical depth
with According to Baschek et al. (1997b) the solution of the transfer
Ao equation (Ed._32) foronstantv, a depthindependent extinction
Vo =AV(B o) = 1+ 8 no V(8- 1o) (29) coefficienty(¢), and no incident radiation at the two boundaries

s = 0 ands = 5 of the layer considered, yields in the positive

according to Eq[(24). Introducing this expression into the tran(ﬁ'rection ofs the intensity

fer equation then yields

A I . B S 3 S A— R
nO.V1+W9-1’10nO.V(IB.n0>8@7/\O I+(S,§,UJ) o /0 eXp< /g X(E—FU)(E S)> d£>
oI X xX(E+wl—3s)B,&+wl—s))dl, (35)
=ng-VI+wy o5 =—x(I-S5) (30)
9o and — due to symmetry — in the opposite direction
where 5 ¢
w0=1+B.HOH0'V(ﬁ'n0)ZHO'V(ﬁ'no). 31) T (s,&w) :/5 eXP(-/S X(f—w(f—s))f%)

Since in the following we are dealing exclusively with x x(E—w(l—s))B(lE§—wl—s))dl. (36)
comoving-framejuantities, we for simplicity drop the subscripjere and in the following we introduce as additional variable
Oinour notation so that our basic 3D radiative transfer equatigithe argument list of all quantities referringrteovingmedia,
now reads, in coordinate-free form, while static quantities are denoted withaut
dl o1 In order to apply the solution of Baschek et al. (1997b) to the
ds - w@? =-x(I = 95) (32)  giffusion limit we here need to demand only that similarly as



784 R. Wehrse et al.: The diffusion of radiation in moving media

[ — does not change significantly over a mean free photon pd#pth-dependence of the source function — only over a distance

in the continuum, i.e. we may abandon their strict assumptionthe order ofl /x..

of x being independent on At this place we convince ourselves that the argument of the
The solutions forZ* (s, &;w), Z- (s, &;w), and hence for exponential in Eq[{39) reduces to Hg.J(18) in the limit—+ 0

F(s,&; w) can conveniently be written in terms of thpectral since

thicknesgBaschek et al. 1997b) - WY€) — (€ — wh) . P(€) — (€ —wl) ,
19 w—0 w w—0 wl
v = [ x(©)dc (37)
: = (&) L= x(6) L. (40)

with &; being an arbitrary logarithmic reference wavelength, a
formalism which we will also use in this Paper for the derivatiog, Radiative quantities in the diffusion limit
of radiative quantities in moving media. o _
Interms ofy the flux for the linearized source function read¥/e Now turn to the description of the expressions for the flux

(cf. Sect®) and the radiative acceleration in a differentially moving medium
with velocities and gradientsy.
F(s0,&w) = The monochromatic flux in the diffusion limit for a lin-
— + — ws earized source function (g.[39) now reads
(50,9 ~ alsn, €m)) exp | A EZ 0]
D& + Bl — (s — ) Pl g
— + —w(s — 8o S _ _
—p(50,§) eXp|: © ] = 2¢(so, &, n)/ exp (_¢(§) 151/(5 ws)) ds .(41)
- 0
+q(807§,n)/ exp {—d)(f) + (€ +w(so — E))] dr In order to emphasize the effects of the motions we write the
50 w flux in the form

[ =9(€) (€ —wlso — 1)) 2g(s0,&,n
For a fixed value of¢ we then obtain in the limit = F(50,6) - [1 +0(s0,&; w)} ; (42)
S0, (§ — s9) = o0
and hence the monochromatic acceleration as

) = = (0O v —w)
Floo &) = 200006 | e 2 ) o) < O F(s0,E5w)
39
= = raa(50,€) - [1+0(s0, & )] (43)

oo 3
=2 ,€, —— d¢ | de¢ ) .
q(s0,¢ H)/O exp( p» /g—we x(¢) C> where F(so, ) and a,aq(s0,€) are the static quantitie§ 18)
and [22), respectively. According to Eq.141), the Correction

(see also Fid.]2). _ o factor” is given by
Eq. (39) is thekey equatiorwe derive in this Paper. It con-

tains the effects of the differential motions within the mediurh + (so0,& w)

and allows — as will be shown subsequently — to calculate the ©) o ox _z/J(g) — (£ —ws) ds

flux, the radiative acceleration, and a generalized expression for X p ’

the Rosseland mean opacity. . . .
From the definition[(37) of the spectral thickness follows Analogquslyto the monochromatlc EXpressions, we give the

V() = dib/dé = v(€) > 0 since the extinction coefficient correspondingvavelength-integratequantities in the form

x(&) is always positive. Hence (&) increases monotonically Y A ) ¢

with ¢ and (1(&) — (& — wl))/w > 0 for either sign ofw. Frot(s05w) = - F (50, & w) edg

(44)

w

If in addition ¢(£) increases sufficiently fast with increasing

& and hence withsg, the integrals[{39) exist. For this to oc- = Fiot(s0) - [1 + @(303“’)} ’ (45)
cur, already a wavelength-independent continuum, resulting in

a linear dependence @f(¢) on &, suffices. In this case there 1 [~

is a sufficiently large op(ti():al depth at all wavelengths — as (Iléadvt(’t(so;w) - [m X(E)F (s0, & w) etdg

required by the diffusion approximation — and hence the va- _

lidity of Eq. (39) is guaranteed. Furthermore we point out that = Grad,tot(50) - {1 + E(so; w)} ’ (46)

mn:jh%ld;m;t roﬂ:I?Irgex?prtllgalvd(reptr:]isn;ir;ﬁtmitnetgrr?llsl-c:j\ientdﬁ) ¥vith F(50)tot @Ndarad tot(so) being the corresponding inte-
a ) formally extend over a € Interval, dUe 10 the €, 4 1ed static quantities. Then

fective cutoff properties of the exponential functions, howeveq
they extend in practice — due to the assumption of a linearizedt+ ©(sp; w)
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0 F

= o) [ 5 [0 0lon. )] G
= Xr(50) /_O; OOO exp (_1/1(5) — 1/;(5 — ws)) ds 00 f[s-1] »
x G(so, &)dE, 47 ?2 I
1 + =Z(sp;w) 3
= [ [+ o] Gtsn.gpae 4
_ /_‘: O“ exp (_w(&) = d:u(f - wS)) ds s 3 2 5 oo, y

Fig. 2. The dependence of the last integral in 38}@rcalculated
x x(§)G (50, €)dE (48) fo?a single Lo?entzian linesona conti?luum g\farigfs line strengths
with G as defined by EqCI8). We point out that in our formalisrﬁ" demonst_rates the approlach towgrdsthe diffusion lumpiper curve:
— due to the additional factoy(¢) — thew-correction for the very weak linejower curve:strong line.
total radiative acceleration differs from that of the total flux
although the corresponding monochromatic correction factd¥sso With damping constant (in the¢-scale, cf. Wehrse et al.
are identical. Note that — althoughis independent af —9, ©, 1998), i.e.

and= do depend on the direction via thedependence af. v/ (2m)
We may now introduce generalizedrosseland opacityg X(€) =xe+4 (€= &)+ (v/2)2)° (51)
for a differentiallymoving mediunso that the total flux can be
described analogously to the static case. We definéy the S0 that
relation V(&) =xc €+ é arctan (f _ 50) + const (52)
2 9(803 Il) T 7/2
Frot(s0;w) = Yal(soiw) (49)  In order check when the diffusion limit is reached we plot in

_ _ Fig.[2 the value of the last integral in EG.{38) as a function of
Note thaty; comprises, forw = 0, the conventional Rosseland; for . = 1 and some values of the line strengththe other
meany(so; 0) = Xr(so). According to Eq.[(4b) the general-integral behaves in the same way. It is seen that there is hardly

ized Rosseland mean is then given by any longer a variation fos, > 1, i.e. the diffusion limit is

1 1 reached fos, ~ 1/x. at latest. By additional line absorption
—— = — : {1 + O(so0; w)] : (50) it may even be shifted to much smaller values.
Xs(so;w)  Xr(so)

The dependence of the monochromatic flikso, £; w) in
When applyingys one should keep in mind that it has beethe line center on the strength of the continuymand of the
defined specifically for expressing total fluxes. However, it line A (Fig.[3) for given constant is basically the same as in
notthe appropriate generalization for the static mean opacitiise static case: an increase in the extinction leads to a decrease
which e.g. enter the local radiative energy balance, and are firethe flux independent of the source of the extinction. This im-
quently also replaced by a Rosseland mean in the literature plies that lines have an influence on the flux only when they are
We note that our formulae which express the radiative quaare of sufficient strength. As is seen in Eif. 4, a reduction in the
tities in terms of their static values can — in a straightforwancelocity gradient or in the damping width leads to a decrease in
manner — be applied only tdeterministicextinction coeffi- the monochromatic flux at the line center. However, the main
cients. The evaluation for stochastic line distributions is someariations occur only for smalf andw values since for large
what more involved since then the expectation values of allthe line is essentially smeared out and the information on the
radiative quantities (including the static ones) are to be considtrinsic «y is lost. This behavior holds only for the monochro-
ered. This case will be discussed in a subsequent paper of thiic flux at or close to the line center; in contrast, for the flux
series. integrated over the line the situation is different since in moving
configurations the influence of the line extends (cf.[Hig. 5) much
further in wavelength than in the static case. Eig. 5 also demon-
strates that for a given distange{£,) from the line center the
In order to obtain some insight into the behavior of radiativdependence of the flux may be quite complicated, since changes
fluxes in a medium of high optical depth according to the abouethe intrinsic line profile may or may not be compensated by
equations we consider the simple case (which, however, alre&bppler shifts. Furthermore, it is seen that the line influence is
contains the essential features) of a continyunthat does not — in accordance with Figl3 — under most conditions strongest
dependent o and asinglespectral line of Lorentzian shapeat the line center.

6. Numerical results for a single Lorentzian line
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log F/(29)

Fig. 3. Dependence of the monochromatic diffusion fluxig.5. log F(so,&; w)/(29(s0,&, n)) as a function of¢ — &) andy

log F(so,&;w)/(29(s0,&,n)) on A andx. for a single Lorentzian for w = 0.0001, x. = 1, andA = 0.001 for a single Lorentzian line

line on a continuum fo€ — & = 0, w = 10~%, andy = 10~%. The on a continuum (cf. also Fif] 3).

behavior also reflects the effect of the motions on the wavelength-

integrated flux and hence on the generalized Rosseland mean

opacity. set of the mean extinction coefficienté(; ws) for the relevant
ranges ir¢ andws.

of In order to elucidate the connection to the static diffusion,
we consider the very special case that the mean extinction coef-
_o.5l | ficientdoesiotdepend on the intervals, i.e.x(&;ws) = x(&).
o) Then, using[(34), the integration over depth in EGl (41) can be
% performed, and with Eq.{49) leads to
a0
(@)] oo
e e Clo0.8) e (55)
Xolsow) S X(E©
This result resembles the usual static Rosseland mean except
-5 —a -3 that now for the moving medium the mean extinction coefficient
w X (&) over the intervakws replaces the “ordinary” monochro-
Fig. 4. log F(s0,& w)/(29(s0,€,m)) as a function ofw for y = Matic extinction coefficient ().
1073, 10~%, and10~? (top to botton) in the centerd — & = 0) of In conclusion, we have derived this paper general expres-
a single Lorentzian line on a continuum wigh = 1 andA = 0.001  Sions for the radiative flux and acceleration in arbitrarily shaped,
(cf. also Fig[B). optically very thick, and differentially moving media far from
the surfaces. These expressions are basically rather simple but
7. Concluding remarks and outlook the integrals involved can be evaluated analytically only in very

special cases. In addition, the dependencies on the input param-

Another equivalent way to interpret EQ.{41) is obtained by iRgers are not immediately evident. We therefore have presented
troducing themeanextinction coefficient af over theinterval  here only numerical results of the monochromatic flux for a

A, single Lorentzian spectral line on a continuum which show that
¢ there is in fact a quite intricate interplay of the parameters. We

X(EA) = 1 / x(¢)d¢ (53) have restricted the discussion of our examples on monochro-
Af_A matic quantities in order investigate the relative importance of

_ _ the line core and the near and far wings.
instead of the spectral thickness. Then In astronomical applications strictly monochromatic radia-
¢ tive quantities are only rarely of interest, they more or less serve
P — Y€ —ws) 1 - as the basis for calculating the more importarstvelength-
X(Q)dC - s = X(& ws)-s (54) J P J

w ws integratedquantities.
f-ws In Paper Il we show that in the limits of small and large
so that the radiative quantities such as the ffuar the radiative velocity gradients much more insight can be gained. In par-
force for moving media can — in the deterministic case — cortieular, it is demonstrated that far = 0 Rosseland’s result
pletely be describedither by the spectral thickness by the for the static case is regained. In addition, for isolated narrow
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Lorentzian lines on a flat continuum the wavelength integratinnikov S.I., 1996a, Astronomy Letters (AZh Pis’'ma) 22, 92

can be obtained analytically. When there are many overlappiignnikov S.I., 1996b, in: Canal R., Ruiz-Lapuente P., Isern J. (eds.),
lines, convenient expressions can be obtained for large velocity Proc. NATO ASI Conference on Thermonuclear Supernovae, Dor-
gradients, whereas for smadlthe integration ove¢ has to be _ drecht: Kluwer, p. 589

carried out numerically. Since many wavelength points have3§nnikov S.1., Bartunov O.S., 1993, A&A 273, 106

be considered and the integrand requires numerical differe RXdJ'P" GO'IUQ R'T'r’] 1’368’ 5I’IT(CIp|€S of Stellar Structure, Vol. 1, Gor-
ations of the extinction coefficient such calculations are qUiE%s on and Breach, Tew Yor

. . . . tman R.G., Kirshner R.P., 1989, ApJ 347, 771
demanding in programming and CPU time. A more satisfaCtof},stman R.G.. Pinto P.A.. 1993 ApJ 412, 731

approach, however, is to describe the extinction coefficient by;gsich p., 1990, Habilitation thesis, Ludwig-Maximilians-Univeasit
Poisson point process (cf. Wehrse et al. 1998) since it allows to Munchen, Max-Planck-Institut Uf Physik und Astronomie
derive the expectation values for the flux and the acceleration in Minchen, MPA-90 563
terms of the mean line separation and of the shapes and strengtiftich P., 1995, ApJ 443, 89
of the lines as well as of the continuum. The formalism will b oflich P., Miller E., Khokhlov A., 1993, A&A 268, 570
presented in a subsequent paper. Jeffery D.J., 1995, A&A 299, 770
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