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Abstract. The 3D radiative transfer equation for differentially
moving media is derived upon the assumption that the motions
are sufficiently slow. Its solution is then applied to the limiting
case of large optical depths, i.e. to the diffusion approximation.
Although the effective extinction for static 1D media has been
derived by Rosseland already in 1924, it is for the first time
in this Paper that for moving 3D media with many spectral
lines general expressions for radiative quantities are derived in a
rigorous way. Given are simple to use monochromatic as well as
wavelength-integrated expressions for the flux and the radiative
acceleration, and a generalized version of the Rosseland mean
opacity. The essential effects of the motions upon the radiative
flux are discussed for the simple case of a single spectral line
on a continuum.
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1. Introduction

There are many differentially moving, optically thick astronom-
ical objects in which the radiation field is important for the en-
ergy and/or momentum balance and therefore the total fluxes
and/or radiative accelerations have to be calculated accurately
in a modeling. Typical celestial systems of this kind are novae,
supernovae, collapsing molecular clouds, and accretion discs.
Ideally, one would solve the full appropriate radiative transfer
equation which is possible only numerically and is unfortunately
extremely CPU time and memory consuming if many spectral
lines contribute to the opacity; in fact, in non-stationary models
this solution is virtually impossible. However, in many cases
one can exploit the large optical thickness and derive a simpler
form of the solution of the transfer equation that is valid only in
this limit: the radiation diffusion equation.

For static 1D media the problem has been solved already
many years ago (Rosseland 1924). Karp et al. (1977) were the
first to discuss differentially moving media. They used infinitely
narrow lines and showed that theexpansion opacity, i.e. the
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modification of the opacity due to the motions that has to be
employed to Rosseland’s formula for the flux, may be quite
large. Subsequently, the problem has been addressed – mainly
in the context of supernova explosions, spectra and light-curves
– e.g. by Eastman & Kirshner (1989), Höflich (1990, 1995),
Höflich et al. (1993), Eastman & Pinto (1993), Blinnikov &
Bartunov (1993), Jeffery (1995), Blinnikov (1996a,b), Baron et
al. (1996), and recently Pinto & Eastman (2000). These authors
make use of the particular conditions in these objects as e.g.
the small intrinsic width of the lines and the coincidence of the
directions of the velocity and of the temperature gradients.

Here we present the first paper of a series which is devoted
to the discussion of the effects of differential motions on the
radiative quantities in optically thick absorbing and scattering
media of general shape with arbitrary non-relativistic velocities.
In particular the directions of the flow and of the temperature
gradient may be different which introduces additional compo-
nents to the flux vector. The expressions are derived in a rigorous
way from the comoving-frame transfer equation. Our approach
leads to the correct limit of static media, and can handle spec-
tral lines of arbitrary shape and strength as well as edges and
continua. In addition, it allows easy physical interpretations of
the effects of the motion on the radiative quantities.

In Sect. 2 ofthis paper we first recall the results of the long
known “conventional”, static diffusion limit and give the defi-
nitions of the radiative quantities, the abbreviations etc. used in
this series. In Sect. 3 we derive the transfer equation forslowly
differentially moving 3D media. In the diffusion limit it is suf-
ficient in most cases to consider small velocitiesv since only
velocity differences over one free mean path length in the con-
tinuum are relevant. This simplifies the equations significantly
as only first order terms inβ = v/c (c velocity of light) have to
be considered. In addition, the aberration/advection terms are so
small that they can be neglected, and the characteristics continue
to be straight lines. Subsequently, in Sect. 4 we obtain the solu-
tion of the transfer equation for the limit of large optical depths,
and in Sect. 5 give expressions for the flux and the radiative
force in the diffusion limit, and present a generalized version
of the Rosseland opacity valid for differentially moving media.
The essential effects of the velocity field upon the flux are then
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demonstrated in Sect. 6 on the basis of a numerical evaluation
of the simple case that the extinction is due to a continuum and
a single line only. Finally, Sect. 7 contains the conclusions and
an outlook.

In Paper II of this series we discuss the radiative quantities in
the diffusion approximation for moving media for thelimiting
cases oflarge as well as ofsmall velocity gradients for deter-
ministic spectral lines offinite width. Paper III then will deal
with stochasticdistributions of lines (of finite width) described
by a Poisson point process which has been shown by Wehrse et
al. (1998) to be flexible and adequate for the treatment of very
many spectral lines. In Paper IVinfinitely sharplines – which
had e.g. been used by Karp et al. (1977) in their discussion of
the expansion opacity – will be considered.

2. Static case and nomenclature

The aim of our diffusion calculations is to derive simple expres-
sions for the radiative flux and radiative acceleration at positions
far away from the surface in a medium

(i) that is optically very thick,
(ii) in which the extinction coefficient hardly varies over a pho-

ton mean free path, and
(iii) in which the variation of the source function can be ap-

proximated by a linear function in the neighborhood of the
points0 where the radiative quantities are to be calculated.

For this purpose we start with the general form of the transfer
equation for astatic3D medium for the monochromatic inten-
sity I ≡ I(s, ξ,n) at a wavelengthλ along a ray described by
s or the unit vectorn, respectively,

dI

ds
= n · ∇I = −χ(I − S) . (1)

HereS is the source function andχ the monochromatic extinc-
tion coefficient comprising absorption as well as scattering. In
cartesian coordinates Eq. (1) reads

nx
∂I

∂x
+ ny

∂I

∂y
+ nz

∂I

∂z
= −χ(I − S) (2)

with n = {nx, ny, nz} = {cosϕ sinϑ, sinϕ sinϑ, cosϑ} (cf.
Oxenius 1986).

We introducelogarithmicwavelengths

ξ = lnλ (3)

which are mostly used throughout this paper in place of the usual
wavelengthsλ in order to obtain Doppler shifts that depend
only on spatial coordinates and angles. Thendξ = dλ/λ, dλ =
exp(ξ)dξ.

In the diffusion limit, the mean intensities are very close to
thePlanck functionB(T, ξ) of the local temperatureT = T (s).
This implies that LTE conditions prevail and the source function
is identical to the Planck function,

S = B(T, ξ) . (4)
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Fig. 1. Weighting functionG(s0, ξ) =
(

∂B(T,ξ)
∂T

/ ∂B(T )
∂T

)
exp(ξ) as

function ofξ for h/(kT ) = 1.

In the following we need also the wavelength-integrated
Planck function denoted by

B = B(T ) =
∫ ∞

−∞
B(T, ξ)eξdξ =

σSB

π
T 4 (5)

with σSB being the Stefan-Boltzmann constant, the spatial
derivatives ofB(T, ξ) andB(T ), respectively,

∂B(T, ξ)
∂T

n · ∇T =
∂B(T, ξ)
∂T

∂T

∂s
= g(s, ξ,n) , (6)

∂B(T )
∂T

n · ∇T =
∂B(T )
∂T

∂T

∂s
=
∫ ∞

−∞
g(s, ξ,n) eξdξ

= g(s,n) (7)

with ∂B(T )/∂T = 4σSBT
3/π, and the weighting function

G(s, ξ) =
g(s, ξ,n)
g(s,n)

eξ =

(
∂B(T, ξ)
∂T

/
∂B(T )
∂T

)
eξ . (8)

This weighting function, which enters the Rosseland mean opac-
ity (Eq. (19)), is normalized according to

∫∞
−∞G(s, ξ)dξ = 1

and isindependentof n. It decreases exponentially withξ for
very large as well as for very smallξ (Fig. 1).

In terms of these quantities the source function in the neigh-
borhood ofs0 can be written – see assumption (iii) above –
as

B(s, ξ) = p(s0, ξ) + q(s0, ξ,n) · (s− s0) . (9)

Herep = B(s0, ξ) and

q(s0, ξ,n) =
∂B(s, ξ)
∂s

∣∣∣∣
s0

=
∂B(T, ξ)
∂T

∣∣∣∣
T (s0)

· ∂T
∂s

∣∣∣∣
s0

= g(s0, ξ,n) (10)

are sufficientlyslowlyvarying functions ofs0 over a few mean
free photon paths1/χc (in the continuum).

In order to clarify the nomenclature, we present the relevant
static radiative quantities first (cf. Cox & Giuli 1968, Mihalas
1978, Mihalas & Weibel-Mihalas 1984).
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2.1. Radiative flux

Thetotal flux

Ftot(s) =
∫ ∞

−∞
F(s, ξ) eξdξ (11)

is obtained by integration over all wavelengths from the vector
of themonochromaticflux,

F(s, ξ) =
∫
4π

I(s, ξ,n)n dω

=

π∫
0

2π∫
0

I(s, ξ, ϕ, ϑ)


 cosϕ sinϑ

sinϕ sinϑ
cosϑ


 dϕ sinϑdϑ

=

π/2∫
0

2π∫
0

[
I(s, ξ, ϕ, ϑ) − I(s, ξ, ϕ+ π, ϑ− π/2)

]

×

 cosϕ sinϑ

sinϕ sinϑ
cosϑ


 dϕ sinϑdϑ . (12)

It is evident from Eq. (12) that the essential physics is con-
tained in theantisymmetricaverage of the specific intensities
[(I(s, ξ, ϕ, ϑ) − I(s, ξ, ϕ+π, ϑ−π/2)] which has a flux-like
character (cf. Mihalas 1978). In fact, it is the (monochromatic)
flux in the two-stream approximation. In the following we there-
fore will concentrate on this average and – in order to simplify
the notation – subsequently write

I(s, ξ, ϕ, ϑ) − I(s, ξ, ϕ+ π, ϑ− π/2)
≡ I−(s, ξ) − I+(s, ξ) ≡ F(s, ξ) (13)

and

Ftot(s) =
∫ ∞

−∞
F(s, ξ) eξdξ . (14)

2.2. Radiative acceleration

The vector of the net radiative acceleration (force per unit vol-
ume) has the same direction as that of the flux so that thetotal
radiative acceleration is

arad,tot(s) =
∫ ∞

−∞
arad(s, ξ) eξdξ (15)

with

arad(s, ξ) =
1
c

∫
4π

χ(s, ξ) I(s, ξ,n)n dω

=
1
c

π/2∫
0

2π∫
0

[
I(s, ξ, ϕ, ϑ)

−I(s, ξ, ϕ+ π, ϑ− π/2)
]

×χ(s, ξ)


 cosϕ sinϑ

sinϕ sinϑ
cosϑ


 dϕ sinϑdϑ (16)

being themonochromaticacceleration. Here the role of the anti-
symmetric average of the intensities is the same as that occurring
in the flux. Analogously we write

1
c
χ(s, ξ)F(s, ξ) ≡ arad(s, ξ) . (17)

2.3. Static radiative quantities in the diffusion limit

For a static medium we find from the well-known solution of
Eq. (1) along a ray at a positions0 well inside the medium

F(s0, ξ) = lim
s0→∞

(s̃−s0)→∞

(∫ s̃

s0

e−χ(ξ)·(`−s0)χ(ξ)B(`, ξ)d`

−
∫ s0

0
e−χ(ξ)·(s0−`)χ(ξ)B(`, ξ)d`

)

= lim
s0→∞

(s̃−s0)→∞

(∫ s̃

s0

e−χ(ξ)·(`−s0)χ(ξ)

×
(
p(s0, ξ) + q(s0, ξ)(`− s0)

)
d`

−
∫ s0

0
e−χ(ξ)·(s0−`)χ(ξ)

×
(
p(s0, ξ) + q(s0, ξ)(`− s0)

)
d`

)

= 2
q(s0, ξ,n)
χ(ξ)

= 2
g(s0, ξ,n)
χ(ξ)

. (18)

The wavelength-integrated flux can be expressed in terms
of the (static)Rosselandmean opacitȳχR, which is defined by

1
χ̄R(s)

=
∫ ∞

−∞

G(s, ξ)
χ(s, ξ)

dξ (19)

withG(s, ξ) being the weighting function given in Eq. (8). Then
we obtain from Eqs. (14) and (18)

Ftot(s) = 2
∫ ∞

−∞

g(s, ξ,n)
χ(s, ξ)

eξdξ = 2
g(s,n)
χ̄R(s)

, (20)

and from Eq. (12)

Ftot(s) =
∫

4π

Ftot(s)n dω

= 2
1

χ̄R(s)
∂B(T )
∂T

∫
4π

(n · ∇T )n dω

=
4π
3

1
χ̄R(s)

∂B(T )
∂T

∇T , (21)

the classical result of Rosseland (1924).
According to Eq. (17) the expressions for the radiative ac-

celeration become

arad(s, ξ) =
2
c
g(s, ξ,n) = 2

∂B(T, ξ)
∂T

n∇T , (22)

and according to Eqs. (15) and (16)

arad,tot(s) =
4π
3c

∂B(T )
∂T

∇T . (23)
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3. Radiative transfer equation for slowly moving 3D media

In order to obtain the transfer equation for amovingmedium,
we start from the static equation for a 3D medium (1) and apply
to it the “simplified” Lorentz transformation

λ0 = λ(1 + β · n0) , (24)

n0 = n , (25)

which, in fact, is a Galilei transformation in combination with
the linear Doppler formula. Quantities referring to the comoving
frame are denoted by the subscript 0 here (in this section only).

By applying (24) and (25) we restrict ourselves to suffi-
ciently small velocitiesβ = v/c so that we may assume for
the Lorentz factor1/

√
1 − β2 = 1, and furthermore neglect

the aberration and advection, i.e. keepn unchanged. These as-
sumptions are justified as long as the velocity change over the
mean free path length1/χc of the photons in the continuum
(denoted byc) or, equivalently, over a distance corresponding
to unit optical depth,dτc = χcds ' 1, in the continuum is
sufficiently small, i.e. if

1
χc

∣∣∣∣dβds
∣∣∣∣ =

∣∣∣∣ dβdτc
∣∣∣∣� 1 . (26)

In the diffusion limit of radiation fields this condition is usually
fulfilled.

Proceeding with the derivation of the comoving-frame trans-
fer equation, we now consider any vectorx(s) to depend on the
variablesx0 andλ0 rather than directly on the length variable
s, i.e.

x(s) = x
(
x0(s), λ0(s)

)
. (27)

Then the nabla operator in Eq. (1) has to be replaced by

∇ ⇒ ∇ + (∇λ0)
∂

∂λ0
(28)

with

∇λ0 = λ∇(β · n0) =
λ0

1 + β · n0
∇(β · n0) (29)

according to Eq. (24). Introducing this expression into the trans-
fer equation then yields

n0 · ∇I +
λ0

1 + β · n0
n0 · ∇(β · n0)

∂I

∂λ0

= n0 · ∇I + w0 λ0
∂I

∂λ0
= −χ(I − S) (30)

where

w0 =
1

1 + β · n0
n0 · ∇(β · n0) ' n0 · ∇(β · n0) . (31)

Since in the following we are dealing exclusively with
comoving-framequantities, we for simplicity drop the subscript
0 in our notation so that our basic 3D radiative transfer equation
now reads, in coordinate-free form,

dI

ds
+ w

∂I

∂ξ
= −χ(I − S) (32)

with

w ' n · ∇(β · n) . (33)

Thus the motions of the medium enter the transfer equation only
in the form of the “velocity gradient”w, and consequently all
their effects upon the radiative quantities can be expressed in
terms ofw. We further emphasize that in a moving medium
thecomovingframe is the relevant “natural” description for the
radiative transfer equation since in particular all thermodynamic
quantities are defined in this frame.

Expressed in terms ofw, the condition (26) for the diffusion
limit now reads

|w| � χc (34)

since|w| is at most of the order ofdβ/ds.
Eq. (32) has the samemathematicalstructure as the1D

comoving-frame transfer equation used by Baschek et al.
(1997b) for plane-parallel and spherical media so that its analyt-
ical solution (Baschek et al. 1997a,b) can also be applied here.
That equation was derived as limiting case for smallβ and for
the directionsµ = ±1 from the full (spherically symmetric) rel-
ativistic transfer equation given by Mihalas & Weibel-Mihalas
(1984). We note that the meaning of the coefficients in the two
papers, however, is different: ourχ in Eq. (32) reads(χ− 5w)
in Baschek et al. (1997b), and theirw is simply equaldβ/ds.

In the diffusion limit, however, at which we aim in this Pa-
per, we can neglect the term5wI in the transfer equation since
χ ≥ χc and hence|w| � χ from the condition (34). (Inci-
dentally, the “transport-type” term5wI, acting as an additional
extinction, would not appear in the transfer equation if the rel-
ativistically invariant intensityλ5I had been used instead ofI,
cf. also Wehrse & Baschek 1999.)

4. Solution in the limit of high optical depth

According to Baschek et al. (1997b) the solution of the transfer
equation (Eq. 32) forconstantw, a depth-independent extinction
coefficientχ(ξ), and no incident radiation at the two boundaries
s = 0 ands = s̃ of the layer considered, yields in the positive
direction ofs the intensity

I+(s, ξ;w) =
∫ s

0
exp

(
−
∫ s

`

χ
(
ξ + w(ˆ̀− s)

)
dˆ̀
)

× χ (ξ + w(`− s))B (`, ξ + w(`− s)) d` , (35)

and – due to symmetry – in the opposite direction

I−(s, ξ;w) =
∫ s̃

s

exp

(
−
∫ `

s

χ
(
ξ − w(ˆ̀− s)

)
dˆ̀
)

× χ (ξ − w(`− s))B (`, ξ − w(`− s)) d` . (36)

Here and in the following we introducew as additional variable
in the argument list of all quantities referring tomovingmedia,
while static quantities are denoted withoutw.

In order to apply the solution of Baschek et al. (1997b) to the
diffusion limit we here need to demand only thatχ – similarly as
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β – does not change significantly over a mean free photon path
in the continuum, i.e. we may abandon their strict assumption
of χ being independent ons.

The solutions forI+(s, ξ;w), I−(s, ξ;w), and hence for
F(s, ξ;w) can conveniently be written in terms of thespectral
thickness(Baschek et al. 1997b)

ψ(ξ) =
∫ ξ

ξ1

χ(ζ)dζ (37)

with ξ1 being an arbitrary logarithmic reference wavelength, a
formalism which we will also use in this Paper for the derivation
of radiative quantities in moving media.

In terms ofψ the flux for the linearized source function reads
(cf. Sect. 2)

F(s0, ξ;w) =(
p(s0, ξ) − q(s0, ξ,n)

)
exp
[−ψ(ξ) + ψ(ξ − ws0)

w

]

−p(s0, ξ) exp
[−ψ(ξ) + ψ(ξ − w(s̃− s0))

w

]

+q(s0, ξ,n)
∫ s̃

s0

exp
[−ψ(ξ) + ψ(ξ + w(s0 − `))

w

]
d`

+q(s0, ξ,n)
∫ s0

0
exp
[−ψ(ξ) + ψ(ξ − w(s0 − `))

w

]
d` .(38)

For a fixed value of ξ we then obtain in the limit
s0, (s̃− s0) → ∞

F(s0, ξ;w) = 2q(s0, ξ,n)
∫ ∞

0
exp
(

−ψ(ξ) − ψ(ξ − w`)
w

)
d`

(39)

= 2q(s0, ξ,n)
∫ ∞

0
exp

(
− 1
w

∫ ξ

ξ−w`

χ(ζ)dζ

)
d`

(see also Fig. 2).
Eq. (39) is thekey equationwe derive in this Paper. It con-

tains the effects of the differential motions within the medium
and allows – as will be shown subsequently – to calculate the
flux, the radiative acceleration, and a generalized expression for
the Rosseland mean opacity.

From the definition (37) of the spectral thickness follows
ψ′(ξ) ≡ dψ/dξ = χ(ξ) > 0 since the extinction coefficient
χ(ξ) is always positive. Henceψ(ξ) increases monotonically
with ξ and (ψ(ξ) − ψ(ξ − w`))/w > 0 for either sign ofw.
If in addition ψ(ξ) increases sufficiently fast with increasing
ξ and hence withs0, the integrals (39) exist. For this to oc-
cur, already a wavelength-independent continuum, resulting in
a linear dependence ofψ(ξ) on ξ, suffices. In this case there
is a sufficiently large optical depth at all wavelengths – as is
required by the diffusion approximation – and hence the va-
lidity of Eq. (39) is guaranteed. Furthermore we point out that
in the limit of large optical depths the integrals over` in (35)
and (36) formally extend over an infinite interval; due to the ef-
fective cutoff properties of the exponential functions, however,
they extend in practice – due to the assumption of a linearized

depth-dependence of the source function – only over a distance
of the order of1/χc.

At this place we convince ourselves that the argument of the
exponential in Eq. (39) reduces to Eq. (18) in the limitw → 0
since

lim
w→0

ψ(ξ) − ψ(ξ − w`)
w

= lim
w→0

ψ(ξ) − ψ(ξ − w`)
w`

· `

= ψ′(ξ) · ` = χ(ξ) ` . (40)

5. Radiative quantities in the diffusion limit

We now turn to the description of the expressions for the flux
and the radiative acceleration in a differentially moving medium
with velocitiesβ and gradientsw.

The monochromatic flux in the diffusion limit for a lin-
earized source function (Eq. 39) now reads

F(s0, ξ;w)

= 2g(s0, ξ,n)
∫ ∞

0
exp

(
−ψ(ξ) − ψ(ξ − ws)

w

)
ds .(41)

In order to emphasize the effects of the motions we write the
flux in the form

F(s0, ξ;w) =
2g(s0, ξ,n)

χ(ξ)
·
[
1 + θ(s0, ξ;w)

]
= F(s0, ξ) ·

[
1 + θ(s0, ξ;w)

]
, (42)

and hence the monochromatic acceleration as

arad(s0, ξ;w) =
1
c
χ(ξ)F(s0, ξ;w)

= arad(s0, ξ) ·
[
1 + θ(s0, ξ;w)

]
(43)

whereF(s0, ξ) and arad(s0, ξ) are the static quantities (18)
and (22), respectively. According to Eq. (41), the “w correction
factor” is given by

1 + θ(s0, ξ;w)

= χ(ξ)
∫ ∞

0
exp

(
−ψ(ξ) − ψ(ξ − ws)

w

)
ds . (44)

Analogously to the monochromatic expressions, we give the
correspondingwavelength-integratedquantities in the form

Ftot(s0;w) =
∫ ∞

−∞
F(s0, ξ;w) eξdξ

= Ftot(s0) ·
[
1 + Θ(s0;w)

]
, (45)

arad,tot(s0;w) =
1
c

∫ ∞

−∞
χ(ξ)F(s0, ξ;w) eξdξ

= arad,tot(s0) ·
[
1 + Ξ(s0;w)

]
, (46)

with F(s0)tot andarad,tot(s0) being the corresponding inte-
grated static quantities. Then

1 + Θ(s0;w)
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= χ̄R(s0)
∫ ∞

−∞

1
χ(ξ)

[
1 + θ(s0, ξ;w)

]
G(s0, ξ)dξ

= χ̄R(s0)
∫ ∞

−∞

∫ ∞

0
exp

(
−ψ(ξ) − ψ(ξ − ws)

w

)
ds

×G(s0, ξ)dξ , (47)

1 + Ξ(s0;w)

=
∫ ∞

−∞

[
1 + θ(s0, ξ;w)

]
G(s0, ξ)dξ

=
∫ ∞

−∞

∫ ∞

0
exp

(
−ψ(ξ) − ψ(ξ − ws)

w

)
ds

×χ(ξ)G(s0, ξ)dξ (48)

withG as defined by Eq. (8). We point out that in our formalism
– due to the additional factorχ(ξ) – thew-correction for the
total radiative acceleration differs from that of the total flux
although the corresponding monochromatic correction factors
are identical. Note that – althoughG is independent ofn – θ, Θ,
andΞ do depend on the direction via then-dependence ofw.

We may now introduce ageneralizedRosseland opacitȳχβ

for a differentiallymoving mediumso that the total flux can be
described analogously to the static case. We defineχ̄β by the
relation

Ftot(s0;w) =
2 g(s0,n)
χ̄β(s0;w)

. (49)

Note thatχ̄β comprises, forw = 0, the conventional Rosseland
meanχ̄β(s0; 0) ≡ χ̄R(s0). According to Eq. (45) the general-
ized Rosseland mean is then given by

1
χ̄β(s0;w)

=
1

χ̄R(s0)
·
[
1 + Θ(s0;w)

]
. (50)

When applyingχ̄β one should keep in mind that it has been
defined specifically for expressing total fluxes. However, it is
not the appropriate generalization for the static mean opacities,
which e.g. enter the local radiative energy balance, and are fre-
quently also replaced by a Rosseland mean in the literature.

We note that our formulae which express the radiative quan-
tities in terms of their static values can – in a straightforward
manner – be applied only todeterministicextinction coeffi-
cients. The evaluation for stochastic line distributions is some-
what more involved since then the expectation values of all
radiative quantities (including the static ones) are to be consid-
ered. This case will be discussed in a subsequent paper of this
series.

6. Numerical results for a single Lorentzian line

In order to obtain some insight into the behavior of radiative
fluxes in a medium of high optical depth according to the above
equations we consider the simple case (which, however, already
contains the essential features) of a continuumχc that does not
dependent onξ and asinglespectral line of Lorentzian shape

Fig. 2. The dependence of the last integral in Eq. (38) ons0, calculated
for a single Lorentzian lines on a continuum for various line strengths
A, demonstrates the approach towards the diffusion limit;upper curve:
very weak line,lower curve:strong line.

at ξ0 with damping constantγ (in theξ-scale, cf. Wehrse et al.
1998), i.e.

χ(ξ) = χc +A
γ/(2π)

(ξ − ξ0)2 + (γ/2)2)
, (51)

so that

ψ(ξ) = χc ξ +
A

π
arctan

(
ξ − ξ0
γ/2

)
+ const. (52)

In order check when the diffusion limit is reached we plot in
Fig. 2 the value of the last integral in Eq. (38) as a function of
s for χc = 1 and some values of the line strengthA; the other
integral behaves in the same way. It is seen that there is hardly
any longer a variation fors0 > 1, i.e. the diffusion limit is
reached fors0 ' 1/χc at latest. By additional line absorption
it may even be shifted to much smaller values.

The dependence of the monochromatic fluxF(s0, ξ;w) in
the line center on the strength of the continuumχc and of the
lineA (Fig. 3) for given constantw is basically the same as in
the static case: an increase in the extinction leads to a decrease
in the flux independent of the source of the extinction. This im-
plies that lines have an influence on the flux only when they are
are of sufficient strength. As is seen in Fig. 4, a reduction in the
velocity gradient or in the damping width leads to a decrease in
the monochromatic flux at the line center. However, the main
variations occur only for smallγ andw values since for large
w the line is essentially smeared out and the information on the
intrinsic γ is lost. This behavior holds only for the monochro-
matic flux at or close to the line center; in contrast, for the flux
integrated over the line the situation is different since in moving
configurations the influence of the line extends (cf. Fig. 5) much
further in wavelength than in the static case. Fig. 5 also demon-
strates that for a given distance (ξ−ξ0) from the line center theγ
dependence of the flux may be quite complicated, since changes
in the intrinsic line profile may or may not be compensated by
Doppler shifts. Furthermore, it is seen that the line influence is
– in accordance with Fig. 3 – under most conditions strongest
at the line center.
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Fig. 3. Dependence of the monochromatic diffusion flux
log F(s0, ξ; w)/(2g(s0, ξ,n)) on A andχc for a single Lorentzian
line on a continuum forξ − ξ0 = 0, w = 10−4, andγ = 10−4. The
behavior also reflects the effect of the motions on the wavelength-
integrated flux and hence on the generalized Rosseland mean
opacity.

Fig. 4. log F(s0, ξ; w)/(2g(s0, ξ,n)) as a function ofw for γ =
10−3, 10−4, and10−5 (top to bottom) in the center (ξ − ξ0 = 0) of
a single Lorentzian line on a continuum withχc = 1 andA = 0.001
(cf. also Fig. 3).

7. Concluding remarks and outlook

Another equivalent way to interpret Eq. (41) is obtained by in-
troducing themeanextinction coefficient atξ over theinterval
∆,

χ̄(ξ; ∆) =
1
∆

ξ∫
ξ−∆

χ(ζ)dζ , (53)

instead of the spectral thickness. Then

ψ(ξ) − ψ(ξ − ws)
w

=
1
ws

ξ∫
ξ−ws

χ(ζ)dζ · s = χ̄(ξ;ws)·s (54)

so that the radiative quantities such as the fluxF or the radiative
force for moving media can – in the deterministic case – com-
pletely be describedeither by the spectral thicknessor by the

Fig. 5. log F(s0, ξ; w)/(2g(s0, ξ,n)) as a function of(ξ − ξ0) andγ
for w = 0.0001, χc = 1, andA = 0.001 for a single Lorentzian line
on a continuum (cf. also Fig. 3).

set of the mean extinction coefficientsχ̄(ξ;ws) for the relevant
ranges inξ andws.

In order to elucidate the connection to the static diffusion,
we consider the very special case that the mean extinction coef-
ficient doesnotdepend on the intervalws, i.e.χ̄(ξ;ws) = χ̄(ξ).
Then, using (54), the integration over depth in Eq. (41) can be
performed, and with Eq. (49) leads to

1
χ̄β(s0;w)

=
∫ ∞

−∞

G(s0, ξ)
χ̄(ξ)

dξ . (55)

This result resembles the usual static Rosseland mean except
that now for the moving medium the mean extinction coefficient
χ̄(ξ) over the intervalws replaces the “ordinary” monochro-
matic extinction coefficientχ(ξ).

In conclusion, we have derived this paper general expres-
sions for the radiative flux and acceleration in arbitrarily shaped,
optically very thick, and differentially moving media far from
the surfaces. These expressions are basically rather simple but
the integrals involved can be evaluated analytically only in very
special cases. In addition, the dependencies on the input param-
eters are not immediately evident. We therefore have presented
here only numerical results of the monochromatic flux for a
single Lorentzian spectral line on a continuum which show that
there is in fact a quite intricate interplay of the parameters. We
have restricted the discussion of our examples on monochro-
matic quantities in order investigate the relative importance of
the line core and the near and far wings.

In astronomical applications strictly monochromatic radia-
tive quantities are only rarely of interest, they more or less serve
as the basis for calculating the more importantwavelength-
integratedquantities.

In Paper II we show that in the limits of small and large
velocity gradients much more insight can be gained. In par-
ticular, it is demonstrated that forw = 0 Rosseland’s result
for the static case is regained. In addition, for isolated narrow



R. Wehrse et al.: The diffusion of radiation in moving media 787

Lorentzian lines on a flat continuum the wavelength integrals
can be obtained analytically. When there are many overlapping
lines, convenient expressions can be obtained for large velocity
gradients, whereas for smallw the integration overξ has to be
carried out numerically. Since many wavelength points have to
be considered and the integrand requires numerical differenti-
ations of the extinction coefficient such calculations are quite
demanding in programming and CPU time. A more satisfactory
approach, however, is to describe the extinction coefficient by a
Poisson point process (cf. Wehrse et al. 1998) since it allows to
derive the expectation values for the flux and the acceleration in
terms of the mean line separation and of the shapes and strengths
of the lines as well as of the continuum. The formalism will be
presented in a subsequent paper.
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