![]() | ![]() |
Astron. Astrophys. 360, 76-84 (2000) 1. IntroductionGalaxies of any morphological type and luminosity are known to be
surrounded by DM halos, whose properties are remarkably universal
(Salucci & Persic 1997 and references therein). The presence of DM
halos has been detected through a variety of observational methods
(Danziger 1997), from rotation curves in spirals (Giraud 2000, Swaters
1999, Persic et al. 1996) to
Attempts to model the properties of DM halos in a cosmological context with N-body simulations trace back to Dubinski & Carlberg (1991) in the frame of cold dark matter (CDM) theory. The halos were found to be strongly triaxial and to exhibit a power law density profile varying from -1 in the center to -4 in the outskirts (Hernquist 1990 profile). Then, Navarro et al. (1996) (hereafter NFW), found that, independently from the adopted initial perturbation spectrum, the cosmological model and the halo mass, all DM halos possess the same universal density profile, fitted by the formula where This profile has a spike in the center of the halo, and differs in
its asymptotic behavior from the Hernquist profile, decreasing as
On the other hand, a large discrepancy exists between CDM halo predictions and DM observations (Salucci & Persic 1997). Halos around galaxies show a density distribution which is inconsistent with Eq. (1). In particular, they have a density central core larger than the stellar scale-length and their density is: with The disagreement between theory and observations on the mass distribution, and the existence of global scaling laws that couple the dark and the luminous matter (Persic et al. 1996) prompt the investigation of the past dynamical history of galaxies. N-body/hydrodynamical simulations are an effective tool to obtain crucial information on the late stages of galaxy formation which is in some sense orthogonal to that we obtain with semi-analitycal methods or that we infer from observations. In fact, such simulations can account for the "physical" interaction between gas and dark matter. Moreover, many relevant physical processes occurring in the baryonic components, like thermal shocks, pressure forces and dissipation are explicitly taken into account. The layout of the paper is as follow. In Sect. 2 we briefly describe the numerical tool, in Sect. 3 we discuss the initial conditions. In Sects. 4 and 5 we show the evolution of a giant and a dwarf elliptical, respectively. Finally, Sect. 6 summarizes the results. ![]() ![]() ![]() ![]() © European Southern Observatory (ESO) 2000 Online publication: July 27, 2000 ![]() |