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Abstract. Recent analysis of the helioseismic observations in-
dicate that the previously observed surface torsional oscillations
extend significantly downwards into the solar convection zone.

In an attempt to understand these oscillations, we study the
nonlinear coupling between the magnetic field and the solar dif-
ferential rotation in the context of a mean field dynamo model,
in which the nonlinearity is due to the action of the azimuthal
component of the Lorentz force of the dynamo generated mag-
netic field on the solar angular velocity. The underlying zero
order angular velocity is chosen to be consistent with the most
recent helioseismic data.

The model produces butterfly diagrams which are in qual-
itative agreement with the observations. It displays torsional
oscillations that penetrate into the convection zone, and which
with time migrate towards the equator. The period of these os-
cillations is found to be half that of the period of the global
magnetic fields. This is compatible with the observed period of
the surface torsional oscillations. Inside the convection zone,
this is a testable prediction that is not ruled out by the observa-
tions so far available.
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1. Introduction

An important feature of the solar convection zone is the pres-
ence of differential rotation in the form of a decrease in angular
velocity from equator to the pole. This has been observed both in
the surface layers (e.g. Snodgrass 1984) and deeper in the con-
vection zone, as inferred from helioseismic measurements (e.g.
Thompson et al. 1996). Furthermore, the differential rotation on
the surface has been observed to vary with time (e.g. Howard
& LaBonte 1980; Snodgrass, Howard, & Webster 1985). These
so called torsional oscillations, which have periods of about 11
years, manifest themselves in the form of four alternating lat-
itudinal bands of slightly faster and slower than average zonal
flows which migrate towards the equator in about 22 years.
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These oscillations have also been confirmed by the analysis of
the helioseismic data from the Solar and Heliospheric Observa-
tory (SOHO) spacecraft for the present solar cycle (Kosovichev
& Schou 1997; Schou et al. 1998).

Recent analysis of the helioseismic data, from both the
Michelson Doppler Imager (MDI) instrument on board the
SOHO spacecraft and the Global Oscillation Network Group
(GONG) project, has also produced evidence that this band-
ing signature is not merely a surface feature, but extends into
the convection zone, to a depth of at least 8 percent in radius
(Howe et al. 2000). These authors present data on departures
of the reconstructed rotation rate from its temporal averages -
the residuals - as a function of latitude at several target depths,
which behave in a manner similar to the migration of sunspots
during the solar cycle (the ‘butterfly diagram’). This finding is
also supported by the analysis of Antia & Basu (2000), who
use different data sets from GONG and independent inversion
techniques. The time-base of these observations is only a few
years, less than a complete solar cycle.

These torsional oscillations are thought to be produced as a
consequence of the nonlinear interactions between the magnetic
fields and the solar differential rotation. A zero order ‘mean’ dif-
ferential rotation is assumed to be maintained by the Reynolds
stresses of the turbulence; this can be included as a constant
‘background’ angular velocity, or explicitly parametrized, e.g.
by the so calledΛ–effect (e.g. R̈udiger 1989). Attempts have
been made to explain the surface oscillations in terms of the
effects of the Lorentz force exerted by the large scale mag-
netic field on the azimuthal velocity field (e.g. Brandenburg &
Tuominen 1988), or as a consequence of the ‘quenching’ of the
turbulence-dependent quantities by the magnetic field (Kitchati-
nov et al. 1999).

Here we study this nonlinear coupling in the context of a
two dimensional axisymmetric mean field dynamo model, in a
spherical shell, in which the only nonlinearity is the action of
the azimuthal component of the Lorentz force of the dynamo
generated magnetic field on the solar angular velocity. Obtaining
torsional oscillations in this way is also of interest in view of
the fact that the Lorentz force is of second order in the magnetic
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field, thus naturally leading to the excitation of hydrodynamical
oscillations of about half the period of the magnetic oscillations.

In the next section we introduce our model. Sect. 3 contains
our results and Sect. 4 gives a brief discussion.

2. The model

Here we shall assume that the gross features of the large scale
solar magnetic field can be described by a mean field dynamo
model, with the standard equation

∂B
∂t

= ∇ × (u × B + αB − η∇ × B), (1)

whereu = vφ̂ − 1
2∇η, the term proportional to∇η represents

the effects of turbulent diamagnetism, and where the velocity
field is taken to be of the form

v = v0 + v′, (2)

wherev0 = Ω0r sin θ, Ω0 is a prescribed underlying rotation
law and the componentv′ satisfies

∂v′

∂t
=

(∇ × B) × B
µ0ρr sin θ

.φ̂ + νD2v′, (3)

whereD2 is the operator∂
2

∂r2 + 2
r

∂
∂r + 1

r2 sin θ ( ∂
∂θ (sin θ ∂

∂θ ) −
1

sin θ ) and µ0 is the induction constant. The assumption of
axisymmetry allows the fieldB to be split into toroidal and
poloidal parts,B = BT +BP = Bφ̂ + ∇ × Aφ̂, and results in
Eq. (1) yielding two scalar equations forA andB. Nondimen-
sionalizing in terms of the solar radiusR� and timeR2

�/η0,
whereη0 is the maximum value ofη and lettingΩ = Ω∗Ω̃,
α = α0α̃, η = η0η̃, B = B0B̃ andv′ = Ω∗R�ṽ′, results in
a system of equations forA, B andv′, with the dynamo pa-
rametersRα = α0R�/η0, Rω = Ω∗R2

�/η0, Pr = ν0/η0, and
η̃ = η/η0, whereΩ∗ is the solar surface equatorial angular ve-
locity (see Moss & Brooke 2000 for details). Hereν0 andη0 are
the turbulent magnetic diffusivity and viscosity respectively and
Pr is the turbulent Prandtl number. The densityρ is assumed to
be uniform, and stress free boundary conditions ensure angular
momentum conservation.

These equations were solved using the code and boundary
conditions described in Moss & Brooke (2000), over the range
r0 ≤ r ≤ 1, 0 ≤ θ ≤ π, with uniform spacing in bothr andθ.
The computational domain is the regionr0 = 0.64 ≤ r ≤ 1;
with the solar convection zone proper being thought to occupy
the regionr > 0.7, the regionr0 ≤ r ≤ 0.7 can be thought of
as an overshoot region/tachocline. In the following simulations
we used a mesh resolution of 61 points uniformly distributed
radially and 101 points uniformly distributed latitudinally (over
0 ≤ θ ≤ π), but test runs were carried out at higher spatial
resolutions.

In this investigation, we tookΩ0 to be given in0.64 ≤ r ≤ 1
by an interpolation on the MDI data obtained from 1996 to
1999 (Howe et al. 2000), depicted in Fig. 1. Forα we took
α̃ = αr(r)f(θ), wheref(θ) = sin2 θ cos θ (cf. Rüdiger &
Brandenburg 1995) and

αr = 1; 0.7 ≤ r ≤ 0.8 (4)

Fig. 1. Isolines of the time average of the angular velocity of the solar
rotation, obtained by inverse techniques using the MDI data (Howe et
al. 2000). Contours are labelled in units of nHz.

with cubic interpolation to zero atr = r0 andr = 1, with the
convention thatαr > 0 andRα < 0. Also, in order to take into
account the likely decrease in the turbulent diffusion coefficient
η in the overshoot region, we allowed a simple linear decrease
from η̃ = 1 at r = 0.8 to η̃ = 0.5 in r < 0.7.

We monitor the time evolution of the total magnetic energy
E and the global parity of the magnetic field, defined asP =
ES−EA

ES+EA , whereS andA refer respectively to the parts of the
magnetic field that have symmetry or antisymmetry with respect
to the equatorial plane (see also Brandenburg et al. 1989). Thus
P = +1 and−1 correspond to symmetric and antisymmetric
fields respectively.

3. Results

We calibrated our model so that near marginal excitation the
cycle period was about 22 years. This determinedRω = 6×104,
corresponding toη0 ≈ 2.5 × 1011 cm2 s−1, given the known
values ofΩ∗ andR�. The first solutions to be excited in the
linear theory are odd parity (P = −1) limit cycles, which in
this case have marginal dynamo numberRα ∼ −3.12. The even
parity (P = +1) solutions are also excited at similar marginal
dynamo numbers ofRα ∼ −3.16. We considered two values
of the Prandtl numbers,Pr = 0.1 andPr = 1.0.

With these parameter values, we found that this model, with
underlying zero order angular velocity chosen to be consistent
with the recent (MDI) helioseismic data (Fig. 1), is capable of
producing butterfly diagrams which are in qualitative agreement
with the observations. An example of this is depicted in Fig. 2.
The polar feature is rather too strong – we have checked that this
can be rectified by modifying slightly the spatial dependence of
α, by for example choosingf(θ) = sin4 θ cos θ.

We also found that this model successfully produced tor-
sional oscillations in the convection zone, similar to those de-
duced from recent helioseismic data. To compare our model with
these results, we have plotted in Figs. 3 and 4 the variations of
the rotation rate with latitude and time (‘butterfly diagrams’) to

LE
T

T
E

R



E. Covas et al.: Torsional oscillations in the solar convection zone L23

Fig. 2. Butterfly diagram of the toroidal component of the magnetic
fieldB atR = 0.95R�. Dark and light shadows correspond to positive
and negativeBφ respectively. Parameters values areRα = −3.2,Pr =
1.0 andRω = 6 × 104.

reveal the migrating banded zonal flows. In these models, the
basic magnetic field parity is odd (P = −1).

For the sake of comparison with observational results, we
have also plotted in Fig. 5 the evolution of the residual rotation
rate with time, at radius0.84 and latitude60 degrees.

As can be seen, consistent with the observations, in each
hemisphere there are alternating latitudinal bands, with the
width of approximately 10 degrees, of slightly faster and slower
than average zonal flows. These migrate towards the equator in
about 22 years, and extend deep into the convection zone. The
amplitudes of these oscillations increase with depth below the
surface and depend on the parameters of our model, in particular
the Prandtl number. ForPr = 1.0, these amplitudes range from
about 0.07 nHz at the surface to more than0.4 nHz towards
the bottom of the convection zone, somewhat lower than, but in
principle compatible with, the results of Howe et al. 2000. The
torsional oscillations present in our model have periods half that
of the period of the global magnetic field which is compatible
with the observed period of the oscillations at the surface and
consistent with the observed behaviour inside the convection
zone.

The strictly odd parity models presented have an equatorial
feature in the ‘butterfly diagrams’ for the velocity perturbations
which does not appear to be present in the current inversions of
the observational data. This becomes weaker as Prandtl number
increases. We also note in passing that these figures are almost
identical for cases where even parity solutions are found, except
that this feature is then absent. We further point out that the large
scale solar magnetic field is probably ofmixedglobal parity
(predominantly odd) – see, e.g., Pulkinnen et al. (1999).

4. Discussion

We have studied a solar dynamo model, calibrated to have the
correct cycle period, with a mean rotation law given by recent

Fig. 3. Variation of rotation rate with latitude and time from which a
temporal average has been subtracted to reveal the migrating banded
zonal flows, atR = 0.95R� (top) andR = 0.84R� (bottom). Darker
and lighter regions represent positive and negative deviations from the
time averaged background rotation rate. Parameters values areRα =
−3.2, Pr = 0.1 andRω = 6 × 104.

helioseismic observations. This model produces butterfly dia-
grams in qualitative agreements with those observed.

We have shown that a nonlinear coupling between the mag-
netic field and the solar differential rotation, where the nonlin-
earity is due to the action of the azimuthal component of the
Lorentz force, is capable of producing torsional oscillations,
with period of about 11 years, which penetrate into the convec-
tion zone and which migrate towards the equator in about 22
years. The period of these oscillations is about half that of the
period of the global magnetic fields. This is in agreement with
the observed period of the torsional oscillations at the surface.
For the oscillations inside the convection zone, this is a testable
prediction, not contradicted by the current helioseismic obser-
vations, which so far extend over an interval less than a solar
cycle. We note also that solutions with even parity (P = +1)
show slightly larger amplitudes without the equatorial feature.
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Fig. 4. Variation of rotation rate with latitude and time from which a
temporal average has been subtracted to reveal the migrating banded
zonal flows, atR = 0.95R� (top) andR = 0.84R� (bottom). Param-
eters values areRα = −3.2, Pr = 1.0 andRω = 6 × 104.

The current inversions of the helioseismological data seem
to suggest that the torsional oscillations largely disappear
below aboutR = 0.9R�, in contrast to our model oscillations.
However, there are uncertainties in these inversions, specially
at the deeper levels. At the same time our dynamical model is
oversimplified and substantial improvements can be made. In
particular, the predicted amplitudes for torsional oscillations in
our model are likely to be affected by our assumption of uniform
density in Eq. (3). Nevertheless, we find it interesting that
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Fig. 5. Variation of rotation rate at radius0.84R� and latitude60
degrees. Also depicted is the (nondimensionalized) toroidal field at the
same radius and latitude (dashed line), which shows double the period.
Parameters values are as in Fig. 4.

some of the major features in the torsional oscillations can be
readily reproduced. A more detailed study of these oscillations,
including more realistic density profiles, is in progress.
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