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Abstract. We compute the warping of a disc induced by aalong stellar magnetic field lines. This picture has been further
inclined dipole. We consider a magnetised star surroundeddwpported by a wide array of observational evidence (see Najita
a thin Keplerian diamagnetic disc with an inner edge that coret al. 2000 and references therein), including spectroscopic in-
tates with the star. We suppose the stellar field is a dipole widlcations of infalling material onto the stellar surface (Edwards
an axis that is slightly misaligned with the stellar rotation axigt al 1994; Hartmann et al. 1994) and the low spin rate of CCTS
The rotation axes of the disc material orbiting at large distang@ouvier et al 1993; Edwards et al. 1993).
from the star and that of the star are supposed to coincide. TheSince T Tauri stars have a large convective envelope, it
misalignment of the magnetic and rotation axes results in tizelikely that at least part of their magnetic field is generated
magnetic pressure not being the same on the upper and lotheough a dynamo process. However, there may also be a fossil
surfaces of the disc. The resultant net vertical force produaasmponent originating from the molecular cloud out of which
a warp which appears stationary in a frame corotating with thige star formed (Tayler 1987). Recent Zeeman measurements
star. We find that, if viscosity is large enough £ 0.01-0.1) indicate relatively strong field strength at the surface of T Tauri
to damp bending waves as they propagate away, a smoosthrs, onthe order of one kilogauss (Guenther et al.|1999; Johns-
varying warp of the inner region of the disc is produced. Therull et al.[1999). It is not known what the structure of the field
amplitude of the warp can easily be on the order of ten percentafAt some distance from the star the dipolar component proba-
the disc inner radius for reasonably small misalignment anglely dominates, but whether this is the case in the magnetosphere
(less than 30 degrees). Viscous damping also introduces a phas®t clear. However, observations cannot rule out such a co-
shift between the warp and the forcing torque, which resultsherent field structure (Montmerle et al. 1994), and numerical
the locations of maximum elevation above the disc formingsimulations of nonlinear stellar dynamos indicate that a steady
trailing spiral pattern. We apply these results to recent obserdipole mode is the most easily excited one (Brandenburg et al.
tions of AA Tau, and show that the variability of its light curve1989).
which occurs with a period comparable to the expected stellar Interaction between the stellar magnetic field and the accre-
rotation period, could be due to obscuration produced by a waign disc has very important consequences for the disc structure,
configuration of the type we obtain. the accretion process (see Ghosh & Lamb 1991 and references
therein) and the evolution of the stellar rotatiorikgl[1991).

Key words: accretion, accretion disks — Magnetohydrodynanha particular, the disc is truncated by the magnetic torque, so
ics (MHD) — stars: individual: AA Tau — stars: magnetic field¢hat it does not extend down to the stellar surface (Gosh & Lamb
— stars: pre-main sequence 1979). The location of the disc inner radius is determined by the
condition that magnetic and viscous torques balance. For CTTS,
the radius of the inner cavity is believed to be a few stellar radii
1. Introduction (see, e.g., Wang 1995).

So far, there are only a few numerical simulations of disc—
Objects accreting material through an accretion disc very coBiellar magnetic field interactions (Hayashi et’al. 1996; Miller
monly contain a significant magnetic field. This is the case f@ Stone[1997; Goodson et &I, 1997; Kudoh ef al. 1999). They
accreting white dwarfs in cataclysmic variables, some X-rayl show the disc—-magnetosphere interaction to be complex and
binary pulsars and at least some classical T Tauri stars (CCTsgnsitive to initial and boundary conditions. At this stage, it is

It was first suggested by Bertout et al. (1988), as a resHlit clear what final form a full theoretical model is likely to

of the detection of bright stellar spots, that CTTS may accretge. However, analytical or semi—analytical simplified models
can still be valuable in pointing out some important processes
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that may arise in these systems, and the goal of this paper itardfield. In principle, the calculations presented here could be
describe one of these processes. extended to more general cases. However, if the disc were not

We note that the magnetic axis and the rotation axis of tdeamagnetic, wrapping of field lines would probably become
disc at large distances from the star may not be aligned, althouigiportant, leading to the possible disruption of the magneto-
often, for simplicity, they are assumed to coincide. We assursghere (see, e.g., Mikic & Linker1994). Also we do not address
here that the stellar rotation axis and the disc rotation axishare the physical processes of accretion or plasma entry into the
large distances coincide. Misalignment would then occur if, fatellar magnetosphere. We note that because the warp induced
instance, the star were to generate a dipole field with magnetiche inner disc appears steady in a frame rotating with the star,
axis misaligned with its spin axis (like in the case of the Earthany resulting variability would have the same period as that of
It is possible that the interaction with the disc would lead tihe star.
some evolution of the misalignment angle, but the details are We comment that the generation of spontaneous warping
likely to depend on the processes which generate the field.does not apply to the calculations we present here, since we
any case, when such a misalignment is present, the magnsticly a response which is forced by the inclined dipole and has
pressure is not the same on the upper and lower surfaces ofahmttern speed equal to the rotation rate of the star. Thus, in
disc. This mismatch generates a net vertical force which excitamtrast to the considerations of Lai (1999), it is not a modified
bending waves and warps inner parts of the disc [Aly 1980).tilt mode.

Bending instabilities in a disc subject to a stellar magnetic This work has been motivated by a recent study of Bouvier
dipole have been investigated by Agapitou etlal. (1997, hert-al. [1999) who report that the light curve of the CTTS AA Tau
after APT). APT calculated the global bending modes of a didésplays photometric, spectroscopic and polarimetric variations
permeated by both an internally produced poloidal magnetio timescales from a few hours to several weeks. The most
field and an external dipole field with axis aligned with the disstriking feature of this light curve is a photometric variability
rotation axis (in this case no warp is induced by the dipole cowith a period comparable to the expected rotation period of the
figuration, but free bending modes can be excited by a pertatar. This has been interpreted by Bouvier ef al. (1999) as being
bation which takes the disc out of its equilibrium plane). Theyue to the occultation of the star by a warp of the inner disc (the
found that instability could occur if the magnetic and centrifugalystem is observed almost edge—on). The authors speculated
forces were comparable in some region of the disc. They pointbdt the warp could be produced by an inclined dipole. We note
out that such instabilities may result in the periodic variabilitthat Bouvier et al.[(1999) did not consider AA Tau as being a
observed in the light curve of many CTTS. special case as far as its properties are concerned. They pointed

Lai (I999) studied the warping of a disc induced by an irput that only its light curve is unusual, and they interpreted it as
clined dipole. He calculated the magnetic torque exerted by laging due to the fact that the system is seen almost edge—on. In
inclined dipole on a disc, and studied the stability against vertither words, warping of the inner parts of CTTS discs would not
cal displacements of a disc subject to such a torque. In the tefmesuncommon, but it could be seen only for particular viewing
of the APT analysis, he studied the stability of low frequenangles.

(as measured in an inertial frame) bending modes correspond-The plan of the paper is as follows: We begin by considering
ing to the modified tilt mode as discussed in APT. We note thai) equilibrium configuration where the axis of the dipole and the
when considering the structure of the disc subject to the inclinestation axis of the disc are aligned. This is described in 8kct. 2.
dipole, he did not take into account the effects of the distortidfie then perturb this equilibrium by slightly inclining the dipole.

of the disc itself on its response, which can have important cdn-Sect[8 we calculate the resulting perturbed magnetic field and
sequences on the dynamics through wave propagation. Butdeeive the integro—differential equation which has to be solved
added the effects of a toroidal field, assumed to be generateddnthe disc vertical displacement. This equation is solved in the
winding up a penetrating vertical field, on the magnetic pressuhékB approximation, which is valid when the wavelength of the
determining the vertical force on the disc. This contribution isending waves excited in response to the perturbation is small
phase shifted with respect to the other contributions and magmpared to the disc radius. To allow these waves to damp as
thus (if not counteracted) cause the modified tilt mode to becothey propagate away (and therefore to damp very small wave-
unstable, resulting in spontaneous warping. To decide whetlargth oscillations, which would be unphysical), we include the
this mode can be destabilised requires detailed consideratioefiécts of viscous damping in the integro—differential equation.
the effects of wave propagation and viscosity. We comment thatSect’# we solve this equation numerically and present the re-
under some conditions warps diffuse away on a timescale muelts for two different magnetic field equilibria (derived by Aly
shorter than the viscous timescale (Papaloizou & Pr[ngle]19@380 and Low 1986). In both cases we find that, if the viscos-
or propagate away with a velocity on the order of the sourity is large enough to damp the waves as they propagate away,
speed (Papaloizou & Lin 1995) resulting in stabilisation. a smooth warp configuration of the disc inner parts can exist.

In this paper, we calculate the structure of a thin Kepleriarhe elevation above the disc equilibrium plane (i.e. the stellar
disc subject to an inclined dipole, taking into account the effeaguatorial plane) can easily be on the order of ten percent of
of the distortion of the disc itself on its response, i.e. the futhe disc inner radius for reasonably small misalignment angles
dynamics of the system. For simplicity, we suppose that the digess than 30 degrees). If the viscosity is too small to damp the
is diamagnetic, so that it is not permeated by the external stwhves efficiently, the disc inner parts may be disrupted, and it
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is likely that the evolution is then highly time—dependent. 18.2. Force balance

Sect[’b we apply these results to the case of AA Tau, and shgw . . N .
that the variability of its light curve, which occurs with a p:ﬁ eglecting pressure forces as in APT, the vertical integration

riod expected to be the stellar rotation period, can plausibly B]Eethe radial component of the momentum equation yields the

explained by a warp configuration of the type we obtain. condition for radial equilibrium as:

29 02 +JB., 4)
2. Disc and aligned dipole or

hereX is the surface density} is the disc angular velocit
We begin by considering a thin disc configuration such that t% ! " o) | ! gurar v v

, - . ) _ easured inaninertial frame, afds the gravitational potential
gas orbits a central rotating star with a dipole field and where t Ere taken to be due to a central point mads, such that:

magnetic axis and rotation axes are all aligned. In this situation,

the configuration is axisymmetric. For convenience, we work jn _ GM,
a frame corotating with the central star with angular velogity V2422

The disc is truncated in its inner parts by the magnetic torayes

. . : 0,in some regions of the disc a variety of configurations
and we will suppose that the inner edge corotates with the SE?rre p% J y g

ossible (see APT). These include cases where inner field
lines cross the disc and join to the central star and thus may be
2.1. Magnetic field assumed to corotate with it. Outer field lines may be open in the

. ) . . ase of an infinite disc or a finite disc with appropriate boundar
The dipole fieldB.,; due to the central star induces azimuth qonditions bpprop y

currents in the conducting disc which in turn generate an addi- In this paper, for simplicity, we shall perform calculations

tlongle[?gloeﬁeill]rlig;li[;g zﬁladﬁgssume that the field externalfor the special case where the field is excluded from the disc.
' ' iis situation arises when the disc is perfectly conducting. Then

g]sesjrlsg datnodbiaegt\rlzlcitjr;i?g db(e}haepglrj?;(elrrﬁitzgt;sn;:Jtrcl)ftrﬁs, O'oﬁ([y surface currents.fIO\.N in t'he Qisc and they screen thg ;tellar
and star are at infinity) (fpole field from the disc mte_rlor, i.e. the_y prqduce an additional
The total axisymmétric poloidal magnetic fie, , + B, fl_eld By whlch_ cancelB.,: in the d|sc_|nter|or. Wg note that,
is denotedB — (B, 0. B.), where we use cylingﬁcal po,larSI.nce the vertlcgl compqnent of t.he f|eld is pont!nuous at the
Ty RN disc surface . just outside the disc is zero in this case. The

coordinatesr, ¢, z). The associated Cartesian coordinates afe ; _
R . ) same does not apply f@,, and in generaB andB~ are non
(z,y, z). The flux functiony is such that: PRl 9 " "

Zero.

B _ —1 0y iB. — 10y 1 We remark that, since there is no Lorentz force acting in
T T 9 PR T g @ the disc whenB, = 0, the angular velocity given by Ed.(4) is
For the stellar dipole field: Keplerian.

2
Vomt = ——FE____ (2) 3. Disc and slightly misaligned dipole

(r2 + 22)3/2’

) o We suppose that the system is perturbed from the axisymmetric
where the magnitude of the stellar magnetic dipole momentdgyilibrium state described above by introducing a slight mis-
pa = B.R, with B, and R, being the stellar magnetic field glignment between the magnetic axis of the central dipole and
and radius, respectively. , o _ the rotation axis of the disc and star (thaxis). This produces

For the general axisymmetric poloidal field, the associatgd,on axisymmetric response in the disc that can be described
current density ig = (0, j,,0). For an infinitesimally thin using linear perturbation theory.

disc, as we consider here, we define the vertically integrated The main features of this response is that it takes the form of

azimuthal component of the current densiysuch that: awarping of the disc, as indicated by Aly (1980), together with
oo the additional feature of the excitation of bending waves. The
J= /_ Jedz. response is naturally largest in the inner parts of the disc where

the magnetic field is strongest. As we indicate by considering
By integrating the azimuthal component of Aemp’'s law specific examples in Sefl. 4, it can take the form of a steeply
through the disc, we obtain: changing inclination of the inner disc orbits which can make it
+ _ appear to have an inner wall.
By = mal/2, @) To calculate the geometry of the disc (that is its elevation
where B;I denotes the radial component of the magnetic fiebove its equilibrium plane), we extend the analysis of APT.
just outside the upper surface of the disc. Throughout this pajercompute the free bending modes of the disc, APT solved
we use MKSA units, and,y denotes the permeability of thean eigenvalue problem where the eigenvalues were the mode
vacuum.B,. is antisymmetric with respect to reflection in thdrequencies and the eigenfunctions their amplitudes. Here we
disc mid—plane so that its value just outside the lower surfagee interested in a response with frequency equal to that of the
of the discisB” = —B. forcing term. Since the dipole is anchored in the star, this is
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the angular velocity of the star. The amplitude of the mode (its As in APT, the vertical component of the perturbed field
spatial dependence) can be found from the mode equatiomufst be matched to the vertical component of a perturbed vac-
APT with a specified frequency and the addition of the forcingum field exterior to the disc. Here this is taken to be a potential
term. However, a different equilibrium field is adopted, sindéeld. Therefore we have:
here, in contrast to APT, there is no internally produced field i‘%iw
the disc. 5, = B, (10)

z
where B is the value of the vertical field perturbation just
outside the disc surface ae|, is the magnetic potential as-
To calculate the response we suppose the central dipole monféiated with the external field perturbation. To fidf;, we
is rotated in thez, z) plane through a small angfebeing the first subtract out the contribution of the external field perturba-
inclination to the axis. The dipole moment is then given by: tion arising from the tilted dipole. At the disc surface, this is

(Eq. [6)):

5)

3.1. Perturbed magnetic field

Hq = (/Jd(;y Oa ;u'd)

{ony = H0 (11)
This contributes to a potential: M,ext r2’
g r ©) where as above the factexp(ip) has been dropped. With this

/ J—
Mext = g3 contribution removed, the residual potential has no singularity

wherer denotes the position vector, which produces a radf%'lnsmle the disc. It can be calculated from gl (10) in an analo-

external magnetic field perturbatiat ,, — 8<I>Memt/ar.\]ust gous manner to finding the gravitational potential due to a disc

outside the disc surfaces, this is given by the real part of: surface density distribution, withr (7 (where is the gravi-
' 9 y P " tational constant) being replaced By" (see Tagger et al. 1990;

Bt _pB- - 2pq6 exp(ip) 7 Spruit et al[ 1995; APT). Following this procedufi,, may be
rext — Prext T T r3 : ™ written as the sum of a Poisson integral kg _ .,
,ext

Thus the problem reduces to the calculation of the digg _ Dl g+ Py et (12)

response to a field perturbation with azimuthal mode number
m = 1. This, when acting with the unperturbed azimuthal cuwhere

rent, produces a vertical Lorentz force which tends to warp the 1 (B (2" B cosy r'dr'dy!
— = ,(13
2 /RL A \/r ( )

disc. In other terms, when the dipole is misaligned, the magne‘%l,d ==
pressure force is not the same on the upper and lower surfaces of
the disc. This mismatch generates a net vertical pressure fondereR; andR, are the inner and outer radii of the disc, respec-

2 42 — 2rr cos(p’) + 22

which tends to warp the disc. tively. In the above integral, the-dependence of the perturbed
We thus introduce the Lagrangian displacengewhich, in  field has beentaken into account. Here again, the fagtiy),
a razor—thin disc approximation, has the form: to which <I>{v1,d is proportional, has been dropped.
Since the disc is perfectly conducting, the vertical compo-
§€=1(0.0,&). nent of the field given by Eq.19) is continuous at the disc surface.

The only non-negligible component is the vertical one (APT) herefore:

and¢, represents the elevation above the disc equilibriumplane,, 1 9(rB;¢.)
In keeping with the form of the external magnetic field pertur== = .~ g,
bation, we make all the perturbed quantities complex by tak: . . e . .

ing their o-dependence to be through a factap (i), which aJFhIS expression foB." can be used in the above integral.

henceforth will be dropped. The physical perturbations will be The radial COT”p‘?”eT“ of the.: magnetic field just outside the
i ... surfaces of the disc is given by:
recovered by taking the real part of these complex quantitiés.

. (14)

The Eulerian perturbations of the various quantities are denoiggr _ B oY, B 0Py 4 ~ 2pad (15)
by a prime. L T U or r3
. . g . . . z=0 z=0
The perturbation of the magnetic field interior to the disc, )

B/, is related tc¢ by the flux freezing condition: where Eqs[(111) an@(12) have been used to write the last expres-
sion (we have approximated the derivatives at the disc surfaces

B' = (B}, B, B.) = VX ({xB). (8) by their value at = 0 because the disc is infinitesimally thin).

The non-zero components Bf take the form:
3.2. The disc vertical displacement

B/ _ aBr dB/ _ 1 a(TBrgz) 9

r=% I W ) The vertical component of the perturbed Lorentz force inte-

SinceB, is antisymmetric with respect to reflection in the disgrated vertically through the disc is (see APT):

mid—plane and, is independent of in the thin disc approxi- [° Flds — 2B BIt 16

mation, B/, is antisymmetric and3,. is symmetric. 7 S wo (16)
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The term proportional t& B, /dr, which was present in APT, dipole. We remark that this nonhomogeneous term is simply the
is zero here sincd, = 0 in the disc interior and at its surfacegressure force due to the misaligned component of the dipole

(see Sect. 212). vertically integrated through the disc:
We note that this force is simply the perturbed magnetic - N
pressure force?,, vertically integrated through the disc. Thepr 2B Breat _ 2B 2p49 (23)
pressure force vertically integrated through the disc is indeed!™ " Ho po 3
(B+)2 (B*)2 where we have used Ef] (7) (see also Eqg. [24] of Aly 1980).

Pm = - = + - ) (17)

2o 2o 3.3. WKB

3. waves
(B, = 0 at the disc surfaces), so that:
When g is set to zero in EqL(22), this equation has solutions

+ B/t - B/- + Bt

P = _B B, + B, By — _25; B, , (18) corresponding to free bending waves. Inthe local limit, these can

Ho Ho Ho be found by assuming th&t o« exp(ikr), wherek is the radial

where we have used the symmetries of the field. We noté¥hat Wavenumber, assumed to be very large comparegitoThe
is non zero because the perturbation induced by the misaligifé§gral in Eq.[(IB) can be evaluated in the WKB approximation
dipole has an opposite effect on the upper and lower surfaced®give. after usind (14) (see APT and references therein):

the disc: it increases the magnitude of the radial component of _B _ikBte

the magnetic field on one of the surfaces frig | to | B | + Py = \k|z = |k|r = (24)

| B/*| while decreasing it on the other surface fromy"| to

|BF| — | BT The local dispersion relation derived from Hqg.](22) is then:

The vertically integrated:-component of the perturbed o( BH)2
equation of motion is: (w—0k)? = 0% + ( TE) |k, (25)
D2¢, 0% <, o o

b D = -3 (822) &, +/ F.dz (19) where we have used the fact that the angular velocity is Kep-
z=0 - lerian. We see from Ed.(25) that bending waves with= 1

whereD /Dt denotes the convective derivative. propagate (witHk| > 0) exterior to the Lindblad resonances

In the problem considered here, the solution is steady imdere(w — Qk) = £Qx. In this paper, we are concerned with
frame rotating with the central star angular velocityThen:  the situation where the disc is terminated at an inner bound-
ary (r = R;) where the local Keplerian rotation rate is close to

D2§2z — (W 0)%.. (20) corotation with the central star, ik (R;) = w. Insuch acase,
Dt only the outer Lindblad resonance (OLR), whélg = w/2,
Also, for a point mass potentia]: will exist within the disc, and it occurs at a radits= 1.59R;.
) Significantly beyond the OLR, the wavenumber associated
0P _GM with the waves is given by:
S5 =5 =9k (21)
322 z=0 ré

,lLoWQTE r3
where is the Keplerian angular velocity. Using E(15)|,k|7" ~ 2B )2 & B
(18), (20) and{21), EqC{19) becomes:

(26)

where we defings such that it would be the ratio of magnetic

[~(w—-Q)* + %] & to centrifugal forces if we had a vertical field, ~ B;" (see
2B} [ (0P 4 241q0 Sect[#). AlthoughB. = 0 here, we us¢ as a measure of the
= s> K af )ZO T3 } (22) strength ofB;t. This is expected to be at most of order unity at

the inner edge of the disc and then to decrease rapidly outwards,
The potentiafy; , can be expressed interm@fand its deriva- as the magnetic field decreases (see Sect. 4).
tive with respectte using Eqs [(13) an@(14). Therefore Hql(22) If 3 decreases asincreases, the forcing term proportional
gives alinear equation for determining the vertical displacemet ., in Eq.(22) will excite bending waves in the disc that
&, induced by the tilted external dipole. The term proportiongropagate outwards with increasing wavenumber until they are
to g in this equation acts like a forcing term for the verticalamped, much as in the case of Saturn’s rings (see Goldreich &
displacement and it causes the disc to become warped and M&ymainé 1978; ShHu 1984). In some cases, the wavelength may
also excite bending waves. be so short at the OLR that dissipative processes prevent waves

As noted above, since there is no Lorentz force acting in tfrem being properly launched (see below).
disc interior,Q2 in Eq. (22) is the Keplerian angular velocity.

We remark that Eq[{22) is the same as Eq. (14) of APJ
with B, = 0, but with an additional nonhomogeneous term’
proportional topy. As noted above, this is expected as hetla order to allow the waves to damp as they propagate away from
we calculate the response which is forced by the nonalignm OLR, we add an additional viscous force per unit mass to

4. Viscous dissipation
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the right hand side of E4._{1L9) of the fomd?v/ /0r?, wherev,,  the radial field at the disc surface has opposite sign in the two
is the Eulerian perturbed vertical velocity ands a kinematic cases.

viscosity. Neglecting the variation 615, which is reasonable ~ We comment thaB; is negative and positive for Low’s and
for short wavelength disturbances, this can also be written Aly’s cases, respectively, which is the opposite of the solution
iv(Qx —w)d?E, /Or?. Forv we use a standard’ prescription obtained by these authors. This is because we have arbitrarily
suchthar = a H?Qy, whereH is the disc semi-thickness andchosenB, to be positive when the dipole momentis positive,

« is a constant (Shakura & Sunyéev 1973). in contrast to these authors.
With the incorporation of the above viscous force, Egl (22), In a two dimensional modek;z is the disc inner radius.
which gives the forced response of the disc, becomes: However, more realistically it is expected to differ from this
52 by an amount comparable to the vertical thickness of the disc.
[—(w— Q)2+ Q%] & —iv(Qx —w) 522 We adopted the procedure of taking the disc inner ragium
or be slightly larger thamz, and to check convergence of the re-
_ 2B, {(3‘?34,(1) _ 2/&15} @27 sults by decreasin@R; — r ). For Aly’s solution, convergence
X o ), o r3 | requires that the disc surface density increases rapidly enough

. . - - towardsR; such as to limit the Lorentz force there.
We now comment briefly on the possible origin of thisis-

cosity. So far, the only process which has been shown to initiate
and sustain turbulence in Keplerian discs is the magnetohydfe2. Results

dynamic Balbus—Hawley instability, and it does lend itself to 8o haye performed global normal mode calculations for disc
a formalism (Balbus & Hawley 1998 and references thereiny, ,je|s with the unperturbed magnetic field described above.
For the disc we consider here, which is not permeated by the eX-\y/ gojve Eq.{27) considered as an integro-differential equa-

ternal magnetic field, it is difficult to justify the existence of a%on for the response functiof, by the method described in
« viscosity. However, in reality, the disc is probably permeat T. We use the dimensionless radits= /R, so that the

to at least a small extent by the external field (Ghosh & Lamfyier ragiys igo, = 1. In these units, the disc inner radius on
1979). If the ratio of magnetic to thermal pressure is smallﬁ{e computational grid is taken to be, = R;/R, = 0.1, and
than unity, the disc is then subject to the BH instability, the iz o oiate with the central star so that Q;(RO,) o

ternal disc field is amplified and bending waves are damped. The radial intervaleo;, 1] is divided into a grid ofi, equally

The values ofx produced by the BH instability range roughlySloaced points at positiorisr; ),_, with a spacingAw; —

from10~3 to 0.1 (Hawley et al. 1995; Brandenburg et al. 1995);3 | — ;. Eq.[27) is solved as in APT by discretizing it on
the largest values corresponding to the case where the magr}ﬁéé

. i X i grid so converting it into a matrix inversion problem for
field varies on a scale large compared to the disc semnhmkngzgs) In the calculations presented below,was varied
(Hawley[2000). 2oI=1...nr ’

between 500 and 700, but 300 already gave satisfactory results.
As already noted in Se€t. 3.3, we use the magnetic support
4. Numerical response calculations which would be the ratio of the Lorentz force to the centrifugal
L force in the disc ifB, were non zero and on the order Bf :
4.1. Unperturbed magnetic field
c . . 2(Bf)?r?
or the model calculations presented here, we adopt a ragiak ——"~/
magnetic field corresponding to the situation when the central foXG M,
dipole flux is completely excluded from the disc. We considevhereG is the gravitational constant. AlthougB, = 0 in the
both the solutions computed by Aly {1980) and Law _(1986}isc,3 will be used as a measure of the strength of the figstd
Aly’s solution corresponds to the case when all the dipole flie found it convenient to define the dimensionless quantities
goes through the magnetospheric cavity in the middle of the= X/3;, whereY; is the surface density at the disc inner
disc, and is singular at the disc inner edge. Low gives a solutilius,B;" = B;f /By, and§ = 3/, with:
that is non singular with some flux escaping to infinity. B2R?
0-%o

(30)

In these cases we have, fotarger than some radius;: Bop= —2L"° . (31)
R,\* 2 e We then have:
r==m (%) |(Z) -1 (28) '
r "B _ 222 (Bf)®
| f="2 "’ (32)
where we have defined: )
411y For both Low’s and Aly’s magnetic field, we consider mod-
By = R3 (29) elswhere the magnetic supportis large (reaching values of order

unity) close to the disc inner edge and decreases rapidly with
In Eq.(28), the upper sign corresponds to Low's solutionadius. For Aly’s solution, we také = 1 at the disc inner edge.
whereas the lower sign corresponds to Aly’s solution. Of courdegr Low’s solution,3 has to vanish at the same location3s,

in both casesdB, = 0 since the disc is diamagnetic. Note thate. atwp = r5/R,, otherwise, is infinite there. We then
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61 015 02 025 03 01 015 02 025 03 035 These are damped by viscosity before they
¥/R, y/R, propagate very far.
take3 = 0 atwwp and3 = 1 at the location wheré3;" has its We note that the vertical displacement of the disc at a loca-

maximum. From the value gf andB;" at the disc inner radius, tion (r, ¢) is:
we can calculat@,.

From the profile of3, we calculates using Eq.[(3R). We R[E.(r)] cos o — T[E.(r)] sin . (33)
actually take the profile oE which gives the desire@ near
the disc inner edge, and we then match it on io & profile
further away in the disc (sindg," decreases rapidly with radius

we do not need to worry about the profileXofor o larger than areR(c,)/(20R,), i.e.£. /(26R,) for ¢ — 0 versuse/R,, and

a value which turns out to be about 0.2). : i
We note that our results do not depend on the numeric_a%(gz)/(%RO)’ e.£./(20R,) for ¢ = m/2 versusy/ R, for

[ " . .
values ofs;, By, andR, (or equivalentlyi, ) taken individually, « = 107° and 0.1. These quantities represent the disc vertical

: displacement within a factdd R, in the (¢ = 0) and (¢ =
but only ongy andé. For R; we could take a few timeR,,, and . . X
then computeR, — 10;. We could then get a value f, by m/2) half planes, respectively, or, equivalently, in the> 0, z)

using Eq.[2B) withyy — B, R?. Theny; would follow from and (y > 0,z) half planes, respectively (see Hq.J33]). The

the expressiori{31) faf,. Depending on the value at;, the different figures correspond to different models.

amount of mass in the annulus betweRnand R, could be 09':7'?5% Snﬁpl(/:eriszzno[ll(%(gly_soslozllgj]tlin1a?'?% -
modified by changing the profile &f for w > 0.2. : : 9.4 p . .

An external poloidal magnetic field tendsto squeeze the digglts do not depend significantly on the details of #igr

Therefore, we choose a form of the aspect rafiér which is profile in th.e disc inner parts_(we considered both_ the case
L o WpereH/r increases almost linearly and exponentially with
zero at the disc inner edge and which increases as the magneti

L ' radius). We also checked thgt hardly changes whempg
support decreases. The disc is squeezed by the magnetic {'/%Yrj(icies between 0.09 and 0.099, providing we keep the same

if the magnetic pressure dominates over the thermal press%%gnetic support (i.e. we changeaccordingly). FigR cor-
If the sound spe_ed is about a tenth of the Keplerian VeIOCII‘%?gOHdS 108 o Bt/ {exp [40( — 0.14)] + 1}. The results
then the magnetic and thermal pressures become compara L .

. . are qualitatively the same as in Higj. 1. We also ran the case
when the magnetic support is about 0.1. Therefore, we chogse

) . 1/w3, which gave similar results, ex hat th itiv
a profile of H/r which reaches a constant value (that we tal§/§31 T;e s/ ‘Lrvea,\chec(j: bgai: tshat c?asgsvl\J/:é Zlfr?f;ttaztlgregzss tthz
to be 0.1) at the location whefe= 0.1. 8 9

negative values.

Figs[1£8 show the magnetic supp@rthe disc aspect ratio
'H/r and the surface densiy/>; versusw. Also displayed
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Fig. 2. Same as Fifl1, but for a different
magnetic supporf and surface density.
Only one profile ofH /r is considered here.
Results are similar, although the maximum
of |¢.| is now closer to the disc inner edge.

Fig. 3. Same as Fi@l1, but for Low’s mag-
netic field withcog = 0.09999999 and dif-
ferent magnetic suppof and surface den-
sity 3. The vertical displacement is almost
constant and maximum very close to the disc
inner edge, where it actually vanishes.
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v/R, y/R, there.
Fig[3 corresponds to Low's solution andbp = 1072, theimaginary part of. is comparable in magnitude to its

0.09999999. Here again, the results hardly depend on the detaitsal part. This is becaugg varies rapidly with radius whea

of the profile of H/r in the disc inner parts. From E{.{27), wds small, and the imaginary part f becomes important when
see that, vanishes ato = wp if ¥ is non zero there. When |9%¢, /0r?| is large (see EqI27]). We checked however that the
wp is very close tao;, we indeed check thgt is almost zero at imaginary part off, becomes very small compared to its real
the disc inner edge. However, sinBg varies very rapidly near part whena is reduced further. Practically, the existence of a
wg, &, takes some finite value at the inner edgesasis moved twist means that the point of maximum elevation in the disc is
a little bit away fromeo;. This is illustrated in Fid.J4, where wenot in the plane which contains the dipole axis and the rotation
plot 8 and¢, for different values ofo s, ranging from 0.09 to axis of the star, i.e. thgp = 0), or equivalently(x, z), plane,
0.09999999 (all the curves have the same parameters excepbiirin a plane corresponding to a smaller (negatiweDr, in
wg). other words, the elevation does not vanish in fhe= 7/2),

The calculations for the low viscosity = 1072 illus- or equivalently(y, z), plane, but in a plane corresponding to a
trate the excitation of bending waves. Several oscillations cemaller value of. To illustrate this, we show in Fig] 5 the line of
responding to bending waves excited at the OLR are visibleodes (which joins the points of zero elevation) in the inner parts
These are damped by viscosity before they propagate very &the(z, y) plane for both Aly’s and Low’s models armd= 0.1.

This damping is enhanced by the increasing wavenumber p¥ide clearly see that the line of nodes is trailing. If there were
duced by the decreasing magnetic field. no twist, it would indeed coincide with thg-axis. The curves

For larger and probably more realistic viscosity= 0.1, corresponding to different valuesafg or different models are
these waves are so heavily damped they are barely visible. Tieey similar to those displayed in FIg. 5. Fer= 103, the line
dominant displacement is near the disc inner edge in this casénodes is more tightly wrapped, becauseoscillates more

We note that, when viscous damping is present, the resporeggidly.
of the disc is not in phase with the perturbation, and the warp In Fig.[6 we present a surface plot of the warped disc cor-
lags behind the dipole. That is, the disc is also twisted, and ttesponding to the Low’s model displayed in Fiy. 3. This clearly
twist is trailing. Mathematically, this is illustrated by the facshows the presence of an obscuring wall like feature near the
that the imaginary part &, is non zero, as seen in the differentlisc inner boundary and the trailing twist.
figures. It may seem surprising that, even wheis as low as
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Fig. 5.Line of nodes in the inner parts of the
(z,y) plane for the same models as Fig. 2
(Aly’'s magnetic field,filled triangleg and
Fig[3 (Low's magnetic fieldopen trian-
gles. Here the profile of{/r is almost lin-
ear anda = 0.1. We see that the line of
nodes is trailing. If there were no twist, it
would coincide with they—axis. Fora =
1073, itis more tightly wrapped.

Fig. 6. 3D view of the disc corresponding to the model represented iiFig. 3 (Low’s magnetic field). The dipole, its axisaarakibare also

represented. The vertical scale has been amplified for clarity.
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5. Discussion and application to AA Tau !
The light curve of the classical T Tauri star AA Tau dis-
plays photometric, spectroscopic and polarimetric variations on
timescales from a few hours to several weeks (Bouvier et al%® [
1999). The most striking feature of this light curve is a photo- |
metric variability with a period of 8 to 9 days, comparable to the
expected rotation period of the star. This has been interpreted |
by Bouvier et al.[(1999) as being due to the occultation of ttilzeo'6
star by a warp of the inner disc (the system is observed almgst
edge—on). They proposed that this warp be produced by the gn-
teraction of the disc with a stellar magnetic dipole tilted witd ,, |
respect to the disc rotation axis. Following Mahdavi & Kenyori
(1998), they assumed that material at the disc inner edge, ne-
glecting warping, would be more likely to accrete along the
shorter field line than along the longer one connecting star and.> -
disc. In their model, based on this accretion geometry, the disc
is elevated above the original equatorial plane at the location
where the dipole axis is bent toward the disc. This geometry
enables at least part of the stellar hot spots, located at the field © | 100 200 300
line footpoints, to still be on the line of sight when occultation ~¢ (degrees)

or:_the s’:jarlls r:naxmur_n, in angeTenLW'tTfthe ot_)serv?tlons(ji%l 7.Maximum elevatior . ... (Where thep dependence has been
this model, the warp Is not calculated self-consistently, an taken into account ig.), normalized to unity, above the equatorial

not actually a real dynamical bending of the disc. plane along the-¢ direction, versus-¢ in degrees. This represents
The assumption by Mahdavi & Kenyon (1998) can beconige maximum elevation of the disc material located in between the star
incorrect, precisely because it neglects the warping of the digfid an observer looking at the disc almost edge—on and from above
If the inner disc is no longer in the original equatorial plan@long the—¢ direction. The curves correspond to the models shown
then material at the inner edge no longer ‘sees’ the short andfig.[2 (Aly's magnetic fieldsolid line) and Figl3 (Low’s magnetic

long field lines it would see if it were in the unperturbed distield, dotted ling. Here the profile ot /r is almost linear and = 0.1.
plane. Depending on the direction of the line of sight, the radius at which the

Atthe disc inner edge, sin€d(R;) = Qk (R;) = w, we see elevation is maximum varies (typically between 1and 0.2R,). For

. . - Aly’s model, maximum occulation occurs fegrin the rangg—m /2, 0],
from Eq.[2T) that the sign af. is the S?me as that dt,, (i.e., wrilereas for Low’s model it occurs fgrin thg range{—37gr€/§2, —/7r] o]r,
from Eq. [I8], the same as thatefB;" B/™) for ¢ = 0, and that equivalently,r /2, 7]
determines the direction in which the disc bends. From[Tig. 3, e
we see that for Low’s solution the disc inner edge orithaxis
is pushed below the equatorial plane, which is the opposite of

what was anticipated by Mahdavi & Kenydn (1998). For A|y,éess obscured, and it can be seen by the observer until it has

solution, the disc is bent above the equatorial plane (SGEF:%oinpleted afull ;Qtation. Inlthg case qf LOWT‘ model,hthe starhis
and2). Itis not surprising that the two cases give different resuftt bscured at first. Occultation begins only after the star has
since B changes sign from one case to another. rotated by about 180 degrees and lasts also for about a quarter
To get the elevation of the disc above the equatorial ma&(,a period. We note that, depending on the direction of the line
the real and imaginary parts 6f have to be combined throughOf sight, the radius at which the elevation is maximum varies
Eq.(33). In Figl¥, we show the maximum elevation,q. (typically between 0.1R, and 0.2R,). It is unlikely that the
(where they dependence has been taken into accodr@jh observer would be able to know at which radius is the part of
normalized to unity, above the equatorial plane along-the the disc responsible for the occultation, as the whole structure
direction, versus-.. This represents the maximum eIevatiorﬁOtates with the same frequency (that of the star). Indeed, it is

of the disc material located in between the star and an Obser%portant to stress again that a structure located at some radius

looking at the disc almost edge—on and from above along mgoes not rotate with the local angular frequency but with that

— direction. The curves correspond to Aly's and Low’s moon thg star. (in other words, the warp appears steady in a frame
els displayed in Figl1 arid 3, respectively, and= 0.1. Let rotating with the star). o _
us suppose that, to begin with, we look at the system along the With Low’s solution, the disc is pushed below the equatorial

= 0direction. Then, as the star rotates, our line of sight movB&ne at the location where the dipole is bent toward the disc.
to smaller, negative values of (to the right along the—axis Therefore the stellar hot spots, at the field line footpoints cannot

of Fig[d). In the case of Aly’s model, this corresponds to t e seen under condition of maximum occultation, unless they

star being occulted at first and until it has rotated by about 86¢ rélatively large. In Aly's case, at least part of the hot spots

degrees. Then, as the star rotates further, it becomes less Gty Still be observed at an occultation maximum because of
the phase—lag between the disc response and the perturbation.
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Indeed, we see in Figl 7 that, for the particular Aly’'s mod&ouvier J., CabritS., Fernandez M., MarE.L., Matthews J.M., 1993,

represented there, the occultation is maximum when—15°, A&A 272,176 _
and notwherp = 0. Therefore, it seems the observations favolgouvier J., Chelli A, Allain S., et al., 1999, A&A 349, 619
Aly’s model. Brandenburg A., Tuominen |., Moss D., 1989, Geophys. Astrophys.

To fit the observations, Bouvier et al. (1999) needed the Fluid Dyn. 49,129

amplitude of the warp to be about 0.3 times the disc inner radigégr;jinburg A. Nordlund A., Stein R., Torkelsson U., 1995, ApJ 446,

We_ see from Figgl 133 that this is easily attained here. TheE%Wards S., Strom S.E., Hartigan P., Strom K.M., Hillenbrand L.A.,

noting thatR; /R, = 0.1, |&,| /(2_5Ri) ranges from. about Q.l 1993, AJ 106, 372

to 1. Forg up to abouB0® (for whichsin § ~ § in radians), this gqwards S., Hartigan P., Ghandour L., Androulis C., 1994, AJ 108,

gives|¢.| /R; from 0.1to 1. The lower value could evenbe made 1056

larger by considering a profile &f /r with an exponential rather Ghosh P., Lamb F.K., 1979, ApJ 232, 259

than almost linear increase in Hig. 2. Therefore only a moderahosh P., Lamb F.K., 1991, In: Ventura J., Pines D. (eds.) Neutron

misalignment angle is required to produ€g| /R; ~ 0.3. stars: Theory and observation. Kluwer, Dordrecht, p. 363
Figs[1EB show that when the viscosity in the disc is sm&Holdreich P., Tremaine S., 1978, Icarus 34, 240

(oo = 1073 for instance), the vertical displacement of the disgoodson A.P., Winglee R.M., Boehm K.-H., 1997, ApJ 489, 199

varies rapidly, on a scale smaller than the disc semi—thickn&i€nther E.W., Lehmann H., Emerson J.P., Staude J., 1999, A&A 341,

H. In that case, we expect the warp to become dispersive (Pa-

paloizou & Lin[1995%), and probably the disc to disrupt. It igartmann L., Hewett R, Calvet N., 1994, ApJ 426, 669

. . . . . o .. Hawley J.F., Gammie C.F., Balbus S.A., 1995, ApJ 440, 742
likely that different situations arise when a disc interacts W'thl%wley J.F., 2000, ApJ 528, 462

nonaligned dipole, depending on the detailed physics. In SOPM&/ashi M.R., Shibata K., Matsumoto R., 1996, ApJ 468, L37
cases we may get a moderate smoothly varying warp, as ghns-Krull C., Valenti J.A., Hatzes A.P., Kanaan A., 1999, ApJ 501,
scribed above, in other cases it may be that the disc breaks upL41
and reforms. This may also produce light curve variability. Konigl A., 1991, ApJ 370, L39

We note that the bending waves which are excited Hudoh T., Matsumoto R., Shibata K., 1999, In: Nakamoto T. (ed.) Star
the tilted dipole transport angular momentum (Papaloizou & Formation 1999. p. 286
Terqueni 1995; Terqueim 1998), which is deposited in the dis@i D-» 1999, ApJ 524, 1030

if the waves are damped. Since the dipole rotates faster tﬁﬁﬁ’qféafg}?;x’rf 330'5538 ApJ 497, 342
the disc in which the waves propagate, the resulting torque %ITC 7., Linker J.A., 1994, Ap 430, 898

poses accretion onto the star. This effect may produce additiom er KA., Stone J.M., 1997, ApJ 489, 890
variability, and will be the subject of another paper. Montmerle T., Feigelson E.D., Bouvier J., Andr'e P., 1994, In: Levy

. , . E.H., Lunine J.1. (eds.) Protost d Planets I, Univ. Ari
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