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Abstract. For a given isotropic and homogeneous fieldwaig-
neticfluctuations both the viscosity-as well as the dynama-
have been computed for accretion disks on the basis of a quasi
linear approximation with shear flow and density fluctuations
(i.e. magnetic buoyancy) included. The resulting viscoaity- © f
proves to be positive for sufficiently strong shear (i.e. the an-
gular momentum transport @utward9 while the sign of the
dynamoer depends on the hemisphere. Again, for sufficiently ,
strong shear it changes its sign, it is noegativefor the upper

disk plane and positive for the lower one.

The current helicity(j’ - B’) also changes its sign with Fig. 1. The magnetic geometry for accretion-disk dynamos with posi-
increasing shear. For a Kepler flow in the upper (lower) digie a-effect' is quadrupolar, i.e. even with respect to the equator. The
p|ane' the Sign is positive (negative)_ In our turbulence mod@rticm axis at the left gives the rotation axis. Note the poloidal field
the current helicity of the fluctuations and theeffect of dy- lines not supporting jets and outflows. Figure taken from Rekowski
namo theory are almost always out of phase; the signs of &fipt- (2000).
the quantities are in perfect correspondence to the numerical

simulations of Brandenburg (1998, 2000). The kinetic helicity 4 d

has thesame sigras thea-effect — not, as often assumed, the

opposite one. v

The resulting ratio between the dynam@nd the viscosity-

« reveals the dynamo-amplitude as rather small compared © N S

with the turbulence intensity. This is in contrast to earlier re- S

sults on the basis of a quantitative approximation but again is in

agreement with recent results of numerical simulations. —4 J
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lence — Magnetohydrodynamics (MHD) Fig. 2.Tlhe same as in Figl 1.butfor negativeeffect. The magnetic ge-
ometry is dipolar, i.e. odd with respect to the equator. Note the poloidal

field lines supporting jets and outflows. Maxima of the toroidal fields
are located in the halo.

1. Introduction

There is now evidence that the accretion disk dynamo Worl®,ing with positivea-effect, found only solutions with the
with ana-effect with negative sign in the upper disk plane a“&’uadrupolar symmetry dominating (Fig. 1).

positive signinthe lower disk plane. Thisisimportantbecausein |, Rekowski et al. (2000) the different geometries of the
aQ-dynamos the sign of tfteeffect directs the resulting 9€0M-gynamo-generated magnetic fields are demonstratechdepr

etry. The most easily excited mode has quadrupolar geometfye dynamoe:, however, a stationary dipolar structure of the
for positivea-effecl] and has dipolar geometry for negative - magnetic field results (Fifl 2). The additional magnetic torque
effect (Torkelsson & Brandenburg 1994)idger etal. (1995), 4 the disk surface significantly changes the profile of the effec-
Send offprint requests 16. Riidiger (gruediger@aip.de) tive temperature to a profile which is more flqt. The magnetic

! In order to avoid confusion, the-effect of the dynamo theory — forque becomes of the same order as the radial viscous torque.

which is always antisymmetric with respect to the equator — is reprehe inclination angle of the poloidal field exceeds &ven for
sented in this article by a characteristic value forapperdisk plane. a magnetic Prandtl number of order unity, and also the criterion
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for poloidal collimation after Spruit et al. (1997) is fulfilled. Theinating eddy viscosity appear in the expression for the angular

dynamo-generated magnetic field configuration thus suppamsmentum transport.

the magnetic wind launching concept for accretion disks not Inthe present paper, therefore, for a magnetically driven tur-

only for unrealisticly high turbulent magnetic Prandtl numberbulence field subject to a large-scale shear flow the dynamo-
On the other hand, an accretion disk can only exist if thetiee two helicities and the angular momentum transport (which

is an instability which transports the angular momentum outiust be outwards!) are simultaneously derived. Drastic differ-

wards, or, in other words, the ‘viscosity-is positive. This ences of the results for rigid rotation and Kepler rotation are

is not a trivial constraint as we know from several hydrodyeund. Indeed, for a sufficiently high shear rate the dynamo-

namical simulations (Ryu & Goodman 1992; Cabot & Pollackhanges its sign and even takes the desired negative values for

1992; Kley et al. 1993; Goldman & Wandel 1995; Stone & Bathe case of Kepler rotation.

bus 1996, see also Balbus etal. 1996). The situation drastically

changes for electrically conducting media, however, if (weak) ) .

magnetic fields are allowed to play their own role and, in partié: M&an-field electrodynamics

ular, to feedback onto the momentum transport via the Lorentge equations are close to those iadRyer etal. (2000). The
force (Balbus & Hawley 1991; Hawley etal. 1996, Brandenbuigomentum equation for non-rigid rotation in the inertial system
etal. 1995, Ziegler & Rdlger 2000) On the other hand, Branwith buoyancy included is

denburg (1998) proposes an interesting argument for magnetic
shear flows that for positive viscositythe dynamasx must be du/’

1 B'-B
+u’~Vu+u~Vu’—pgrad<p'+ )Jr

negative in the upper disk plane. ot 1o
There is much discussion about the existenceegative o 1 . ) /
a-effect which is also needed in order to reproduce the ob- + —g+ —(B-V)B' +vAu'. 2)

served butterfly diagram of solar activity with af2-dynamo p Hop

and the helioseismologically-derived profile of internal rota®verbars indicate prescribed mean quantities such as the homo-
tior. Within the frame of the anelastic approximation, i.e. ileneous magnetic field, large-scale flow and dengitienotes

the mass conservation can be described withpu = 0 for the acceleration due to gravity.

density-stratified fluids the kinetic helicity is always negative As an energy equation for the turbulence the adiabacity re-
(positive) on the northern (southern) hemisphere. As therelasion

aminusbetween thex-effect and the helicity, the resulting P

effect is positive. Also a strong differential rotation does n@t = CacP 3)
change this situation (Pipin et al. 2000). The only possibility for
negativen-effect is given if the turbulence intensity behaves i
opposition to the density stratification — as it is realized in t

solar tachocline layer (Krivodubskij & Schultz 1993). ay be denoted bi3(?). Their correlation tensor is assumed to

In a previous paper (Rliger et al. 2000) we have considereg] h T d stati field of i
quite another turbulence model ignoring the density stratifica. " & N10MOJEneous, ISotropic and stationary i€ld of magnetic

tion in the continuity equation turbu_lence. The _resultmg kinetic t_urbulence is subject_to a ba_5|c
rotation and subject to shear or — in other words — to differential
o .., rotation.
5 TAdive =0. @) After some algebra one can find the correlation tensor of
the turbulence and, in particular, its covariarfeéu’,), s here
Note that here we dootapply the anelastic approximation. Allpq; i i i i S
pply pp - Allpeing the distance from the rotation axis. This quantity is part of

the resulting effects are thus vanishingly small for a very higRe angular momentum transport. The total angular momentum
speed of sound;,.. The turbulence may be driven by Lore”t%ransport is given by

force fluctuations due to a fiel’ of magnetic field fluctua-

tions (‘flux tubeg_) and density fluctuations, i.e. buoyancy is '_nF,¢ _ <u;u;5> B i(B;Bé), 4)
cluded. A quasilinear second-order correlation-approximatiori 10

provides the surprising result that the famaumusbetween Kin | 50 the M I The | |
kinetic helicity ando-effect disappears but neverthelessdhe taking Into account aiso the Maxwell stress. The latter results

effect proves to be positive again (see Table 1 below). As t am the r_nagnetlc quctuatlonsB’,.drlven bY th? turbu_lence'
only possibility to findnegativea-effects, we must consider ield 9°”§'d?reﬁ‘- Thg correspond'mg equation is the induction
differential rotation, i.e. the inclusion of a shear. equation in its linearised version, i.e.

For rigid rotation the magnetically driven turbulence modej 3/ B
yields inward transport of angular momentum. Only for sheat;,~ — rot(a x B') —nAB' =rot(u’ x B). 5)
flows, however, we can compute the total angular momentum

transport in accretion disks as only in this case does the dorere again both the influences of the basic rotation (only on non-
axisymmetric field components) as well as differential rotation

2 |f meridional circulation is neglected. can be isolated.

used withe,. as the isothermal speed of sound. Egs. (2)land (3)
ad to a turbulence field’, driven by the Lorentz force on the
HS of [2). The original, prescribed magnetic field fluctuations
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The resulting (rather complex) magnetic fluctuations must In disk geometry the deformation tensor is simply

be used to compute the Maxwell stress[ih (4), or, as the next 0
interesting guantity, to compute the current helicity Ui ;= —€i5pSp + ef’ejf dlog s’ (12)
Hewr = (37 - B') = i<rot B - B, (6) Wwith e® ande? as the unit vectors in radial and azimuthal di-
Ho rections. Insertion of (12) int¢_(10) gives
which has the same kind of equatorial (anti-)symmetry as 2, dlog Q I
the dynamoa. For homogeneouglobal magnetic fields the Heurr = £ B5(g - £2) (1 + 8logs) 2. (13)
ac

dynamoe is directly related to the turbulent electromotive ) ) . o
force (EMF) according t€ = (u’ x B') = a o B, so that The sign of thel; determines the sign of the current helicity

;;B;B; = € - B. Radler & Seehafer (1990) propose to apply\/hiCh we have to discuss for various turbulence models. The
this equation taxQ-dynamos with dominating azimuthal fielgintegral [11) does not prove to be definite in sign. Itis negative-

belts so that definite for very large magnetic Prandtl numbeys= 0) but
o it is positive for the more realistic case of moderate magnetic
agy = E - B/Bﬁ, (7) Prandtl number and spectral functions! B decreasing for in-

creasing frequenay. In the sense of the--approximation’ the
§ ectrum of the given field of magnetic fluctuations has been
Eproximated by3 oc §(k — 0L, 0(w) with v ~ 2 /Teorr

(Kitchatinov 1991) and thd; becomes positive-definite. For
8) the current helicity[{(6) of the shear flow we then find

where a4, is the azimuthal component of the-tensor. We
are, in particular, interested to check their and Keinigs’' (198
antiphase relation,

a¢¢chrr < 07

3 (0)2
betweena-effect and current helicity. There is an increasingy,,., = 2 T;‘?” 1%y <B_ 2> (1 + 8IOgQ> 7). (14)
number of papers presenting observations of the current helicity 5 Lo HoPChe Olog s

of the solar surface always with the result that inegativeat v, = B, /,/ugp is the Alfven velocity. Indeed, foe,. — oo
the northern hemisphere apdsitiveat the southern hemispherahe current helicity disappears. It is negative on the northern
(Seehafer 1990; Pevtsov etal. 1995; Abramenko et al. 1996; Bagnisphere for weak differential rotation but changes its sign
& Zhang 1998). If[(8) is correct then there is a strong empiricgdr sufficiently large shear. For a Kepler disk with its vertical
evidence for an-effect thatigositive(negativginthe northern gravity, g, = —Q2z, the current helicity becomes
(southern) hemisphere of the Sun. s s B 02

Here we start to find the relation betweereffect and cur- U _ ﬁ Teorr ¢ (B2) (15)
rent helicity for shear-flow disks. We shall see that there are 5 2, po popcd.’

exceptions, indeed, to the simple relatidh (8). This is not a syfnich is positivein the upper disk plane antegativein the
prise. Blackman & Field (1999) argue that Keinigs’ result, |ower disk plane. This is exactly the numerical result of Bran-

o B2 denburg (1999) for the current helicity of magnetic field fluctu-
997 _ —n, (9) ations in Kepler disks.
poHeurr The next step concerns theeffect defined by the above
strongly depends on the assumed stationarity and homogenggtgtion. It results from the general expression
ofthe magnetic fields and flows which are, however, not realistic erij {2 9 I
for dynamo problems. Afm = = ( (3gmui,j — Gilim,j + 39l6mjui,l> o
_ _ _ _ I3
3. The current helicity and the a-effect - (gi (U + Ujm) + Omjgn(tis + “l,i)> Lopc2 > (16)
ac
The complete relation for the current helicity is with
2 Tr2pA 2
curr — Tz Ginjg 'BQ_ni 2 'BWB Up i — = u
H 156, j(gj Un,i + 2950 bplp i I, = // @ +V2k4)2[)’(k,w)dkdw, a7
_ - I 0
_gnBjBPui,p - (g ' B)Bjuz,n> H%ﬁcgc (10) 1 >, V2]€4(1/2k74 - 3w2)
Is = 3 @2 5 2R B(k,w)dkdw. (18)

with o

. E2(0254 + w?) — 2wluk? Again the total effect vanishes fef. — oo. Only the most
L = // ZWQ(JF u2k4)2(2;2 ey k*B(k,w) dkdw  (11) important component,,, need be discussed. We obtain

0

(g-Q) dlog ) Iy OlogQ I3
o Qpp = — 1+ —2 52 )

and the spectral functio in the definition (B(0)2) = 5 dlogs ) popct,  Ologs popc2,

[ Bdkdw. (19)
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Our magnetic flux tube model yields the one-mode flux tube model we find for the amplitude the
value
4 TCQO”( Q) (3 N 0logQ> (B©)2) (20) , 02
« = 7= g- n —_ .
¢ 15 Cgc 4 0logs Hop Hkin — _ﬁTcorr(g Q) 14+ 810gQ VK <B > (28)
. 15 ‘egorr 0 IOg s /J'Oﬁcgc
so that for Kepler disks
s . Again the sign of the (pseudo-)scalar changes with increasing
o = Y Teony (B©2) (21) shearinthe same way as it happens for the current helicity, see
i 5 2, pop Eq.[d3). For Kepler rotation the kinetic helicity,

results. For rigid rotation the-effect proves to be positive in the a3 o BO2)
upper disk plane and negative in the lower disk plariadBer Hiin = — 722" Vi R
etal. 2000). The opposite is true for Kepler flows. The dynamo- conr ac
o becomes negative in the upper disk plane and positive in ihéhe upper hemisphere proves to be negative —as it does in the
lower disk plane. Again the results comply with the results gimulations by Brandenburg (1999).
the numerical simulations by Brandenburg (1999). Affel (20) The amplitude ratio of the dynameand the kinetic helicity
the dynamos completely vanishes fap « s—%75 rather than IS
for Q o< s~! for which the current helicity vanishes after{14). , Ma2
. . : Lo a
So a small interval exists with exponents between 0.75 an X Teorr =5 (30)
where then-effect and the current helicity have the same sign. ™™ Mm
Box simulations should be used to test the relevance of thwigth the turnover velocityur = feor/Teorr, the turbulence
surprising result. Mach numbeMa = wur/c,. and the magnetic Mach num-
The ratio of thex-effect and current helicity here follows tober Mm = Vj /c,.. For equipartition of the magnetic energy
_ ) with the thermal energy (Mm 1) we find thea-effect to be
gy By _ Lo (22 much smaller than the traditional value (‘helicity times cor-
poHeurr Teorr relation time’) if the turbulence is subsonic. Even the sign is

— very close to[9). For rigid rotation the factor sinks to 1/2 (sé¥Posite. However, as the kinetic helicity can not be observed
paper I). The small differences to Keinigs' result certainly resifif the disk surface we are not able to estimate the amplitude

from the fact that we are not using the anelastic approximatidH the dynamas, ay, from the given expressions. To this end
A similar question arises concerning the kinetic helicity W€ need the comparison with a quantity representing, e.g., the
angular momentum transport in accretion disks which can di-

Hyin = (u' - ot u'), (23) rectly be observed via the radiation or the temporal behavior of
the real disks. The quantity describing these effects has been
introduced by Shakura & Sunyaev (1973) and will be computed
in the following section.

(29)

which s often believed to be in antiphase todheffect (Moffatt
1978). We obtain

4 _ Iy
Hkin = —7=€in anB (’l_l, K ﬂi, ),7
15 "% P " g, 4. Angular momentum transport
_ I
+—€pij9i BnBj (Up,n + Un.p) 2_7272 (24) Our turbulence can only model the situation in accretion disks
15 :LL()p Cac H3 H H
if it transports the angular momentum outwards, i.e. if the stress
resulting in T, is positive. Additionally, we know from observations the
_ value of the normalized angular momentum transport,
4 B2 9log O g P
Hiin=—"7555 (9 - |2+ I+ T
15 pgp2c2, Ologs osg = ;¢>’ (31)
Olog Cac
| Dlog 17> (25) o .
dlog s being of orderl0~3...1 so that — if we find a relation between
with the positive quantity both the alphas — t_he dyna_naoean be est_imatgd. For histqrical
reasons the quantiti (831) is called the viscosityFhe notation
7 4 arises from the Boussinesq relation postulating a direct corre-
vk*B(k,w) )
Iy = 5 a0 dkdw, (26) spondence between stress and strain. In paper | we have shown
(w? + v2k4) L ) . .
0 that even for rigid rotation a finite (negative) value for the an-
. gular momentuni(31) exists which clearly can not be due to an
and with ; . o
eddy viscosity’.
g k4 2k4 2 : i
I — vk* (v w )B(k,w)dkdw. 27) For the correlatlon tensor of the magnetic-forced turbulence
(w2 +v2k4)3 the complex expression
Hence, for rigid rotation the kinetic helicity is positive in the 23 B%I,

upper disk plane, and it is negative in the lower disk plane. Fotit) = 105 (@i + ;i) 1252 +
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Table 1.The signs of the MHD coefficients for rigid rotation and Kepler

+{ — (Bigj + Bjgi) (tmn + tnm) Bugm — rotation.

*5 (ng] + ng1) BmgnanL,n +

_, rotation location ass gy  Heurr  Hiin

_ _ _ B B B
+3g2 (Biuj,n + Bjui,n) B, — ? (giuj,n + gjui,n) 9n rigid north - + - +
5 south — — + —
_732 (an,igj + g’ian,j) gn — north + - + -
3 Kepler south 4 i N n

13 5 -5 B Is

—39232 (Uij + ;) }2—24 -
H“Op Cac . . . . . .

maintenance of differential rotation in stellar convection zones

—{4 (gZBj + ngi) (Wm.n + Un.m) Bngm — (see paper I). Here it is negative. The total angular momentum

transport, however, for a Kepler flow is positive as then

76 -
2 _ _ _ _
9 B (gi (Ujn + Un,j) + g5 (Ui + Unyi)) gn + o 1 73 (69 37 (leon 2 ) <B(0)2>
16 R2,2 (7 o 1o 105 Zgorr 2 6 HP Hop
+—B%9" (Uij +Uji) ¢35 (32)
9 HoP™ Cac

results ifgH, ~ 2., H, as the radial pressure scale. In Kepler
flows the Reynolds stress is positive, hence the angular momen-
tum is always transported outwards.

1 [ vk?B(k : .
I // Vi(’w)dkdw (33) For the Maxwell stress we simply obtain
0

is obtained with

~ 105 (@2 + v2k4)2
23 _ _
and (BiBj) = ﬂVAz(Ui,j + ;) 11, (38)
L 1 /7 vk (1254 — w2)8(k’w)dkdw i~ \F/)v:rltch leads to the magnetic-induced angular momentum trans-
® 7105 (W2 + v2kt)3 '
0 23 13 0logQ
IRy . 22 “corr 2 (0)2
It follows <BSB¢>> 105 égorr dlog s QVL(B™"). (39)
() = — <39215 <23[4 N 13 ¢*I5 N 169216> Itis a viscosity-term and it survives the limit. — co. For [31)
s7¢ ct. 105 3 9 ¢ we then arrive at the positive value
dlog N\ BQ
8log s ) 222" (35) ogs = § 3 Kgorr 7—golmr VvﬁA2 <B(O)2> Q (40)
s Hop 35 35 Hg ggorr Cic ,LL()ﬁ

Note that in[[3b) a basic viscosity teffraxists which doesot
vanish forc,. — oo.

One could discuss the sign and the valué_of (35) in full gen- QL (BO2)/up
erality for a series of turbulence models which, however, is nggs =~ 5 V1 —— 5
in the scope of the present paper. All we need is to find whether o B ] )
the ‘viscosity’ term in [35) may dominate the non-viscosity’here the Coriolis number 8" = 27,,{2. If the magnetic
term so that the sign of the angular momentum transport coliRids are in equipartition with the turbulence then we find
be changed from minug to plus. e < Mm? QF 42)

For our magnetic-driven turbulence and for a magnetic field
with dominating toroidal componeiitBs| > |B;|,|B.|) we as an estimate. The maximal value [of](42) mightBe which

with the amplitude

(41)

find in accretion disks itself hardly exceeds the order of unity. The
-3 e 1 55 g2¢2 viscosity«, therefore, proves to t@mallerthan unity for sub-

(ujuy) = — f(‘))g (364 +tm (23 + 964“)”> sonic turbulence. On the other hand, for equipartition of the
ac corr ac magnetic energy with the thermal enerdyiq ~ 1) the value

310gQ>QV2 (B2) (36) ©f @2) should not be much smaller than unity. The desired or-
dlog s Lop der of magnitude of0~3...1 for the viscositye: might be well

for the Reynolds stress at the equator. It does not vanish ngroduced by the presented theory.
rigid rotation so that the term ‘viscosity’ here indeed makes
no real sense. The rigid-rotation term [n36) reflects e 5. Discussion: dynamoex and viscosity-c

effect of rotating turbulence fields which is responsible for tque] Table 1 a summary is given for the signs of the resulting

3 Typically, ‘viscosity’ is the coefficient of’€2 in the angular mo- MHD mean-field coefficients obtained by our turbulence model
mentum transport relations for the two cases of rigid rotation and Kepler rotation. The first
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