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Abstract. For a given isotropic and homogeneous field ofmag-
neticfluctuations both the viscosity-α as well as the dynamo-α
have been computed for accretion disks on the basis of a quasi-
linear approximation with shear flow and density fluctuations
(i.e. magnetic buoyancy) included. The resulting viscosity-α
proves to be positive for sufficiently strong shear (i.e. the an-
gular momentum transport isoutwards) while the sign of the
dynamo-α depends on the hemisphere. Again, for sufficiently
strong shear it changes its sign, it is nownegativefor the upper
disk plane and positive for the lower one.

The current helicity〈j′ · B′〉 also changes its sign with
increasing shear. For a Kepler flow in the upper (lower) disk
plane, the sign is positive (negative). In our turbulence model
the current helicity of the fluctuations and theα-effect of dy-
namo theory are almost always out of phase; the signs of all
the quantities are in perfect correspondence to the numerical
simulations of Brandenburg (1998, 2000). The kinetic helicity
has thesame signas theα-effect – not, as often assumed, the
opposite one.

The resulting ratio between the dynamo-α and the viscosity-
α reveals the dynamo-α amplitude as rather small compared
with the turbulence intensity. This is in contrast to earlier re-
sults on the basis of a quantitative approximation but again is in
agreement with recent results of numerical simulations.

Key words: accretion, accretion disks – instabilities – turbu-
lence – Magnetohydrodynamics (MHD)

1. Introduction

There is now evidence that the accretion disk dynamo works
with anα-effect with negative sign in the upper disk plane and
positive sign in the lower disk plane. This is important because in
αΩ-dynamos the sign of theα-effect directs the resulting geom-
etry. The most easily excited mode has quadrupolar geometry
for positiveα-effect1 and has dipolar geometry for negativeα-
effect (Torkelsson & Brandenburg 1994). Rüdiger et al. (1995),

Send offprint requests to: G. Rüdiger (gruediger@aip.de)
1 In order to avoid confusion, theα-effect of the dynamo theory –

which is always antisymmetric with respect to the equator – is repre-
sented in this article by a characteristic value for theupperdisk plane.

Fig. 1. The magnetic geometry for accretion-disk dynamos with posi-
tive α-effect1 is quadrupolar, i.e. even with respect to the equator. The
vertical axis at the left gives the rotation axis. Note the poloidal field
lines not supporting jets and outflows. Figure taken from Rekowski
et al. (2000).

Fig. 2.The same as in Fig. 1 but for negativeα-effect. The magnetic ge-
ometry is dipolar, i.e. odd with respect to the equator. Note the poloidal
field lines supporting jets and outflows. Maxima of the toroidal fields
are located in the halo.

working with positiveα-effect, found only solutions with the
quadrupolar symmetry dominating (Fig. 1).

In Rekowski et al. (2000) the different geometries of the
dynamo-generated magnetic fields are demonstrated. Forneg-
ativedynamo-α, however, a stationary dipolar structure of the
magnetic field results (Fig. 2). The additional magnetic torque
at the disk surface significantly changes the profile of the effec-
tive temperature to a profile which is more flat. The magnetic
torque becomes of the same order as the radial viscous torque.
The inclination angle of the poloidal field exceeds 30◦ even for
a magnetic Prandtl number of order unity, and also the criterion
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for poloidal collimation after Spruit et al. (1997) is fulfilled. The
dynamo-generated magnetic field configuration thus supports
the magnetic wind launching concept for accretion disks not
only for unrealisticly high turbulent magnetic Prandtl numbers.

On the other hand, an accretion disk can only exist if there
is an instability which transports the angular momentum out-
wards, or, in other words, the ‘viscosity-α’ is positive. This
is not a trivial constraint as we know from several hydrody-
namical simulations (Ryu & Goodman 1992; Cabot & Pollack
1992; Kley et al. 1993; Goldman & Wandel 1995; Stone & Bal-
bus 1996, see also Balbus et al. 1996). The situation drastically
changes for electrically conducting media, however, if (weak)
magnetic fields are allowed to play their own role and, in partic-
ular, to feedback onto the momentum transport via the Lorentz
force (Balbus & Hawley 1991; Hawley et al. 1996, Brandenburg
et al. 1995; Ziegler & R̈udiger 2000). On the other hand, Bran-
denburg (1998) proposes an interesting argument for magnetic
shear flows that for positive viscosity-α the dynamo-α must be
negative in the upper disk plane.

There is much discussion about the existence ofnegative
α-effect which is also needed in order to reproduce the ob-
served butterfly diagram of solar activity with anαΩ-dynamo
and the helioseismologically-derived profile of internal rota-
tion2. Within the frame of the anelastic approximation, i.e. if
the mass conservation can be described withdiv ρu = 0 for
density-stratified fluids the kinetic helicity is always negative
(positive) on the northern (southern) hemisphere. As there is
a minusbetween theα-effect and the helicity, the resultingα-
effect is positive. Also a strong differential rotation does not
change this situation (Pipin et al. 2000). The only possibility for
negativeα-effect is given if the turbulence intensity behaves in
opposition to the density stratification – as it is realized in the
solar tachocline layer (Krivodubskij & Schultz 1993).

In a previous paper (R̈udiger et al. 2000) we have considered
quite another turbulence model ignoring the density stratifica-
tion in the continuity equation

∂ρ′

∂t
+ ρ̄ div u′ = 0. (1)

Note that here we donotapply the anelastic approximation. All
the resulting effects are thus vanishingly small for a very high
speed of sound,cac. The turbulence may be driven by Lorentz
force fluctuations due to a fieldB′ of magnetic field fluctua-
tions (‘flux tubes’) and density fluctuations, i.e. buoyancy is in-
cluded. A quasilinear second-order correlation-approximation
provides the surprising result that the famousminusbetween
kinetic helicity andα-effect disappears but nevertheless theα-
effect proves to be positive again (see Table 1 below). As the
only possibility to findnegativeα-effects, we must consider
differential rotation, i.e. the inclusion of a shear.

For rigid rotation the magnetically driven turbulence model
yields inward transport of angular momentum. Only for shear
flows, however, we can compute the total angular momentum
transport in accretion disks as only in this case does the dom-

2 If meridional circulation is neglected.

inating eddy viscosity appear in the expression for the angular
momentum transport.

In the present paper, therefore, for a magnetically driven tur-
bulence field subject to a large-scale shear flow the dynamo-α,
the two helicities and the angular momentum transport (which
must be outwards!) are simultaneously derived. Drastic differ-
ences of the results for rigid rotation and Kepler rotation are
found. Indeed, for a sufficiently high shear rate the dynamo-α
changes its sign and even takes the desired negative values for
the case of Kepler rotation.

2. Mean-field electrodynamics

The equations are close to those in Rüdiger et al. (2000). The
momentum equation for non-rigid rotation in the inertial system
with buoyancy included is

∂u′

∂t
+ u′ · ∇ū + ū · ∇u′ = −1

ρ̄
grad

(
p′ +

B′ · B̄

µ0

)
+

+
ρ′

ρ̄
g +

1
µ0ρ̄

(B̄ · ∇)B′ + ν∆u′. (2)

Overbars indicate prescribed mean quantities such as the homo-
geneous magnetic field, large-scale flow and density.g denotes
the acceleration due to gravity.

As an energy equation for the turbulence the adiabacity re-
lation

p′ = c2
acρ

′ (3)

is used withcac as the isothermal speed of sound. Eqs. (2) and (3)
lead to a turbulence fieldu′, driven by the Lorentz force on the
RHS of (2). The original, prescribed magnetic field fluctuations
may be denoted byB(0). Their correlation tensor is assumed to
form a homogeneous, isotropic and stationary field of magnetic
turbulence. The resulting kinetic turbulence is subject to a basic
rotation and subject to shear or – in other words – to differential
rotation.

After some algebra one can find the correlation tensor of
the turbulence and, in particular, its covariance〈u′

su
′
φ〉, s here

being the distance from the rotation axis. This quantity is part of
the angular momentum transport. The total angular momentum
transport is given by

Tsφ = 〈u′
su

′
φ〉 − 1

µ0ρ̄
〈B′

sB
′
φ〉, (4)

taking into account also the Maxwell stress. The latter results
from the magnetic fluctuations,B′, driven by the turbulence
field considered. The corresponding equation is the induction
equation in its linearised version, i.e.

∂B′

∂t
− rot(ū × B′) − η∆B′ = rot(u′ × B̄). (5)

Here again both the influences of the basic rotation (only on non-
axisymmetric field components) as well as differential rotation
can be isolated.
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The resulting (rather complex) magnetic fluctuations must
be used to compute the Maxwell stress in (4), or, as the next
interesting quantity, to compute the current helicity

Hcurr = 〈j′ · B′〉 =
1
µ0

〈rotB′ · B′〉, (6)

which has the same kind of equatorial (anti-)symmetry as
the dynamo-α. For homogeneousglobal magnetic fields the
dynamo-α is directly related to the turbulent electromotive
force (EMF) according toE = 〈u′ × B′〉 = α ◦ B̄, so that
αijB̄iB̄j = E · B̄. Rädler & Seehafer (1990) propose to apply
this equation toαΩ-dynamos with dominating azimuthal field
belts so that

αφφ = E · B̄/B̄2
φ, (7)

whereαφφ is the azimuthal component of theα-tensor. We
are, in particular, interested to check their and Keinigs’ (1983)
antiphase relation,

αφφHcurr < 0, (8)

betweenα-effect and current helicity. There is an increasing
number of papers presenting observations of the current helicity
of the solar surface always with the result that it isnegativeat
the northern hemisphere andpositiveat the southern hemisphere
(Seehafer 1990; Pevtsov et al. 1995; Abramenko et al. 1996; Bao
& Zhang 1998). If (8) is correct then there is a strong empirical
evidence for anα-effect that ispositive(negative) in the northern
(southern) hemisphere of the Sun.

Here we start to find the relation betweenα-effect and cur-
rent helicity for shear-flow disks. We shall see that there are
exceptions, indeed, to the simple relation (8). This is not a sur-
prise. Blackman & Field (1999) argue that Keinigs’ result,

αφφB̄2
φ

µ0Hcurr
= −η, (9)

strongly depends on the assumed stationarity and homogeneity
of the magnetic fields and flows which are, however, not realistic
for dynamo problems.

3. The current helicity and the α-effect

The complete relation for the current helicity is

Hcurr =
2
15

εinj

(
gjB̄

2ūn,i + 2gjB̄nB̄pūp,i−

−gnB̄jB̄pūi,p − (g · B̄)B̄j ūi,n

)
I1

µ2
0ρ̄c2

ac
(10)

with

I1 =
∫∞∫
0

ηk2(ν2k4 + ω2) − 2ω2νk2

(ω2 + ν2k4)2(ω2 + η2k4)
k2B(k, ω) dkdω (11)

and the spectral functionB in the definition 〈B(0)2〉 =∫∫ Bdkdω.

In disk geometry the deformation tensor is simply

ūi,j = −εijpΩp + eφ
i es

j

∂Ω
∂ log s

, (12)

with es andeφ as the unit vectors in radial and azimuthal di-
rections. Insertion of (12) into (10) gives

Hcurr =
2
5
B̄2

φ(g · Ω)
(

1 +
∂ log Ω
∂ log s

)
I1

µ2
0ρ̄c2

ac
. (13)

The sign of theI1 determines the sign of the current helicity
which we have to discuss for various turbulence models. The
integral (11) does not prove to be definite in sign. It is negative-
definite for very large magnetic Prandtl numbers (η = 0) but
it is positive for the more realistic case of moderate magnetic
Prandtl number and spectral functionscalB decreasing for in-
creasing frequencyω. In the sense of the ‘τ -approximation’ the
spectrum of the given field of magnetic fluctuations has been
approximated byB ∝ δ(k − `−1

corr) δ(ω) with ν ' `2corr/τcorr
(Kitchatinov 1991) and theI1 becomes positive-definite. For
the current helicity (6) of the shear flow we then find

Hcurr =
2
5

τ3
corr

`2corr
V 2

A
〈B(0)2〉
µ0ρ̄c2

ac

(
1 +

∂ log Ω
∂ log s

)
gzΩ. (14)

VA = B̄φ/
√

µ0ρ̄ is the Alfvén velocity. Indeed, forcac → ∞
the current helicity disappears. It is negative on the northern
hemisphere for weak differential rotation but changes its sign
for sufficiently large shear. For a Kepler disk with its vertical
gravity,gz = −Ω2z, the current helicity becomes

Hcurr =
zΩ3

5
τ3
corr

`2corr

B̄2
φ

µ0

〈B(0)2〉
µ0ρ̄c2

ac
, (15)

which is positive in the upper disk plane andnegativein the
lower disk plane. This is exactly the numerical result of Bran-
denburg (1999) for the current helicity of magnetic field fluctu-
ations in Kepler disks.

The next step concerns theα-effect defined by the above
relation. It results from the general expression

αfm =
εfij

5

((
2
3
gmūi,j − giūm,j +

2
3
glδmj ūi,l

)
I2

µ0ρ̄c2
ac

−

−
(

gi(ūm,j + ūj,m) + δmjgl(ūi,l + ūl,i)
)

I3

µ0ρ̄c2
ac

)
(16)

with

I2 =
∫∞∫
0

ν2k4 − ω2

(ω2 + ν2k4)2
B(k, ω)dkdω, (17)

I3 =
1
3

∫∞∫
0

ν2k4(ν2k4 − 3ω2)
(ω2 + ν2k4)3

B(k, ω)dkdω. (18)

Again the total effect vanishes forcac → ∞. Only the most
important componentαφφ need be discussed. We obtain

αφφ = − (g · Ω)
5

((
1 +

∂ log Ω
∂ log s

)
I2

µ0ρ̄c2
ac

+
∂ log Ω
∂ log s

I3

µ0ρ̄c2
ac

)
.

(19)
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Our magnetic flux tube model yields

αφφ = − 4
15

τ2
corr

c2
ac

(g · Ω)
(

3
4

+
∂ log Ω
∂ log s

) 〈B(0)2〉
µ0ρ̄

, (20)

so that for Kepler disks

αφφ = −zΩ3

5
τ2
corr

c2
ac

〈B(0)2〉
µ0ρ̄

(21)

results. For rigid rotation theα-effect proves to be positive in the
upper disk plane and negative in the lower disk plane (Rüdiger
et al. 2000). The opposite is true for Kepler flows. The dynamo-
α becomes negative in the upper disk plane and positive in the
lower disk plane. Again the results comply with the results of
the numerical simulations by Brandenburg (1999). After (20)
the dynamo-α completely vanishes forΩ ∝ s−0.75 rather than
for Ω ∝ s−1 for which the current helicity vanishes after (14).
So a small interval exists with exponents between 0.75 and 1
where theα-effect and the current helicity have the same sign.
Box simulations should be used to test the relevance of this
surprising result.

The ratio of theα-effect and current helicity here follows to

αφφB̄2
φ

µ0Hcurr
= − `2corr

τcorr
(22)

– very close to (9). For rigid rotation the factor sinks to 1/2 (see
paper I). The small differences to Keinigs’ result certainly result
from the fact that we are not using the anelastic approximation.

A similar question arises concerning the kinetic helicity

Hkin = 〈u′ · rotu′〉, (23)

which is often believed to be in antiphase to theα-effect (Moffatt
1978). We obtain

Hkin = − 4
15

εinjgjB̄nB̄p(ūp,i − ūi,p)
I4

µ2
0ρ̄

2c2
ac

+

+
4
15

εpijgiB̄nB̄j (ūp,n + ūn,p)
I7

µ2
0ρ̄

2c2
ac

(24)

resulting in

Hkin = − 4
15

B̄2

µ2
0ρ̄

2c2
ac

(g · Ω)
((

2 +
∂ log Ω
∂ log s

)
I4+

+
∂ log Ω
∂ log s

I7

)
(25)

with the positive quantity

I4 =
∫∞∫
0

νk4B(k, ω)
(ω2 + ν2k4)2

dkdω, (26)

and with

I7 =
∫∫

νk4(ν2k4 − ω2)
(ω2 + ν2k4)3

B(k, ω)dkdω. (27)

Hence, for rigid rotation the kinetic helicity is positive in the
upper disk plane, and it is negative in the lower disk plane. For

the one-mode flux tube model we find for the amplitude the
value

Hkin = − 8
15

τ3
corr(g · Ω)

`2corr

(
1 +

∂ log Ω
∂ log s

)
V 2

A
〈B(0)2〉
µ0ρ̄c2

ac
. (28)

Again the sign of the (pseudo-)scalar changes with increasing
shear in the same way as it happens for the current helicity, see
Eq. (14). For Kepler rotation the kinetic helicity,

Hkin = − 4
15

zΩ3 τ3
corr

`2corr
V 2

A
〈B(0)2〉
µ0ρ̄c2

ac
, (29)

in the upper hemisphere proves to be negative – as it does in the
simulations by Brandenburg (1999).

The amplitude ratio of the dynamo-α and the kinetic helicity
is

αφφ

Hkin
' τcorr

Ma2

Mm2 , (30)

with the turnover velocityuT = `corr/τcorr, the turbulence
Mach numberMa = uT/cac and the magnetic Mach num-
ber Mm = VA/cac. For equipartition of the magnetic energy
with the thermal energy (Mm' 1) we find theα-effect to be
much smaller than the traditional value (‘helicity times cor-
relation time’) if the turbulence is subsonic. Even the sign is
opposite. However, as the kinetic helicity can not be observed
at the disk surface we are not able to estimate the amplitude
of the dynamo-α, αφφ, from the given expressions. To this end
we need the comparison with a quantity representing, e.g., the
angular momentum transport in accretion disks which can di-
rectly be observed via the radiation or the temporal behavior of
the real disks. The quantity describing these effects has been
introduced by Shakura & Sunyaev (1973) and will be computed
in the following section.

4. Angular momentum transport

Our turbulence can only model the situation in accretion disks
if it transports the angular momentum outwards, i.e. if the stress
Tsφ is positive. Additionally, we know from observations the
value of the normalized angular momentum transport,

αSS =
Tsφ

c2
ac

, (31)

being of order10−3...1 so that – if we find a relation between
both the alphas – the dynamo-α can be estimated. For historical
reasons the quantity (31) is called the viscosity-α. The notation
arises from the Boussinesq relation postulating a direct corre-
spondence between stress and strain. In paper I we have shown
that even for rigid rotation a finite (negative) value for the an-
gular momentum (31) exists which clearly can not be due to an
‘eddy viscosity’.

For the correlation tensor of the magnetic-forced turbulence
the complex expression

〈u′
iu

′
j〉 = − 23

105
(ūi,j + ūj,i)

B̄2I4

µ2
0ρ̄

2 +
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+
{

− (B̄igj + B̄jgi

)
(ūm,n + ūn,m) B̄ngm −

−5
(
B̄igj + B̄jgi

)
B̄mgnūm,n +

+3g2 (B̄iūj,n + B̄j ūi,n

)
B̄n − B̄2

9
(giūj,n + gj ūi,n) gn

−5
3
B̄2 (ūn,igj + giūn,j) gn −

−13
3

g2B̄2 (ūi,j + ūj,i)
}

I5

µ2
0ρ̄

2c4
ac

−

−
{

4
(
giB̄j + gjB̄i

)
(ūm,n + ūn,m) B̄ngm −

−76
9

B̄2 (gi (ūj,n + ūn,j) + gj (ūi,n + ūn,i)) gn +

+
16
9

B̄2g2 (ūi,j + ūj,i)
}

I6

µ2
0ρ̄

2c4
ac

(32)

is obtained with

I5 =
1

105

∫∞∫
0

νk2B(k, ω)
(ω2 + ν2k4)2

dkdω (33)

and

I6 =
1

105

∫∞∫
0

νk2(ν2k4 − ω2)B(k, ω)
(ω2 + ν2k4)3

dkdω. (34)

It follows

〈u′
su

′
φ〉 = −

(
3g2I5

c4
ac

+
(

23
105

I4 +
13
3

g2I5

c4
ac

+
16
9

g2I6

c4
ac

)
∂ log Ω
∂ log s

)
B̄2Ω
µ2

0ρ̄
2 . (35)

Note that in (35) a basic viscosity term3 exists which doesnot
vanish forcac → ∞.

One could discuss the sign and the value of (35) in full gen-
erality for a series of turbulence models which, however, is not
in the scope of the present paper. All we need is to find whether
the ‘viscosity’ term in (35) may dominate the non-viscosity
term so that the sign of the angular momentum transport could
be changed from minus to plus.

For our magnetic-driven turbulence and for a magnetic field
with dominating toroidal component(|B̄φ| � |B̄s|, |B̄z|) we
find

〈u′
su

′
φ〉 = −τ3

corr

105

(
3

g2

c4
ac

+
1

`2corr

(
23 +

55
9

g2`2corr
c4
ac

)
∂ log Ω
∂ log s

)
ΩV 2

A
〈B(0)2〉

µ0ρ̄
(36)

for the Reynolds stress at the equator. It does not vanish for
rigid rotation so that the term ‘viscosity’ here indeed makes
no real sense. The rigid-rotation term in (36) reflects theΛ-
effect of rotating turbulence fields which is responsible for the

3 Typically, ‘viscosity’ is the coefficient of∇Ω in the angular mo-
mentum transport relations

Table 1.The signs of the MHD coefficients for rigid rotation and Kepler
rotation.

rotation location αSS αφφ Hcurr Hkin

north − + − +
rigid

south − − + −
north + − + −

Kepler
south + + − +

maintenance of differential rotation in stellar convection zones
(see paper I). Here it is negative. The total angular momentum
transport, however, for a Kepler flow is positive as then

〈u′
su

′
φ〉 ≈ 1

105
τ3
corr

`2corr

(
69
2

+
37
6

(
`corr
Hp

)2
)

ΩV 2
A

〈B(0)2〉
µ0ρ̄

(37)

results ifgHp ' c2
ac, Hp as the radial pressure scale. In Kepler

flows the Reynolds stress is positive, hence the angular momen-
tum is always transported outwards.

For the Maxwell stress we simply obtain

〈B′
iB

′
j〉 =

23
14

V 2
A(ūi,j + ūj,i)I1, (38)

which leads to the magnetic-induced angular momentum trans-
port

〈B′
sB

′
φ〉 =

23
105

τ3
corr

`2corr

∂ log Ω
∂ log s

ΩV 2
A〈B(0)2〉. (39)

It is a viscosity-term and it survives the limitcac → ∞. For (31)
we then arrive at the positive value

αSS =
(

23
35

+
2
35

`2corr
H2

p

)
τ3
corr

`2corr

V 2
A

c2
ac

〈B(0)2〉
µ0ρ̄

Ω (40)

with the amplitude

αSS ' Ω∗

2
Mm2 〈B(0)2〉/µ0ρ̄

u2
T

, (41)

where the Coriolis number isΩ∗ = 2τcorrΩ. If the magnetic
fields are in equipartition with the turbulence then we find

αSS
<∼ Mm2 Ω∗ (42)

as an estimate. The maximal value of (42) might beΩ∗, which
in accretion disks itself hardly exceeds the order of unity. The
viscosity-α, therefore, proves to besmallerthan unity for sub-
sonic turbulence. On the other hand, for equipartition of the
magnetic energy with the thermal energy (Mm ' 1) the value
of (42) should not be much smaller than unity. The desired or-
der of magnitude of10−3...1 for the viscosity-α might be well
reproduced by the presented theory.

5. Discussion: dynamo-α and viscosity-α

In Table 1 a summary is given for the signs of the resulting
MHD mean-field coefficients obtained by our turbulence model
for the two cases of rigid rotation and Kepler rotation. The first
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line with positiveα-effect, with positive kinetic helicity and
negative current helicity (all in the upper disk plane) is just the
same as given by Brandenburg & Schmitt (1998) for a simulation
of the solar north pole. For a MHD shear flow simulated by
Brandenburg (1999) the case ‘Kepler’ in Table 1 is valid and
there is also not even one exception from the general agreement.
The kinetic helicity in the upper disk plane for Brandenburg’s
simulation is negative and the same is true in our flux tube
model. It is interesting to formulate for Kepler disks the relation
between both alphas. With (21) and (40) follows

αφφ

αSS

<∼ − 1
5

zΩ2τcorru
2
T

V 2
A

, (43)

so that the amplitude of the dynamo-α becomes

|αφφ| <∼
αSS

5
`corr
H

uT

Mm2 . (44)

We have also used the relationHΩ ' cac between the disk thick-
ness and the temperature of a thin accretion disk. The magnetic
Mach number Mm can be assumed to be of order unity.

We find the dynamo-α to be a rather small fraction of the
turbulent velocityuT. Ziegler & Rüdiger (2000) find with a box
simulation that the dynamo-α is of order5 · 10−3 in units of
the sound velocity. The turbulent velocity is of the order of the
sound velocity (of the midplane) so that theα-effect approaches
5 ·10−3 in units of the eddy velocity. This is indeed smaller than
the viscosity-α which in the simulations was of order10−2.

The dynamo-α proves to be negative in the upper disk plane
and positive in the lower one. We can thus expect a dipolar sym-
metry with respect to the equator for the dynamo-maintained
large-scale magnetic fields. In order to ensure self-excitation
for the magnetic fields with such a smallα-effect, the eddy
diffusivity of the turbulence must be sufficiently small. As it
works with uniform magnetic fields we can not compute this
coefficient with our model. The same also holds for almost all
numerical simulations so that here it must remain open whether
a magnetic dynamo really works.
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