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Abstract. Classical kinetic solar wind theories reveal that thikey words: acceleration of particles — conduction — plasmas —
solar wind electron distribution function has a delicate influentarbulence — Sun: corona

on the acceleration of the coronal solar wind and its asymptotie
velocity. In collisionless kinetics this results from the fact that
no hyperbolic electrons with sunward velocities can be expected
above the coronal exobase. This problem affects both the associ- . .
ated electron pressure and the effective electric polarisation o_lntroductlon to the exospheric view of the corona
tential helping protons to leave the solar gravitational potenti@xospheric theories of the solar wind by Chamberlain (1960),
The actual electron distribution thus influences the asymptofiamont & Case[(1962), Jensen (1963), Brandt & Cassinelli
properties of the solar wind flow. Of importance for a comprg1966) revealed that above the coronal exobase a simple
hensive understanding of the solar wind acceleration thus is tmexwellian distribution can not be expected for either electrons
actual mechanism to populate the sunward velocity branchagsfions. Since in these theories the lower corona is considered to
the distribution function in the hyperbolic energy regime whiche the only source of particles, in a collisionless regime above
according to classical kinetic theory should be unpopulated.tie coronal exobase there are no particles which populate the
view of the expected electron temperatures at the corona g@@ward hyperbolic part of the velocity space. This part can
finds that 30 to 50 percent contributions to the dynamic elgge estimated by the so—called Pannekoek—Rosseland ambipo-
tron pressure results from this questionable regime. We study polarisation potential impeding electrons from leaving the
the influence of electron depletions in the sunward hemisphetgona and given by:

of velocity space in terms of modified velocity moments like

the resulting solar wind electron temperature, bulk velocity alaptr) _ _mp —me GMy (1 — 7;0) . (1)

heat flow. Parametrizing the electron distribution function by 2e To r

truncated Maxwellians we show that all higher moments of ti’ll_?

A . rem, andm, are the proton and electron masskg, and
distribution function can be generated based on knowledge Of_ .. ihe mass and the radius of the sun, Grig the gravi-

the three lowest moments. Using solar wind data on electr ional constant. No electrons placed in this impeded part of

density, drift, and temperature, we derive an expression for \/ ocity space should exist (e.g. see Fahr & Shizgal1983). Also

electron heattflok\)/v tvk\]/hblchtpertf)ectllytflts the _?;Yssisbhe?tflogi@ir contribution to the total electron pressure, calculated on
measurements both by IS absolute magnitude and by IS ra@ual, 555 of 5 full Maxwellian, is missing. Since these contribu-

gradl_ent. To justify truncated electron distribution functions bYons amount to between 10 and 35 percent (Fahr &t al]1997),
physical processes we also study the effect of an energy dissi-

i fast i . di o th bfquestion poses itself as to how much this pressure deficit
pation of fast magnetosonic waves cascading up to th€ rang& Gy influence the effective solar wind acceleration and the
whistler frequencies and consider the specific local heat sou

Eefar wind thermodynamics. Studies of this influence were un-

) : . “haken by Fahr et al. (1990), Pierrard & Lemalire (1996), and
tation of the electron temperature profile without the accoul(}lteyer-Vernet & Issautief (1998)

?f a heating ?L:)e 0 \;]v_avebeinertgy tr_ansfet: to sglalrxvdndAelec— The Pannekoek—Rosseland potential guarantees charge neu-
rons may not be achievable at regions beyon - AS W lity in a stationary solar corona, i.e it applies in the case of a
can also show wave-induced energy absorption occurs just

the ad te rate allowing for t ted M li lect ishing solar wind outflow. In case of an expanding corona a
€ adequate rate aflowing for truncated Maxwetlian €lectrQfl ., ngjstent polarisation field has to be found (see_Sen 1969;

distribution functions to be maintained in the expanding sol%kerc_ 1970 Hollwed T974. Lemaire & Scherer 19701971 or
wind. for a review Fahr & Shizgal 1983). The effect of this pressure
deficit on the solar wind dynamics can already be studied at least
Send offprint requests té.J. Fahr (hfahr@astro.uni-bonn.de) qualitatively in the work by Jokers (1970) showing that higher
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asymptotic solar wind velocities are associated with higher &- Solar wind electron hydrodynamics based

fective electron potential ramps. This forces the electron distri-on truncated Maxwellians

bution function to better assimilate a full Maxwellian and thu . . .

reduces the electron pressure deficit. So far no selfconsistent %Lar \'de'electrons are .tlghtly bognd to mterplanetar.y mag-
tic field lines. Thus their magnetic moments essentially be-

larisation field has been calculated in a satisfactorily consist?ﬁt

L : . : ; . fve as invariants of the motion since over electron gyroscales
manner within exospheric corona theories with the inclusion OF avroperiods fluctuating maanetic fields can hardly exert an
electrons in the hyperbolic as well as the elliptic branch, i.ar 9yrop g mag y y

satellite particle branch. This is mainly because selfconsiste %fluence. Thisalso enfo_rces the 'OC‘?" electron d|str|.but|on fuqc-
10n to be closely associated to regions of magnetically conju-

can only be achieved by inclusion of elliptic or trapped elec- 7 ;
y y b bp d footpoints in the corona. Down here of course collison—

tron particle populations as was shown e.g. by Jokers (19 _te_ . . ) ; o
\ a0 inated conditions prevail and quasi—Maxwellian distribu-

These populations, however, are established by electrons . ! . .
. . Jons are easily established. Since from such points electrons
fering scattering processes above the exobase and are due'to . . . .
emitted to the associated upper space point with a rate de-

electrons which are trapped between some outer potential Vﬁéﬁed by the antisunward branch of the coronal Maxwellian, one

and some inner magnetic mirror point. Within the frame of pure " . .
! gheticm POl . bu y find electrons at the upper space point connected by Liou-

xospheric theory these elliptical electrons con ntly sholl '
exospheric theory these elliptical electrons consequently s 0\% e theorem to the lower corona. (e.g. see papers by Lemaire

not exist at all, making the concept of an exospheric solar wir& Scherer T971-1973- Lie-Svendsen et/al 1997 Pierrard &
s 19, - — ’

problematic, if not, at present, unviable. ) ) ¥ . 00Q. !
The features of the observed electron distributions Calfgsr;lglr?’hlig?j?s’t:f\i/lb?;;rn\;etrgre\tu& IZ??“E‘Z; 1())?r?t roal:\;e\:e\:afg-
not be represented by collisionless exospheric concepts (OIberT ™’/ ppersp point, '

1983) since the validity of magnetic invariants induces mu% |l:; t;rellaﬁggcig %ri?fg??rsoe; '2 ?S?Riggcvsltl)ig\ée :)Zizﬁrsoenﬁ:aetx ;)b:_se,
too anisotropic distribution functions. Introducing a collision-=. y ha i ' ) P
. . cific velocity space volume representing trapped patrticles (i.e.
induced relaxation term of a BGK-type (Bhatnagar, Gros$ . ' . .

Wwith mirror points above the coronal exobase) in a collision-

Krook|[1954) Olbert could show that the electron distributiOﬁ e treatment should be unpooulated. The rest of the upward
with increasing solar distances develops into a so—called Stra Fe Pop ' P

configuration. As shown by Griffel & Davies (1969), Scudder%//‘eIOCIty space would, however, be populated according to a
0 -

Olbert [T9794, 1979b) or Fahr & Shizgal (1983). Coulomb ¢ axwellian at the exobase. In contrast that branch of the dis-
. - . 12gall1I0s). & tribution function, describing electrons moving downwards to-
lisons cannotimpede the electron distribution functions from de- . . X
N . : . . . _Wwards the lower conjugated footpoint, evidently would be absent
generating into highly anisotropic functions. Only wave-particle .

interactions by electron Whistler waves (see Dum €t al 196§BJUSt those velocity space volumes belonging either to trapped
’ I'to hyperbolic particles (i.e. particles with energies larger than

Gary et al[[T994) or excited plasma instabilities of the firehoﬁtl—:‘ effective escape energy). These latter electrons have energies
type may help as a remedy at larger distances (see e.g. Fahr &, . P 9y). S o 9
enabling them to overcome the remaining polarisation potential

Shizgal 1983). . : .
T?\is is poi)nted out by ULYSSES measurements of eIectr(r)%mlOAq)OO and escape irreversibly from the heliosphere. Hence

distribution functions between 1 and 5 AU (Scime et al. 1994%1CToelei?tr:g?Zgaggghbe :ﬁgi;tf; tt)o 2?&:’223:?:;3:?#;13?
As proven by these data, the inherent electron heat conduct||nﬁ] P, P Y9 y

flow drops off with increasing solar distance much faster thant Ceoni?slilgzi?rztérgl.ectrons movina ubward from the corona are
expected from a collisionfree expansion of solar wind electrons,, . o g up .
. . . shjbject to gravitational forces, electric forces connected with the

although the magnitude of the heat conduction flow is mu¢ o . . .

. . olarisation potentiab and magnetic forces due to the magnetic
smaller than derived from the electron temperature gradient EgTd diveraence and to the electron maanetic momerithis
ing the Spitzer-frm value for the heat conduction COe{-ﬁCienallows ongto integrate the equation of Q']o\rticle motion yieldin
(Spitzer & Harm[1953; Spitzer 1962). This also seems to proye g q P y 9

that even at distances beyond 1 AU where Coulomb collisio 8o invariants of the motion, namely the total energy and

o . he invariant magnetic moment. These invariants lead to the

are absolutely inefficient the solar wind electron plasma dof%?lowin relations:

not behave as “collisionfree” in a strict sense, but there seems 9 '

to be an effective mechanism (like pitch—angle scattering and

isotropization) operating which helps redistributing the energ’;E/lmev2 —ed + MOB] = Hy, (2

in the heat conduction flow to randomized electron thermal e

ergy. Not knowing, how to describe such a dissipation mecha-

nism quantitatively, neither a selfconsistent polarisation potediAd:

tial nor an adequate electron pressure and temperature can be

calculated. We therefore in the following develop an approxim -%mevi _

tive method to study the effect of truncated electron distribution B | = Ho

functions on associated electron pressure deficits and heat con-

duction flows Herev; andv, are the electron velocity components parallel
and perpendicular to the magnetic fidg] and®(r) is the ef-
fective polarisation potential. From these relations one derives

T

3)




|.V. Chashei & H.J. Fahr: Thermokinetics of solar wind electrons 297

that the pitch anglé of an ascending electron (ike> 0) varies space, it nevertheless does not help to find consistent solar wind
according to: solutions.

As pointed out by Jockers (1970), the correct polarisation
potential and thus the value &f) can only be determined from
a consistent knowledge of the solar wind dynamics which is
closely connected with a consistent description of trapped elec-
where “0” characterizes the respective quantities at the corofighs unfortunately not emanating from collision—free theories.

-1
2eAD AB

1 + 672 — tanZ(Go)—
By

B
tan?(60) = tan?(6y) —
() =t o) 1+ 5

,(4)

exobase (i.e. at = ro), and where the definitionsA® = Thus some relaxation processes of a wave—particle interaction
® — & andAB = B — By, have been used. At points, far - type have to operate above the coronal base to explain observed
above the exobase, whete3., ~ — By, Eq.[3) yields: solar wind quantities. In our view here these processes are due

1 to quasilinear interactions of electrons with preexisting, con-

1+ 2eA® + tan?(6p) (5) vected whistler wave turbulences (see SEts. 6 thrbligh 8). Up

mevﬁo to now trapped particles could not be described adequately by
o purely kinetic solar wind theories. On the other hand solar wind

whereA®, = ®., — P, denotes the potential difference bepy qrodynamics can not account for truncated electron distri-

tween the co_ronal base and the_ asymptotic potential at infinfiions. Hence we develop here a semi- hydrodynamic theory
(i-e at large distances— r,). With relationsI(2) tol(5), aston- 3 rametrizing the electron distribution in a kinetically motivated

ishingly enough, one already determines the asymptotic SQJaty, nermitting the calculation of all relevant velocity moments
wind electron flu{n.u.]~ Which in a quasi-neutral, stationary,aeded for a hydrodynamic view.

solar wind also fully determines the asymptotic solar wind mass \ne assume that by wave—induced relaxation operating
flow ¥ = i [nete]oo o above the exobase the genuine Liouvillean velocity distribution
Assuming an upward emission of electrons from the exobggg,snverted into one describing a macroscopic drift and the ap-

according to a Maxwellian one formally arrives at the f°"°Wi”%earance of trapped particles on the basis of quasi-Maxwellians.

expression: We assume that the local electron distribution funcfofr, v)
o \ 2 KT 1% can be approximated by a truncated, shifted Maxwellian per-
U, =m; (O) Neo { <0 ] (1+Z0)exp(—Zp), (6) haps with a constant shift df, with respect to the solar rest
2mme frame (SF). By some recalibration of the potential this drift can

where=, = ekAT@g_ Knowledge of the value o, would thus 2S well, however, also be set equallfp = 0, since truncated

already completely determine the resulting solar wind mass fid{pxwellians define an inherent drift. Then with a density nor-

... malizationn(r) and a local thermal electron velocity spread
Some attempts have been made by Meyer-Vernet & Issaufief) the distribution is simply given by:

(1998) and Meyer-Vernet (1999) to estiméatg purely on the 3 2, \1_38

basis of solar coronal plasma properties, simply fulfilling refe(m v)d’v = n(r)[rC(r)] 2 {H (Vmax —v)

quirements of quasineutrality and vanishing electrical currents, + H(cos(0))H (v — vmax(r))}

and have led them to the result:

B
tan?(fs) ~ tan?(6p) —=
By

oo

—2

exp {02(71)} v2dv sin(6) df do, (20)

X

5 <Ep <28, (7)
Here polar velocity coordinates, ¢ have been used, the polar

is being identical with the magnetic field direction. Hefice
then automatically also represents the electron pitch-angle. The
step—functiondd (X) have to take into account the appropriate

dependent on the value taken foiif electrons at the coronal
baser = rq, are described instead by Maxwellians by so—call
Kappa functions like:

neo Ay (k) 2 17D local truncation with the effect of suppressing hyperbolic elec-
Jeo = 2W(Kw2)% [1 + W} ) (8) tronsinthe sunward magnetic hemisphere of velocity space. The
guantityv,,., defines the local escape velocity of electrons, i.e.
with: 02 = %*b(r) _
T(k+1) Itis evident that, due to this truncation, the functioris),
Ap(r) = [k — %)r(%) ©) Up andT'(r) = %kz(” in general are not strictly identical to

) . _ _thelocal density.(r), bulk velocityU (r) and temperaturé(r).
For the Maxwellian case, i.e. — oo, the valueZ = 5is  They, in contrast, have to be obtained as moments of the above
obtained, whereas for electron distributions with pronouncegkripution functionf, (r, v) by integration over velocity space

high—energy tails, i.e. withe = 3, a value of=Zy = 28 andthus represent space-variable functions. First, the following
is obtained, leading to asymptotic solar wind velocities @&|ation must be valid:

250kms! (k = oo) and 700kms! (x = 3), respectively.
Though this clearly reveals that the solar wind phenomenen(r) = n;(r)

is highly sensitive to the escape branch of the electron veloc- o
ity distribution function in the upward hemisphere of velocity” n(r) / // [H(2eA® — mev"™)+ (11)
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H(cos(#))H (mev? — 2eA®(r))] x wherew’ is the electron velocity measured in the electron bulk
Max(v/, 7)d®0’ flow frame (EBF) locally moving with the electron bulk velocity
’ Ugp (r)% Thusw' is related to the electron velocity by:
where the potential differencéy® = ¢,, — @, has beenin- | P , , )
troduced and wher&l (X) are step functions (Lgf(X) =1 ¥ =v —20Usp cos(¢") + Ug. (18)
for positive argumentsX, and 1 (X) = 0 for negative argu- ¢ individual electron velocity has a tilt with respect to

ments X). Max(v, r) is the Maxwellian with a velocity dis- 4 o (adial direction given bycos(y') = cos(€)cos(®’) +
persionC(r). Individual electron velocities are denoted &y sin(€) sin(6") cos(¢).

®(r) is the effective electron polarisation potential ahd its Reminding oneself of the symmetry conditionsofr, v, §)
difference with respect to that of infinity. the expressior{17) evaluates to:
Eq. (1) can be evaluated yielding the following relation
2m.C(r)n(r) "

betweem(r) andn;(r):

) B P.(r) = NG (19)
=n; — (52(0) — 0.552(\ . 12 2
n(r) = ni(r) {ﬁr (52(0) ) (12) l[54(o> —0.554(\)] + (UCB((” 152(0) — 0.552@)]]
T
Here the functior2(z), for j = 2, is defined by the following
integral function: Here agains4(z) is calculated according to Ef.(13) fpe= 4.
Of great interest for the thermodynamics and magnetohy-
. i , drodynamics of the solar wind expansion is the electron heat
Sj(z) = /CJ exp(—c”)dc, (13)  conduction flowg, which on the basis of the parametrized dis-
x tribution function is represented by:
The quantityh = \(r) in Eq. (12) has the following definition: qo(r) = }men(r) /// [H* + H(cos(e))H‘} % (20)
Ao | A2 |7 (14) Max(v/,r)[o’ — UJ(v' — U)?d*’
meC?(r)

and evidently is onented purely parallel to the local magnetic
Nextwe calculate the electron bulk velodty(r). The truncated field B, i.e.q. = g.p 2 B Again due to symmetry reasons ex-

Maxwellian directly determines the radial solar electron flux ¢jression[{20) simplifies to yield the following modulus of heat
the solar wind proton flux in the form conduction flow:

N\w

1o (r)Uer () = ni(r A5)  gy(r) = gmen(r) ()~ x (21)

) cos(€ /// (2e®@(r) — mev?) + H(cos(6)) /// [H* + H(cos(0))H™] Max(v/,7) x

x H(mev — 2e®(r))] Max(v',r)v’ cos(6)d*v’

—20'Up cos(0') + U?| [V cos(6) — U] d*v'.

H+ H(cos(0))H ™ . . .
) cos(€ / / / + H(cos(9))H™] x The latter expression can be evaluated and finally yields the
Max(v', r)v’ cos(8)d*v’ following form:

whereH* andH ~ have been introduced as abbreviations wnla = lnemeC?’(T) [ S5(\) + (22)

meanings evident by comparison with EqJ(10). The quantity 4[52(0) — 0.552())]
cos(§) takes into account the local tilt by an angleof the S3(A)[S4(0) — 0.554(N)] S533(N)

Archimedian spiral field with respect to the radial direction. 12[S2(0) — 0.552()\)]2 64[52(0) — 0.552(\)]3
Expression[(15) can be evaluated to yield:

= %nemeCB(r)\Il(r).
By the use of truncated Maxwellians one is thus able to represent
whereS3(x) is defined according to Eq. (13) fgr= 3. Itneeds the heat conduction flow, as a functional of the lowest three
to be mentioned that the electron bulk is not moving in radigklocity moments of this distribution, namety(r), P.(r) and
direction but into the direction of the local magnetic field with/, (), and thus reach a closed hydrodynamic system of gov-
an electron bulk speed 6fz = 72 C(r)S3()\) TZ((T)) erning differential equations.
Nextwe calculate the electron pressure and find accordingly:

1
P.(r) = fmen(r)/// [H* + H(cos(0))H™]  (17) ' _ _ '
6 Now we investigate a representation of solar wind electron
Max'(v', r)w"?d>v’ pressures and heat conduction flows by means of truncated

ne(r)U,(r) = 7~ 2C(r)n(r) cos(€)S3(N), (16)

3. Estimated effect of truncated distribution functions
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Maxwellians and compare these expressions with observationalS3(A)[S4(0) — 0.554()\)] S3%(\)
results. 12[52(0) — 0.552(N)]? 64[52(0) — 0.552(\)]3
We study first the effect of the truncated Maxwellians O{N
solar wind electron pressure. Adopting an effective electron p8
larisation potentiafb. (r) we can easily calculate the resultin
electron pressure associated with a truncated Maxwellian

fith Egs. [9) and[(13) we can now remove either the function
(r) or the function) from the above formula using the fol-
%oev_ving relation:

rived from Eq.[I®) which leads to: Ol — wU, (1) [S2(0) — 0.552(\)] 27

n(r) (r) = 4cos(€)S3(N) 27)
P) = (20,002 ) @) . | |

VT and finally then obtain the heat conduction flow as a function of

[[54(0) —0.554(\)] 4+ U?[52(0) — 0.552()\)]} , the solar wind bulk velocity and the argument
U To further evaluate expressidn{26) and compare results with

where A was given in Eq[(T1) and@ = “% was introduced. observational data we first derive an expressionfevaluating

In view of the highly subsonic character of the solar wind elegne function®(r) or A®(r), respectively, in as a consistent form
trons in regions inside 20 AU (i.é/ < 1) the second term in as possible.

the outer bracket is of second order in magnitude and estimate For that purpose, we start out from the generally accepted
purposes for may be neglected here. Using the relation betwegguirement that the hydrodynamical forces acting upon solar
n(r) andn.(r) given by Eq.[(P) one then obtains the followingvind electrons, due to practical absence of inertial and grav-

expression: itational forces, should cancel eachother leading in the CGL
n(r) approximation for anisotropic pressure functions to the follow-
P.(r) = [meCQ(T) 5 } X (24) ing expression (for a general derivation see Fahr étal.]1977):
[S4(0) — 0.554(\)] [S2(0) — 0.552(\)] " 0=en 2 e 1dB p _p (28)
dz dz B dz

= e(r)P2(r), _ _ |
) , , where z is the space coordinate parallel to the fidg®j and
where thee(r) descnbesothe pressure reduction with respeghere p, . and Py, are the electron pressure tensor elements
to the clgsswal pressut@’ (r) resulting from an u_ntrunCated perpendicular and parallel 8. For a purely radial field we can
Maxwellian. It must be conclgded thﬁf(r)' |s'o'bta|n.ed frqm replace the space coordinat®y - and obtain:
Eqg. (23) for a potential barrier increased to infinite height, i.e. for
®, — oo, Or A — oo. Realizing thatS2(z — o0) = S4(z — d® 1 [dP. N 2

o) = 0, one thus arrives at the following expressiondgfr): dr  en. | dr r

(Ple = Pre)| - (29)

_1 52(0) In this form this relation has also been used by Fichtner & Fahr

€e(r) = [54(0) — 0.554(N)] [52(0) — 0.552(N)] 54(0) (1991) or Meyer-Vernet & Issautier (1998). Here, however, we
(25) shall evaluate this expression in more detail making use of the

parametrized form of the distribution function by a truncated

In F|gS 3 and 4 of Fahr et al. (1997) it is demonstrated Wh%xwe”ian given in Eqm7) As evident from expressi(zg)

effect a truncation of the Maxwellian has on the electron pregy the scalar pressue. one can easily also derive analogously
sure. While in Fig. 3 of this paper the functien(r) itself is  the following relations:

shown, Fig. 4 displays the ratit, (r) of the pressure gradients

dP,/dr anddP? /dr. In both cases itis evident thata physicallypﬂe _ ! P, (30)
motivated truncation of the Maxwellians not only reduces the 3

effective electron pressure but also its gradient which represesysg:

an important force term in the equation of motion of the magne-

tohydrodynamic solar wind as already analyzed in quantitativd . = - P.. (32)
terms by Fahr et al[ (1990). Here as evident from the work of

Meyer-Vernet & Issautier (1998) we again confirm the impoWith these relations we thus obtain from Hg.l(29):

tance of the escape branch of the electron distribution functi
for the global solar wind dynamics. %—H} I 2& - r2i Le (32)
dr  3ene | dr r 3en, dr \ r2

4. Calculation of the electron heat conduction flow Integrating this expression by parts then yields:
Now, we test the effect of the newly formulated heat conductiof, oo dr
flow as given in Eq[{19) on the distance-dependence of the elegg AL (1) = [Te(r) — Teoo] — 4 / Te— (33)
tron temperature. With the expressibnl(19) we have obtained: o

1 3 S5(N) The outer border of the integration is hereby placed at a distance
Gep = nemeC (r) 4152(0) — 0.552(\)] + (26) . _ . where the asymptotic level of the electric potential is
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1.6

achieved. Also thé1/r?)—drop—off of the electron density at
larger distances (i.e. > 1 AU) has been used here. 141 _

Assuming, in addition, that the electron temperature drop=
off can be represented in a satisfactorily accurate wayby 12
T.(r/ro)~“ (see e.g. observations by Scime efal.1994) o
finally obtains:

— (14—
T Al Rl o

4+ « 1 Teoo
3a T.,

i

o
o

N(r) =

(34)

potential well (nor
o
o

o
I

To further evaluate EJ.(B4) we have to define an adequatg'2
point r,. Hereby one should pay attention to the following: o
The above derivation because of the neglect of inertial forces
can only be used in the region where solar wind electrons are

still subsonic, i.e. inside a region where electron temperatufég. 1. Shown is the quantitp\(r) (i.e. the electric potential energy
are larger than a critical value given by: difference to the asymptotic poird, normalized by the thermal energy
of the local electrons) for various valuesiof (i.e. 5, 6, 7 AU).

1 15 2 25 3 35 4 4.5 5
solar distance [AU]

meU?

Ve
with ~, = (f + 2)/f being the ratio of electron heat capacitie'sA‘dOptmg’ however, this electron temperature profile and look-

: - 3 .
which for electrons bound to the magnetic field (ife= 1) Ia;]cghif\:etgeoEgl\?\/to\glgeriiﬁgmu)nr;aifnzobleﬁgﬁt'%%%lige
yieldsy. = 3. With U. = 450kms~! one thus find<,, = ' 9 ~ :

. o o Here we want to restrict ourselves to regions with measured
3 .
4.3310° K connected with a critical definitions ofby: electron temperatures, i.e. to 0.3 to 5.0 AU. Hence, we decide
” i to finally define the quantity(r) by:
(36)

Tee = (35)

i) = |

44+« T.(5)]12

Using an adequate electron temperature profile taken frc?‘rq) - { 3« [ B Te(T)H '
observations one now can evaluate the expresbidn (26) for the
heat conduction flow and compare it with observational data 6§suming that the asymptotic level of the electric potential is
qe(r). already reached there.

At larger distancesr(> 0.7 AU) U = U,, = U; can be In Fig[d we have displayed the quantityr) (i.e. the nor-
taken as constant and thus the solar wind density drops off lfk&lized potential step to the asymptotic plateau level as function
ne(r) = neo(ro/r). Solar wind electron temperaturd@s(r) Of the solar distance for various values of. =5, 6, 7 AU.
can for instance be obtained with the help of ULYSSES resultsaddition in Fig[2 we have shown, how the relevant integral
published by Scime et al. {1994). These authors give tempeiictionsS2, S3, 54, S5 needed in expressioh (26) to calcu-

tures Separately for Cord"e(c) and halo Teh) electrons in the late the electron hea.tﬂowr(’f’) vary with solar distance, with
following form: A(r) defined by Eq[{41). In this figure the valug, = 5 AU

has been used.

44« 1 Tee
3o T,

(41)

—0.85
T..(r) = 1.310° (T> K] (37)
Te . . .
5. The magnitude and radial gradient
and: of the electron heat flow
T _9210° (T —0.38 K 38 Now we evaluate the expressidnl(26) on the basis of the above
en(r) = 9. Te [K]. (38) expressions fofl, and X given in Egs.[(3B) and (39). Further-

. . more one may realize thaf(r) as measure of the velocity
Since the typical abundances of core and halo electrons W8f§persion in our parametrized approach simply is a measure
found to be (see Feldman etlal. 1975): of the logarithmic slope of the electron distribution function,
A. ~0.96 and A, ~ 0.04, (39) i-e.—=C%(r) ~ dnlf) — L in just the same way how

the electron temperature is determined from the measured elec-
for our purposes here, due to the lack of any better informatiaren distribution function by Scime et al. (1994). This suggests
one may thus reasonably well represent the effective electiggarly that this parameter functi@i(r) can be set equal to:

temperature by the following combined expression:
2kT.(r)
To(r) = AcToc(r) + ApTon (). 40y C*(r)~———. (42)

Me
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Fig. 3.Shownisthe electron heat flaw(r) in units of[‘:n—"g] asfunction

Fig. 2. Shown are the heatflow—relevant integral functio¥®(r), . . .
g g ) of the solar distance for various values of ., (i.e 5, 6, 7 AU).

S3(r), S4(r) and S5(r) as functions of the solar distaneefor a
boundary value of ., = 5 AU.
where the exponent. evaluates toy. = 3.08. This again, is

Thus, we evaluate the expressienl(26) for the heat conductfoMe"Y nice result since it nearly exactly fits the result derived
from ULYSSES solar wind electron observations (see Scime et

fl :
ow by al.[1994) yielding:
Qer(’r) = QEb(r) COS(f) (43) -3 w
3 ~ r H
= remecos(©) | 20 D), ) =88 (1) 05 “0

) . As evident from the additional curves given in Fij. 3 it can
With Egs. [38) and(39) we can then numerically evaluate & rocognized that a variation of the vatug plays a very infe-

: P _ _ —3
pression[(48) and obtain with.(r = 1AU) = 8cm™ and yjor ol for the result. Thus it seems as if, with our parametrized

cos(¢) = 0.7 atr = 1AU: solar wind electron distribution function, we do solve two out-
uWw standing problems in the thermodynamic behaviour of solar

Ger(r = 1AU) = 776@ (44)  wind electrons at larger distances.

which surprisingly enough is just the order of the heat condut) The theoretically obtained magnitude of the electron heat

tion flow found by Scime et al[ (1994) (i&8%)_ It is also flow is much smaller than that expected from the classical

consistent with values of between 5.0 to 8 given by Feld- ~ Spitzer—Harm theory (Spitzer & lArm(1953) on the basis of

man et al.[(1975) and Pilipp et al. (1989). a so—called Fourier law withi, (r) = — ke, 95

In addition here we are interested in the study of the radigh-
gradient of the electron heat flow which is also measured b
Scime et al.[{1994) with ULYSSES at its in-ecliptic itinerarﬁgl The gradient of...(r) obtained from the above theory is
to Jupiter. On this in—ecliptic itinerary mission ULYSSES pre- larger than expected for a normal collisionless expansion of
dominantly was embedded in low speed solar wind (see BameSolar wind electronsy( = 2), but, interestingly enough, is
et al[1993) with an average speedlof= U, = 400 kms! exactly equal to the gradient found by ULYSSES observa-

and average density of.(r = 1AU) = 8cm 3. Evaluating tions (i.ey = 3).

Eq. (38) for these above conditions and setting: This also means that in our parametrizing approach it is
o =3 automatically arranged that free thermal solar wind electron
1 QO . o
cos(€) = (1 +tan2(§)) (14 (r 0> ’ (45) energies are locally dissipated and thus represent a local energy
U, source given by:

we obtain the functiom.,.(r) which is displayed as a function 1 d , 4 B Ve —2 r\
of the solar distance in Fig.[3. As one can see from the Iinearﬁ@(T Ger(r)) = Se(r) = . Ger(r) | — (48)
curve appearing in the double—logarithmic plot of this figure the . o _ )
heat flowg. () behaves exactly like a power law in the radia| 'S €nergy dissipation is enforced in our approach by
: : . the assumption of electron distributions which are truncated
coordinater given by: , S SRR
Maxwellians all over. In order to maintain such distribution
functionsin a collisionfree regime some relaxation process must

r —Ye
Ger(7) == ger(r =1 AU) (7E> ’ (46) pe operative impeding the usual Liouville-Vlasov degeneration
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of the distribution function. Processes which we consider to baere(2., v andy are gyrofrequency, velocity and pitch—angle
responsible for this relaxation are quasilinear whistler wavecesine of the electron, and whefe(k) and/_ (k) are whistler
electron interactions which we shall investigate in the next segaves with resonant wavenumbetspropagating parallel or
tions. antiparallel toB,. Both for negative and positive values of
the pitch—angle diffusion process operates quite efficient and
rapidly tends to isotropize the distribution function, whereas
6. Dissipated wave energies due to a resonance gap in the cyclotron interaction of elec-
and modulated electron distributions trons with whistler waves (e.g. see Dusenbery & Hollweg 1996;
Schlickeiser et al.-1991) around pitch—angles with- 0 the
It is evident that the truncated Maxwellians introduced ipjtch—angle diffusion between the two hemisphere 0 and
Sects.P anidl3 can only be considered as appropriate to desgibe is strongly impeded. This quite naturally justifies the as-
the effective kinetics of the solar wind electrons in parametrizefimption of truncated Maxwellians since theseasisotropic
form, if these functions can be physically motivated. Witho photh hemispheres with the-anisotropy limited tqu ~ 0.
collisional or “quasi-collisional” influences on the electrons gesjdes in the principles of this effect we are also interested

their evaporation from the lower corona by no means truncaigdts quantitative strength which is connected with the level of
Maxwellians could be good approximations since the hemymistler wave turbulence.

“Liouville’an” distribution function resulting in case of colli- whistler turbulence. We consider the interaction of high fre-

sionless evaporation is strongly pitch—angle dependent bot llency Alfven and fast magnetosonic waves with electrons
the antisunward and in the sunward part of the distribution wikarting from the following assumptions:

no particles populated in the elliptic branch of the velocity spage
(see Fahr & Shizgal 1983). To nevertheless explain the trans%'
of electrons into these branches, and to better approach a try
cated Maxwellian, either wave—induced pitch—-angle diffusiog
and energy diffusion processes of electrons have to occur or
electron distribution functions have to be revealed as unstal
with respect to driving waves by t_hemselves. . ind electrons).

The latter process has been d|scusse<_j by Scimelet "?“'. (.1 .. The initial power spectra are of the following form:
and Gary et al[{1994). These authors point to the possibility of
a heat flux instability with respect to whistler wave excitationWa, F_ et ( w
Representing the electron distribution function as given by two* wo
anisotropic Maxwellians (i.e. core and halo) with a relative drift herewg,f are reference powers at = wy, and wherew is

Gary et all(1994) can calculate positive whistler wave gro .
e wave frequency measured in the solar rest frame.

_rates bo |nt|.ng_ to the fact that the electron he:gt ﬂOVQV may liit.eThe convective evolution of the power spectra with increas-
instability—limited to a value of the order qf ~ 5m.cZ.va,

with ¢, being the thermal velocity of the electron coré and ing solar distance is described by the following wave energy

being the local Alfven velocity. However, as already notice%ommUIty equation:

by Dum et al.|(1980) these growth rates are highly sensitive {q. {(3(] LU ) Wa,f:|
specific features of the distribution function. Thus no clearcut 2 I “
result can be obtained with respect to the effectiveness of this 9

_ a ywrf
wave growth with respect to reshaping the distribution function. g, (WS, W)l

We therefore look into an alternative relaxation mechanisgherel is the solar wind velocity and, is the group velocity
with explicit influences on the shaping of the electron distribigf the waves in the solar wind reference frame. The source term
tion function. Here we think of quasilinear interactions of thgn the righthand side describesthe wavepower gain atfrequency
electrons with preexisting whistler wave turbulence. Connect@,ddue to divergence iw_space of the Cascading wave energy
with such turbulences specific Fokker Planck diffusion coeffiow in a saturated turbulence field. This term does not contain
cients can be evaluated which describe wave—induced electiggar (L), but only nonlinear (NL) contributions and essentially
diffusion processes in velocity space. The process operatfldws to separate the frequency space into two regions using

with the highest rate, higher than the expansion rate, is pitci-critical frequencys = w. according to the following rule
angle scattering of electrons by resonant whistler waves (see ga@ighly valid here:

Denskat et al. 1983). This process is appropriately described iy afy _

the so-called pitch—angle diffusion coefficidny,, (v, 1) given B)f PW S We = L((WW .) _f 0 I ¢ )

by (see Schlickeiser et al.1991; Achatz efal. 1993): S w = NHLO (%;lf Swf?;nfgn tnear terims
c w? w -

9 I (9 I Q. (no gains from linear terms)
_r ey | G e 49 w=w, = LWH)~ NL(W2, W)
e 5(1—p7) + , (49) w ws W
0 A equal gains 1rom bo erms
2B vlpll llop + 2v4ll (equal gains from both terms)

The low frequency turbulence is described as a mixture of
lf{/én (a) and fast magnetosonic (f) waves.

"Fhe source of the turbulent energy is due to pumping of wave
ergy from the largest to the smallest wavelengths (i.e from
& lower to the higher frequencies, the whistler modes, where
Sart of the spectral energy flux is resonantly absorbed by solar

—70
> with 1y < 1 (50)

- %(U o V)WaS = (51)

(52)
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Here the nonlinear terms are due to couplings between wave®fadial dependence of the dissipated wave energy

of the Alfvén (a) and of the fast magnetosonic (f) types, TIE I purposes of an estimation we may base our considerations
above terms can be estimated by simple expressions if a radial PUrP y

symmetry of the problem with constant solar wind velocity n the background _f'e'd given by Parker's Archimedian spiral
TS and hence given by:
can be assumed, yielding:

U To 2 T’%QS .
af\ ~ 2 et — LR S _ ,
LWT) = W5 (53) Br=1Bo (") s Bo=0; By = Bo'0- sin(0) (62)
and: whered is the ecliptic co—latitude anQs is the solar rotation
NLWS, W1 ~ Ty (Whaywe! (54) frequency. We now define for clarification a critical radits

) ) where azimuthal and radial field components are just equal
wherel’,,; is the nonlinear wavepower growth rate due to norb“lven by: r, — One can then study the radial
Te = .

U

linear wave couplings. For the critical frequency= w. one a(;?s sin(0)) " S . .

thus obtains from Eq4.(53) arfd {54): dependence af)* _ for two distinct regions: i.e. for region I:
U r < r., and for region Il > r..

Ty (Wel) ~ — (55)

The nonlinear growth rat&',,; is expressed by Chashei and . ] ] )
Shishov (19824, 1982b) in the following form: a,f Region I: r < r.. In this region, with dominance of the ra-
) dial field component, the following radial dependences can be

a7f
af Wi'we  va (56) assumed:

—_— W
2 U+ o

Pt ;} " . p o2 vg ol puZ o™ Wo ocr?; 63)
where the ngmerlcal factors”’/ describing the efficiency of. (WKB — theory!).
mode—couplings are shown to be of the order of 0.1. Using
Egs. [56) and{47) and approximatifig+ v, ) by U (i.e. super— With these dependences one evaluateq Ef. (58) into the follow-
Alfv énic solar wind flow), we then arrive with E.{55) at:  ing form:

W <w >”° U = _
a,f"o  Ya [ %c 2 o2 57 f 1 _3 1| @G- 1 _ -4y
€ — W, = a, - - - —

pv2 U \wo r 7) Q oc T . oc T @=0) . (64)
yielding the critical frequency as:

U2 pU2 ﬁ
TUq eava({’aw(z)
Associated with the approximate expression for the linear waker regions: < 1 AU HELIOS A/B data show thai/y oc 73

power sources one can derive the following expression for the (6t & Marsch 1995). Comparing this result with EQ.{57) allows

tal energy generation which cascades up to the nonlinear regiph€ to conclude thaf, = 0, i.e. a nearly flat power spectrum.
from the critical frequency = w. Thus one derives the following radial dependenc@of :

c

T(Wel) ~e

Thus one finds thdﬂfg’f has the following-—dependence:

_(T=470)

(58) W ocr™ @00 (65)

a,f ~
W ~ Wo

we

_ 4.5
U U a,f\ Tt af ~ ot (L) -
QZ’f ~ 7 / af = g él’f <wb§0 ) QY ~ Q8 " , with :r < 7. (66)

Therefore one can conclude that the heat source connected with

wo (59) the dissipated wave energy in this region falls off liked-5.

0

(1 =)
Introducingw,. from Eq.[54) one arrives at:
(1—=70)

U2 p'l)124 ‘| (2—70) U

Region 2:r > r.. Inthisregionthe azimuthal field is dominant

Wé‘*f(Go) and thus the following radial dependences have to be considered:

. p X T_Q; Vg ~ const.; pv2 xXr 7
The above expression fgJ%/ denotes the total spectral energ)f/v vy “ |
flux in modes “a” and “f” respectively, integrated over the fre 0 © 7 (WKB — theory!). (67)
guency range of the inertial range whege= g is valid. Thus  Evaluating again Eq_(61) we thus arrive at:
the active heating sources resulting from energy dissipation in 5
the two modes are given by: Q¥ x =r~ @0 (68)

T

QY =Qf ~ gwg’j (61) For a substantially flat spectrum withy, ~ 0 one therefore
ederives in this region the following radial dependence:

a:f
Qa,f ~ g WO
‘ r (1 =)

T0q e F W w2 r

2

where the wave energy/ is dissipated to the electrons in th
whistler frequency domain, mostly at the highest frequency end, af (Te\5
; ; g = QY — , T > T (69)
i.e. atw ~ Q., where), is the electron cyclotron frequency. r
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8. Relevance of electron heating by waves which with » = r. ~ 1 AU and Egs[(39) and_(40) simply

. . requires that:
Now, we estimate the importance of the wave energy sourcé;1

given by Eq.[(6l) and evaluated for the region< r. and ,, 1uW

r > r. by Egs.[6B) and[{89). It is known that the levefc = “2 = Ger(r =1 AU) (75)
of magnetic field turbulences, essentially of Adfic type, at B uWo W
r ~r, ~ 1 AU is moderate (see Tu & Mars¢h 1995), implying 1.08 x 4'16W - 4'5W (76)

_ <éB%> B? i i
thatWg = =7—= < 7. where L is the background inter- s shows that the concept of truncated Maxwellians presented

. . a 2 o 2 .
planetary magnetic field and 6B° >= 3 < 0Bj; >isthe jp5ve regulating the solar wind electron heat flow connected

1
variance of the field fluctuations. with energy absorption from fast magnetosonic waves cascading

The level of fast magnetosonic waves (compressive MHR, i frequency to the whistler frequency domain, appears to be
waves) responsible for the turbulent energy pumped into the,ciple and reasonable.

dissipative whistler frequency domain can be estimated using
relevant data of density fluctuations like those presented by Tu

& Marsch [1995) yielding: References
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