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Abstract. Classical kinetic solar wind theories reveal that the
solar wind electron distribution function has a delicate influence
on the acceleration of the coronal solar wind and its asymptotic
velocity. In collisionless kinetics this results from the fact that
no hyperbolic electrons with sunward velocities can be expected
above the coronal exobase. This problem affects both the associ-
ated electron pressure and the effective electric polarisation po-
tential helping protons to leave the solar gravitational potential.
The actual electron distribution thus influences the asymptotic
properties of the solar wind flow. Of importance for a compre-
hensive understanding of the solar wind acceleration thus is the
actual mechanism to populate the sunward velocity branch of
the distribution function in the hyperbolic energy regime which
according to classical kinetic theory should be unpopulated. In
view of the expected electron temperatures at the corona one
finds that 30 to 50 percent contributions to the dynamic elec-
tron pressure results from this questionable regime. We study
the influence of electron depletions in the sunward hemisphere
of velocity space in terms of modified velocity moments like
the resulting solar wind electron temperature, bulk velocity and
heat flow. Parametrizing the electron distribution function by
truncated Maxwellians we show that all higher moments of the
distribution function can be generated based on knowledge of
the three lowest moments. Using solar wind data on electron
density, drift, and temperature, we derive an expression for the
electron heat flow which perfectly fits the ULYSSES heatflow
measurements both by its absolute magnitude and by its radial
gradient. To justify truncated electron distribution functions by
physical processes we also study the effect of an energy dissi-
pation of fast magnetosonic waves cascading up to the range of
whistler frequencies and consider the specific local heat source
due to absorption of such wavepowers. An adequate represen-
tation of the electron temperature profile without the account
of a heating due to wave energy transfer to solar wind elec-
trons may not be achievable at regions beyond 1 AU. As we
can also show wave-induced energy absorption occurs just with
the adequate rate allowing for truncated Maxwellian electron
distribution functions to be maintained in the expanding solar
wind.
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1. Introduction to the exospheric view of the corona

Exospheric theories of the solar wind by Chamberlain (1960),
Aamont & Case (1962), Jensen (1963), Brandt & Cassinelli
(1966) revealed that above the coronal exobase a simple
Maxwellian distribution can not be expected for either electrons
or ions. Since in these theories the lower corona is considered to
be the only source of particles, in a collisionless regime above
the coronal exobase there are no particles which populate the
sunward hyperbolic part of the velocity space. This part can
be estimated by the so–called Pannekoek–Rosseland ambipo-
lar polarisation potential impeding electrons from leaving the
corona and given by:

Φ(r) = −mp − me

2e

GM0

r0

(
1 − r0

r

)
. (1)

Heremp andme are the proton and electron masses,M0 and
r0 are the mass and the radius of the sun, andG is the gravi-
tational constant. No electrons placed in this impeded part of
velocity space should exist (e.g. see Fahr & Shizgal 1983). Also
their contribution to the total electron pressure, calculated on
the basis of a full Maxwellian, is missing. Since these contribu-
tions amount to between 10 and 35 percent (Fahr et al. 1997),
the question poses itself as to how much this pressure deficit
could influence the effective solar wind acceleration and the
solar wind thermodynamics. Studies of this influence were un-
dertaken by Fahr et al. (1990), Pierrard & Lemaire (1996), and
Meyer-Vernet & Issautier (1998).

The Pannekoek–Rosseland potential guarantees charge neu-
trality in a stationary solar corona, i.e it applies in the case of a
vanishing solar wind outflow. In case of an expanding corona a
selfconsistent polarisation field has to be found (see Sen 1969;
Jokers 1970; Hollweg 1974, Lemaire & Scherer 1970, 1971, or
for a review Fahr & Shizgal 1983). The effect of this pressure
deficit on the solar wind dynamics can already be studied at least
qualitatively in the work by Jokers (1970) showing that higher
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asymptotic solar wind velocities are associated with higher ef-
fective electron potential ramps. This forces the electron distri-
bution function to better assimilate a full Maxwellian and thus
reduces the electron pressure deficit. So far no selfconsistent po-
larisation field has been calculated in a satisfactorily consistent
manner within exospheric corona theories with the inclusion of
electrons in the hyperbolic as well as the elliptic branch, i.e.
satellite particle branch. This is mainly because selfconsistency
can only be achieved by inclusion of elliptic or trapped elec-
tron particle populations as was shown e.g. by Jokers (1970).
These populations, however, are established by electrons suf-
fering scattering processes above the exobase and are due to
electrons which are trapped between some outer potential well
and some inner magnetic mirror point. Within the frame of pure
exospheric theory these elliptical electrons consequently should
not exist at all, making the concept of an exospheric solar wind
problematic, if not, at present, unviable.

The features of the observed electron distributions can-
not be represented by collisionless exospheric concepts (Olbert
1983) since the validity of magnetic invariants induces much
too anisotropic distribution functions. Introducing a collision–
induced relaxation term of a BGK-type (Bhatnagar, Gross,
Krook 1954) Olbert could show that the electron distribution
with increasing solar distances develops into a so–called Strahl–
configuration. As shown by Griffel & Davies (1969), Scudder &
Olbert (1979a, 1979b) or Fahr & Shizgal (1983). Coulomb col-
lisons cannot impede the electron distribution functions from de-
generating into highly anisotropic functions. Only wave-particle
interactions by electron Whistler waves (see Dum et al. 1980,
Gary et al. 1994) or excited plasma instabilities of the firehose
type may help as a remedy at larger distances (see e.g. Fahr &
Shizgal 1983).

This is pointed out by ULYSSES measurements of electron
distribution functions between 1 and 5 AU (Scime et al. 1994).
As proven by these data, the inherent electron heat conduction
flow drops off with increasing solar distance much faster than
expected from a collisionfree expansion of solar wind electrons,
although the magnitude of the heat conduction flow is much
smaller than derived from the electron temperature gradient us-
ing the Spitzer-Ḧarm value for the heat conduction coefficient
(Spitzer & Ḧarm 1953; Spitzer 1962). This also seems to prove
that even at distances beyond 1 AU where Coulomb collisions
are absolutely inefficient the solar wind electron plasma does
not behave as “collisionfree” in a strict sense, but there seems
to be an effective mechanism (like pitch–angle scattering and
isotropization) operating which helps redistributing the energy
in the heat conduction flow to randomized electron thermal en-
ergy. Not knowing, how to describe such a dissipation mecha-
nism quantitatively, neither a selfconsistent polarisation poten-
tial nor an adequate electron pressure and temperature can be
calculated. We therefore in the following develop an approxima-
tive method to study the effect of truncated electron distribution
functions on associated electron pressure deficits and heat con-
duction flows

2. Solar wind electron hydrodynamics based
on truncated Maxwellians

Solar wind electrons are tightly bound to interplanetary mag-
netic field lines. Thus their magnetic moments essentially be-
have as invariants of the motion since over electron gyroscales
or gyroperiods fluctuating magnetic fields can hardly exert any
influence. This also enforces the local electron distribution func-
tion to be closely associated to regions of magnetically conju-
gated footpoints in the corona. Down here of course collison–
dominated conditions prevail and quasi–Maxwellian distribu-
tions are easily established. Since from such points electrons
are emitted to the associated upper space point with a rate de-
fined by the antisunward branch of the coronal Maxwellian, one
may find electrons at the upper space point connected by Liou-
ville theorem to the lower corona. (e.g. see papers by Lemaire
& Scherer 1971, 1973; Lie-Svendsen et al. 1997; Pierrard &
Lemaire 1996; Meyer-Vernet & Issautier 1998; Meyer-Vernet
1999). This distribution at an upper space point, however, with-
out relaxation processes in operation above the coronal exobase,
clearly has to differ from a full Maxwellian, because that spe-
cific velocity space volume representing trapped particles (i.e.
with mirror points above the coronal exobase) in a collision-
free treatment should be unpopulated. The rest of the upward
velocity space would, however, be populated according to a
Maxwellian at the exobase. In contrast that branch of the dis-
tribution function, describing electrons moving downwards to-
wards the lower conjugated footpoint, evidently would be absent
in just those velocity space volumes belonging either to trapped
or to hyperbolic particles (i.e. particles with energies larger than
the effective escape energy). These latter electrons have energies
enabling them to overcome the remaining polarisation potential
ramp∆Φ∞ and escape irreversibly from the heliosphere. Hence
such electrons cannot be expected to approach the corona from
the top, if not especially generated by other sources further out
in the heliosphere.

Collisionfree electrons moving upward from the corona are
subject to gravitational forces, electric forces connected with the
polarisation potentialΦ and magnetic forces due to the magnetic
field divergence and to the electron magnetic momentµ. This
allows one to integrate the equation of particle motion yielding
two invariants of the motion, namely the total energyH0 and
the invariant magnetic momentµ0. These invariants lead to the
following relations:

[
1
2
mev

2
‖ − eΦ + µ0B

]
r

= H0, (2)

and:

[ 1
2mev

2
⊥

B

]
r

= µ0. (3)

Herev‖ andv⊥ are the electron velocity components parallel
and perpendicular to the magnetic fieldB, andΦ(r) is the ef-
fective polarisation potential. From these relations one derives
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that the pitch angleθ of an ascending electron (i.eθ > 0) varies
according to:

tan2(θ) = tan2(θ0)
B

B0

[
1 +

2e∆Φ
mev2

‖0
− tan2(θ0)

∆B

B0

]−1

, (4)

where “0” characterizes the respective quantities at the coronal
exobase (i.e. atr = r0), and where the definitions:∆Φ =
Φ − Φ0 and∆B = B − B0, have been used. At pointsr∞ far
above the exobase, where∆B∞ ' −B0, Eq. (4) yields:

tan2(θ∞) ' tan2(θ0)
B∞
B0

[
1 +

2e∆Φ0

mev2
‖0

+ tan2(θ0)

]−1

(5)

where∆Φ0 = Φ∞ − Φ0 denotes the potential difference be-
tween the coronal base and the asymptotic potential at infinity
(i.e at large distancesr → r∞). With relations (2) to (5), aston-
ishingly enough, one already determines the asymptotic solar
wind electron flux[neue]∞ which in a quasi-neutral, stationary
solar wind also fully determines the asymptotic solar wind mass
flow Ψ = mi[neue]∞

Assuming an upward emission of electrons from the exobase
according to a Maxwellian one formally arrives at the following
expression:

Ψ∞ = mi

(
r0

r∞

)2

ne0

[
kTe0

2πme

] 1
2

(1 + Ξ0) exp(−Ξ0), (6)

whereΞ0 = e∆Φ0
kTe0

. Knowledge of the value ofΞ0 would thus
already completely determine the resulting solar wind mass flow
Ψ∞.

Some attempts have been made by Meyer-Vernet & Issautier
(1998) and Meyer-Vernet (1999) to estimateΞ0 purely on the
basis of solar coronal plasma properties, simply fulfilling re-
quirements of quasineutrality and vanishing electrical currents,
and have led them to the result:

5 ≤ Ξ0 ≤ 28, (7)

dependent on the value taken forκ if electrons at the coronal
baser = r0, are described instead by Maxwellians by so–called
Kappa functions like:

fe0 =
ne0Ak(κ)
2π(κw2)

3
2

[
1 +

v2

κw2

]−(κ−1)

, (8)

with:

Ak(κ) =
Γ(κ + 1)

Γ(κ − 1
2 )Γ( 3

2 )
(9)

For the Maxwellian case, i.e.κ → ∞, the valueΞ0 = 5 is
obtained, whereas for electron distributions with pronounced
high–energy tails, i.e. withκ = 3, a value ofΞ0 = 28
is obtained, leading to asymptotic solar wind velocities of
250 km s−1 (κ = ∞) and 700 km s−1 (κ = 3), respectively.
Though this clearly reveals that the solar wind phenomenon
is highly sensitive to the escape branch of the electron veloc-
ity distribution function in the upward hemisphere of velocity

space, it nevertheless does not help to find consistent solar wind
solutions.

As pointed out by Jockers (1970), the correct polarisation
potential and thus the value ofΞ0 can only be determined from
a consistent knowledge of the solar wind dynamics which is
closely connected with a consistent description of trapped elec-
trons unfortunately not emanating from collision–free theories.
Thus some relaxation processes of a wave–particle interaction
type have to operate above the coronal base to explain observed
solar wind quantities. In our view here these processes are due
to quasilinear interactions of electrons with preexisting, con-
vected whistler wave turbulences (see Secs. 6 through 8). Up
to now trapped particles could not be described adequately by
purely kinetic solar wind theories. On the other hand solar wind
hydrodynamics can not account for truncated electron distri-
butions. Hence we develop here a semi- hydrodynamic theory
parametrizing the electron distribution in a kinetically motivated
way permitting the calculation of all relevant velocity moments
needed for a hydrodynamic view.

We assume that by wave–induced relaxation operating
above the exobase the genuine Liouvillean velocity distribution
is converted into one describing a macroscopic drift and the ap-
pearance of trapped particles on the basis of quasi–Maxwellians.
We assume that the local electron distribution functionfe(r,v)
can be approximated by a truncated, shifted Maxwellian per-
haps with a constant shift ofU0 with respect to the solar rest
frame (SF). By some recalibration of the potential this drift can
as well, however, also be set equal toU0 = 0, since truncated
Maxwellians define an inherent drift. Then with a density nor-
malizationn(r) and a local thermal electron velocity spread
C(r) the distribution is simply given by:

fe(r,v)d3v = n(r)[πC2(r)]−
3
2 {H(vmax − v)

+ H(cos(θ))H(v − vmax(r))}
× exp

[ −v2

C2(r)

]
v2dv sin(θ) dθ dφ, (10)

Here polar velocity coordinatesv, θ, φ have been used, the polar
axis being identical with the magnetic field direction. Henceθ
then automatically also represents the electron pitch-angle. The
step–functionsH(X) have to take into account the appropriate
local truncation with the effect of suppressing hyperbolic elec-
trons in the sunward magnetic hemisphere of velocity space. The
quantityvmax defines the local escape velocity of electrons, i.e.
v2
max = 2e∆Φ(r)

me
.

It is evident that, due to this truncation, the functionsn(r),
U0 andT (r) = meC2(r)

2k in general are not strictly identical to
the local densityn(r), bulk velocityU(r) and temperatureT (r).
They, in contrast, have to be obtained as moments of the above
distribution functionfe(r, v) by integration over velocity space
and thus represent space–variable functions. First, the following
relation must be valid:

ne(r) = ni(r)

= n(r)
∫ ∫ ∫ [

H(2e∆Φ − mev
′2)+ (11)
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H(cos(θ))H(mev
′2 − 2e∆Φ(r))

]×
Max(v′, r)d3v′

where the potential difference,∆Φ = Φ∞ − Φ, has been in-
troduced and whereH(X) are step functions (i.e.H(X) = 1
for positive argumentsX, andH(X) = 0 for negative argu-
mentsX). Max(v, r) is the Maxwellian with a velocity dis-
persionC(r). Individual electron velocities are denoted byv′.
Φ(r) is the effective electron polarisation potential and∆Φ its
difference with respect to that of infinity.

Eq. (11) can be evaluated yielding the following relation
betweenn(r) andni(r):

n(r) = ni(r)
[

4√
π

(S2(0) − 0.5S2(λ))
]−1

. (12)

Here the functionS2(x), for j = 2, is defined by the following
integral function:

Sj(x) =

∞∫
x

cj exp(−c2)dc, (13)

The quantityλ = λ(r) in Eq. (12) has the following definition:

λ =
[

e∆Φ(r)
meC2(r)

] 1
2

(14)

Next we calculate the electron bulk velocityU(r). The truncated
Maxwellian directly determines the radial solar electron flux or
the solar wind proton flux in the form

ne(r)Uer(r) = ni(r)Uir(r) (15)

= n(r) cos(ξ)
∫ ∫ ∫ [

H(2eΦ(r) − mev
′2) + H(cos(θ))

× H(mev
′2 − 2eΦ(r))

]
Max(v′, r)v′ cos(θ′)d3v′

= n(r) cos(ξ)
∫ ∫ ∫ [

H+ + H(cos(θ))H−]×
Max(v′, r)v′ cos(θ′)d3v′

whereH+ andH− have been introduced as abbreviations with
meanings evident by comparison with Eq. (10). The quantity
cos(ξ) takes into account the local tilt by an angleξ of the
Archimedian spiral field with respect to the radial direction.
Expression (15) can be evaluated to yield:

ne(r)Ur(r) = π− 1
2 C(r)n(r) cos(ξ)S3(λ), (16)

whereS3(x) is defined according to Eq. (13) forj = 3. It needs
to be mentioned that the electron bulk is not moving in radial
direction but into the direction of the local magnetic field with
an electron bulk speed ofUB = π− 1

2 C(r)S3(λ) n(r)
ne(r)

Next we calculate the electron pressure and find accordingly:

Pe(r) =
1
6
men(r)

∫ ∫ ∫ [
H+ + H(cos(θ))H−] (17)

Max′(v′, r)w′2d3v′

wherew′ is the electron velocity measured in the electron bulk
flow frame (EBF) locally moving with the electron bulk velocity
UB(r)B

B . Thusw′ is related to the electron velocityv′ by:

w′2 = v′2 − 2v′UB cos(θ′) + U2
B . (18)

The individual electron velocity has a tilt with respect to
the radial direction given by:cos(γ′) = cos(ξ) cos(θ′) +
sin(ξ) sin(θ′) cos(φ′).

Reminding oneself of the symmetry conditions offe(r, v, θ)
the expression (17) evaluates to:

Pe(r) =
2meC(r)n(r)

3
√

π
× (19)[

[S4(0) − 0.5S4(λ)] +
(

UB(r)
C(r)

)2

[S2(0) − 0.5S2(λ)]

]

Here againS4(x) is calculated according to Eq. (13) forj = 4.
Of great interest for the thermodynamics and magnetohy-

drodynamics of the solar wind expansion is the electron heat
conduction flowqe which on the basis of the parametrized dis-
tribution function is represented by:

qe(r) =
1
2
men(r)

∫ ∫ ∫ [
H+ + H(cos(θ))H−]× (20)

Max(v′, r)[v′ − U ](v′ − U)2d3v′

and evidently is oriented purely parallel to the local magnetic
field B, i.e. qe = qeB

B
B . Again due to symmetry reasons ex-

pression (20) simplifies to yield the following modulus of heat
conduction flow:

qeb(r) =
1
2
men(r) (πC(r))− 3

2 × (21)∫ ∫ ∫ [
H+ + H(cos(θ))H−] Max(v′, r) ×[

v′2 − 2v′UB cos(θ′) + U2] [v′ cos(θ′) − UB ] d3v′.

The latter expression can be evaluated and finally yields the
following form:

qeb =
1
2
nemeC

3(r)
[

S5(λ)
4[S2(0) − 0.5S2(λ)]

+ (22)

S3(λ)[S4(0) − 0.5S4(λ)]
12[S2(0) − 0.5S2(λ)]2

+
S33(λ)

64[S2(0) − 0.5S2(λ)]3

]

=
1
2
nemeC

3(r)Ψ(r).

By the use of truncated Maxwellians one is thus able to represent
the heat conduction flowqe as a functional of the lowest three
velocity moments of this distribution, namelyne(r), Pe(r) and
Ue(r), and thus reach a closed hydrodynamic system of gov-
erning differential equations.

3. Estimated effect of truncated distribution functions

Now we investigate a representation of solar wind electron
pressures and heat conduction flows by means of truncated
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Maxwellians and compare these expressions with observational
results.

We study first the effect of the truncated Maxwellians on
solar wind electron pressure. Adopting an effective electron po-
larisation potentialΦe(r) we can easily calculate the resulting
electron pressure associated with a truncated Maxwellian de-
rived from Eq. (19) which leads to:

Pe(r) =
(

2meC
2(r)

n(r)√
π

)
× (23)[

[S4(0) − 0.5S4(λ)] + Ū2 [S2(0) − 0.5S2(λ)]
]
,

whereλ was given in Eq. (11) and̄U = UB

C was introduced.
In view of the highly subsonic character of the solar wind elec-
trons in regions inside 20 AU (i.e.̄U � 1) the second term in
the outer bracket is of second order in magnitude and estimate
purposes for may be neglected here. Using the relation between
n(r) andne(r) given by Eq. (9) one then obtains the following
expression:

Pe(r) =
[
meC

2(r)
n(r)

2

]
× (24)

[S4(0) − 0.5S4(λ)] [S2(0) − 0.5S2(λ)]−1

= εe(r)P 0
e (r),

where theε(r) describes the pressure reduction with respect
to the classical pressureP 0

e (r) resulting from an untruncated
Maxwellian. It must be concluded thatP 0

e (r) is obtained from
Eq. (23) for a potential barrier increased to infinite height, i.e. for
Φe → ∞, or λ → ∞. Realizing thatS2(x → ∞) = S4(x →
∞) = 0, one thus arrives at the following expression forεe(r):

εe(r) = [S4(0) − 0.5S4(λ)] [S2(0) − 0.5S2(λ)]−1 S2(0)
S4(0)

(25)

In Figs. 3 and 4 of Fahr et al. (1997) it is demonstrated what
effect a truncation of the Maxwellian has on the electron pres-
sure. While in Fig. 3 of this paper the functionεe(r) itself is
shown, Fig. 4 displays the ratio∆e(r) of the pressure gradients
dPe/dr anddP 0

e /dr. In both cases it is evident that a physically
motivated truncation of the Maxwellians not only reduces the
effective electron pressure but also its gradient which represents
an important force term in the equation of motion of the magne-
tohydrodynamic solar wind as already analyzed in quantitative
terms by Fahr et al. (1990). Here as evident from the work of
Meyer-Vernet & Issautier (1998) we again confirm the impor-
tance of the escape branch of the electron distribution function
for the global solar wind dynamics.

4. Calculation of the electron heat conduction flow

Now, we test the effect of the newly formulated heat conduction
flow as given in Eq. (19) on the distance-dependence of the elec-
tron temperature. With the expression (19) we have obtained:

qeB =
1
2
nemeC

3(r)
[

S5(λ)
4[S2(0) − 0.5S2(λ)]

+ (26)

S3(λ)[S4(0) − 0.5S4(λ)]
12[S2(0) − 0.5S2(λ)]2

+
S33(λ)

64[S2(0) − 0.5S2(λ)]3

]

With Eqs. (9) and (13) we can now remove either the function
C(r) or the functionλ from the above formula using the fol-
lowing relation:

C(r) =
πUr(r) [S2(0) − 0.5S2(λ)]

4 cos(ξ)S3(λ)
(27)

and finally then obtain the heat conduction flow as a function of
the solar wind bulk velocity and the argumentλ.

To further evaluate expression (26) and compare results with
observational data we first derive an expression forλ evaluating
the functionΦ(r) or∆Φ(r), respectively, in as a consistent form
as possible.

For that purpose, we start out from the generally accepted
requirement that the hydrodynamical forces acting upon solar
wind electrons, due to practical absence of inertial and grav-
itational forces, should cancel eachother leading in the CGL
approximation for anisotropic pressure functions to the follow-
ing expression (for a general derivation see Fahr et al. 1977):

0 = ene
dΦ
dz

− dP‖e

dz
− 1

B

dB

dz

(
P⊥e − P‖e

)
(28)

wherez is the space coordinate parallel to the fieldB, and
whereP⊥e andP‖e are the electron pressure tensor elements
perpendicular and parallel toB. For a purely radial field we can
replace the space coordinatez by r and obtain:

dΦ
dr

=
1

ene

[
dP‖e

dr
+

2
r
(P‖e − P⊥e)

]
. (29)

In this form this relation has also been used by Fichtner & Fahr
(1991) or Meyer-Vernet & Issautier (1998). Here, however, we
shall evaluate this expression in more detail making use of the
parametrized form of the distribution function by a truncated
Maxwellian given in Eq. (7). As evident from expression (23)
for the scalar pressurePe one can easily also derive analogously
the following relations:

P‖e =
1
3
Pe (30)

and:

P⊥e =
2
3
Pe. (31)

With these relations we thus obtain from Eq. (29):

dΦ
dr

=
1

3ene

[
dPe

dr
− 2

Pe

r

]
=

1
3ene

[
r2 d

dr

(
Pe

r2

)]
(32)

Integrating this expression by parts then yields:

3e

k
∆Φ(r) = [Te(r) − Te∞] − 4

r∞∫
r

Te
dr

r
. (33)

The outer border of the integration is hereby placed at a distance
r = r∞ where the asymptotic level of the electric potential is
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achieved. Also the(1/r2)–drop–off of the electron density at
larger distances (i.e.r ≥ 1 AU) has been used here.

Assuming, in addition, that the electron temperature drop–
off can be represented in a satisfactorily accurate way byTe =
Te(r/r0)−α (see e.g. observations by Scime et al. 1994) one
finally obtains:

λ2(r) =
e∆Φ
kTer

=
1
3
(1 +

4
α

)
[
1 − Te∞

Ter

]
(34)

=
4 + α

3α

[
1 − Te∞

Ter

]

To further evaluate Eq. (34) we have to define an adequate
point r∞. Hereby one should pay attention to the following:
The above derivation because of the neglect of inertial forces
can only be used in the region where solar wind electrons are
still subsonic, i.e. inside a region where electron temperatures
are larger than a critical value given by:

Tec =
meU

2
e

γe
(35)

with γe = (f + 2)/f being the ratio of electron heat capacities
which for electrons bound to the magnetic field (i.e.f = 1)
yields γe = 3. With Ue = 450 km s−1 one thus findsTec =
4.33 103 K connected with a critical definitions ofλ by:

λc(r) =
[
4 + α

3α

[
1 − Tce

Te

]] 1
2

. (36)

Using an adequate electron temperature profile taken from
observations one now can evaluate the expression (26) for the
heat conduction flow and compare it with observational data on
qe(r).

At larger distances (r ≥ 0.7 AU) U = Uer = Ui can be
taken as constant and thus the solar wind density drops off like
ne(r) = ne0(r0/r). Solar wind electron temperaturesTe(r)
can for instance be obtained with the help of ULYSSES results
published by Scime et al. (1994). These authors give tempera-
tures separately for core (Tec) and halo (Teh) electrons in the
following form:

Tec(r) = 1.3 105
(

r

re

)−0.85

[K] (37)

and:

Teh(r) = 9.2 105
(

r

re

)−0.38

[K]. (38)

Since the typical abundances of core and halo electrons were
found to be (see Feldman et al. 1975):

Ac ' 0.96 andAh ' 0.04, (39)

for our purposes here, due to the lack of any better information,
one may thus reasonably well represent the effective electron
temperature by the following combined expression:

Te(r) = AcTec(r) + AhTeh(r). (40)
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Fig. 1. Shown is the quantityλ(r) (i.e. the electric potential energy
difference to the asymptotic pointr∞ normalized by the thermal energy
of the local electrons) for various values ofr∞ (i.e. 5, 6, 7 AU).

Adopting, however, this electron temperature profile and look-
ing for the point whereTe(r∞) = 4.3 103 Kelvin would be
achieved, one would get the unreasonable result:r ≥ 1000 AU.

Here we want to restrict ourselves to regions with measured
electron temperatures, i.e. to 0.3 to 5.0 AU. Hence, we decide
to finally define the quantityλ(r) by:

λ(r) =
[
4 + α

3α

[
1 − Te(5)

Te(r)

]] 1
2

. (41)

Assuming that the asymptotic level of the electric potential is
already reached there.

In Fig. 1 we have displayed the quantityλ(r) (i.e. the nor-
malized potential step to the asymptotic plateau level as function
of the solar distancer for various values ofr∞ = 5, 6, 7 AU.
In addition in Fig. 2 we have shown, how the relevant integral
functionsS2, S3, S4, S5 needed in expression (26) to calcu-
late the electron heatflowqer(r) vary with solar distancer, with
λ(r) defined by Eq. (41). In this figure the valuer∞ = 5 AU
has been used.

5. The magnitude and radial gradient
of the electron heat flow

Now we evaluate the expression (26) on the basis of the above
expressions forTe andλ given in Eqs. (38) and (39). Further-
more one may realize thatC(r) as measure of the velocity
dispersion in our parametrized approach simply is a measure
of the logarithmic slope of the electron distribution function,
i.e. − 2

me
C2(r) ' dln(f)

dE = − 1
kT , in just the same way how

the electron temperature is determined from the measured elec-
tron distribution function by Scime et al. (1994). This suggests
clearly that this parameter functionC(r) can be set equal to:

C2(r) ' 2kTe(r)
me

. (42)



I.V. Chashei & H.J. Fahr: Thermokinetics of solar wind electrons 301

1 1.5 2 2.5 3 3.5 4 4.5 5
solar distance [AU]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
tr

u
n

ca
ti

o
n

 f
u

n
ct

io
n

s

S2

S4

S3

S5

Fig. 2. Shown are the heatflow–relevant integral functionsS2(r),
S3(r), S4(r) and S5(r) as functions of the solar distancer for a
boundary value ofr∞ = 5 AU.

Thus, we evaluate the expression (26) for the heat conduction
flow by:

qer(r) = qeb(r) cos(ξ) (43)

=
1
2
neme cos(ξ)

[
2kTe(r)

me

] 3
2

Ψ(r).

With Eqs. (38) and (39) we can then numerically evaluate ex-
pression (43) and obtain withne(r = 1AU) = 8cm−3 and
cos(ξ) = 0.7 at r = 1AU:

qer(r = 1AU) = 7.76
µW

m2 (44)

which surprisingly enough is just the order of the heat conduc-
tion flow found by Scime et al. (1994) (i.e8.8µW

m2 ). It is also
consistent with values of between 5.0 to 8.0µW

m2 given by Feld-
man et al. (1975) and Pilipp et al. (1989).

In addition here we are interested in the study of the radial
gradient of the electron heat flow which is also measured by
Scime et al. (1994) with ULYSSES at its in-ecliptic itinerary
to Jupiter. On this in–ecliptic itinerary mission ULYSSES pre-
dominantly was embedded in low speed solar wind (see Bame
et al. 1993) with an average speed ofU = Ue = 400 km s−1

and average density ofne(r = 1AU) = 8 cm−3. Evaluating
Eq. (38) for these above conditions and setting:

cos(ξ) =
(
1 + tan2(ξ)

)− 1
2 =

(
1 +

(
rΩ0

Ue

)2
)− 1

2

, (45)

we obtain the functionqer(r) which is displayed as a function
of the solar distancer in Fig. 3. As one can see from the linear
curve appearing in the double–logarithmic plot of this figure the
heat flowqer(r) behaves exactly like a power law in the radial
coordinater given by:

qer(r) ' qer(r = 1 AU)
(

r

rE

)−γe

, (46)
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Fig. 3.Shown is the electron heat flowqe(r) in units of[µW
m2 ]as function

of the solar distancer for various values ofr∞ (i.e 5, 6, 7 AU).

where the exponentγe evaluates toγe = 3.08. This again, is
a very nice result since it nearly exactly fits the result derived
from ULYSSES solar wind electron observations (see Scime et
al. 1994) yielding:

qer(r) ' 8.8
(

r

rE

)−3
µW

m2 . (47)

As evident from the additional curves given in Fig. 3 it can
be recognized that a variation of the valuer∞ plays a very infe-
rior role for the result. Thus it seems as if, with our parametrized
solar wind electron distribution function, we do solve two out-
standing problems in the thermodynamic behaviour of solar
wind electrons at larger distances.

1) The theoretically obtained magnitude of the electron heat
flow is much smaller than that expected from the classical
Spitzer–Ḧarm theory (Spitzer & Ḧarm 1953) on the basis of
a so–called Fourier law with:qer(r) = −κer

dT
dr .

and:

2) The gradient ofqer(r) obtained from the above theory is
larger than expected for a normal collisionless expansion of
solar wind electrons (γ = 2), but, interestingly enough, is
exactly equal to the gradient found by ULYSSES observa-
tions (i.e.γ = 3).

This also means that in our parametrizing approach it is
automatically arranged that free thermal solar wind electron
energies are locally dissipated and thus represent a local energy
source given by:

1
r2

d

dr
(r2qer(r)) = Se(r) =

γe − 2
rE

qer(r)
(

r

rE

)−1

(48)

This energy dissipation is enforced in our approach by
the assumption of electron distributions which are truncated
Maxwellians all over. In order to maintain such distribution
functions in a collisionfree regime some relaxation process must
be operative impeding the usual Liouville-Vlasov degeneration



302 I.V. Chashei & H.J. Fahr: Thermokinetics of solar wind electrons

of the distribution function. Processes which we consider to be
responsible for this relaxation are quasilinear whistler wave –
electron interactions which we shall investigate in the next sec-
tions.

6. Dissipated wave energies
and modulated electron distributions

It is evident that the truncated Maxwellians introduced in
Sects. 2 and 3 can only be considered as appropriate to describe
the effective kinetics of the solar wind electrons in parametrized
form, if these functions can be physically motivated. Without
collisional or “quasi-collisional” influences on the electrons at
their evaporation from the lower corona by no means truncated
Maxwellians could be good approximations since the hemi-
spherical pitch angle isotropy would be violated. The classical
“Liouville’an” distribution function resulting in case of colli-
sionless evaporation is strongly pitch–angle dependent both in
the antisunward and in the sunward part of the distribution with
no particles populated in the elliptic branch of the velocity space
(see Fahr & Shizgal 1983). To nevertheless explain the transport
of electrons into these branches, and to better approach a trun-
cated Maxwellian, either wave–induced pitch–angle diffusion
and energy diffusion processes of electrons have to occur or the
electron distribution functions have to be revealed as unstable
with respect to driving waves by themselves.

The latter process has been discussed by Scime et al. (1994)
and Gary et al. (1994). These authors point to the possibility of
a heat flux instability with respect to whistler wave excitation.
Representing the electron distribution function as given by two
anisotropic Maxwellians (i.e. core and halo) with a relative drift
Gary et al.(1994) can calculate positive whistler wave growth
rates pointing to the fact that the electron heat flow may be
instability–limited to a value of the order ofqe ' 3

2mec
2
ecvA,

with cec being the thermal velocity of the electron core andvA

being the local Alfven velocity. However, as already noticed
by Dum et al. (1980) these growth rates are highly sensitive to
specific features of the distribution function. Thus no clearcut
result can be obtained with respect to the effectiveness of this
wave growth with respect to reshaping the distribution function.

We therefore look into an alternative relaxation mechanism
with explicit influences on the shaping of the electron distribu-
tion function. Here we think of quasilinear interactions of the
electrons with preexisting whistler wave turbulence. Connected
with such turbulences specific Fokker Planck diffusion coeffi-
cients can be evaluated which describe wave–induced electron
diffusion processes in velocity space. The process operating
with the highest rate, higher than the expansion rate, is pitch–
angle scattering of electrons by resonant whistler waves (see e.g.
Denskat et al. 1983). This process is appropriately described by
the so-called pitch–angle diffusion coefficientDµµ(v, µ) given
by (see Schlickeiser et al. 1991; Achatz et al. 1993):

Dµµ =
π

2
Ω2

e

B2
0
(1 − µ2)

[
I+(Ωe

vµ )

v‖µ‖ +
I−( Ωe

vµ+2vA
)

‖vµ + 2vA‖ ,

]
(49)

whereΩe, v andµ are gyrofrequency, velocity and pitch–angle
cosine of the electron, and whereI+(k) andI−(k) are whistler
waves with resonant wavenumbersk propagating parallel or
antiparallel toB0. Both for negative and positive values ofµ
the pitch–angle diffusion process operates quite efficient and
rapidly tends to isotropize the distribution function, whereas
due to a resonance gap in the cyclotron interaction of elec-
trons with whistler waves (e.g. see Dusenbery & Hollweg 1996;
Schlickeiser et al. 1991) around pitch–angles withµ ' 0 the
pitch–angle diffusion between the two hemisphereµ ≥ 0 and
µ ≤ 0 is strongly impeded. This quite naturally justifies the as-
sumption of truncated Maxwellians since these areµ–isotropic
in both hemispheres with theµ–anisotropy limited toµ ' 0.
Besides in the principles of this effect we are also interested
in its quantitative strength which is connected with the level of
whistler wave turbulence.

To clarify this point, we consider processes producing
whistler turbulence. We consider the interaction of high fre-
quency Alfv́en and fast magnetosonic waves with electrons
starting from the following assumptions:

1. The low frequency turbulence is described as a mixture of
Alfv én (a) and fast magnetosonic (f) waves.
2. The source of the turbulent energy is due to pumping of wave
energy from the largest to the smallest wavelengths (i.e from
the lower to the higher frequencies, the whistler modes, where
a part of the spectral energy flux is resonantly absorbed by solar
wind electrons).
3. The initial power spectra are of the following form:

W a,f
ω = W a,f

0

(
ω

ω0

)−γ0

with :γ0 ≤ 1 (50)

whereW a,f
0 are reference powers atω = ω0, and whereω is

the wave frequency measured in the solar rest frame.
4. The convective evolution of the power spectra with increas-
ing solar distance is described by the following wave energy
continuity equation:

div
[(

3
2
U + Ug

)
W a,f

ω

]
− 1

2
(U ◦ ∇)W a,f

ω = (51)

− ∂

∂ω
[Q(W a

ω , W f
ω )]

whereU is the solar wind velocity andUg is the group velocity
of the waves in the solar wind reference frame. The source term
on the right hand side describes the wavepower gain at frequency
ω due to divergence inω–space of the cascading wave energy
flow in a saturated turbulence field. This term does not contain
linear (L), but only nonlinear (NL) contributions and essentially
allows to separate the frequency space into two regions using
a critical frequencyω = ωc according to the following rule
roughly valid here:

At : ω < ωc ⇒ L(W a,f
ω ) = 0

(no gains from nonlinear terms)
ω > ωc ⇒ NL(W a

ω , W f
ω ) = 0

(no gains from linear terms)
ω = ωc ⇒ L(W a,f

ω ) ' NL(W a
ω , W f

ω )
(equal gains from both terms)

(52)
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Here the nonlinear terms are due to couplings between waves
of the Alfvén (a) and of the fast magnetosonic (f) types. The
above terms can be estimated by simple expressions if a radial
symmetry of the problem with constant solar wind velocity U
can be assumed, yielding:

L(W a,f
ω ) ' U

r
W a,f

ω (53)

and:

NL(W a
ω , W f

ω ) ' Γnl(W f,a
ω )W a,f

ω . (54)

whereΓnl is the nonlinear wavepower growth rate due to non-
linear wave couplings. For the critical frequencyω = ωc one
thus obtains from Eqs. (53) and (54):

Γnl(W a,f
ωc

) ' U

r
. (55)

The nonlinear growth rateΓnl is expressed by Chashei and
Shishov (1982a, 1982b) in the following form: a,f

Γnl(W a,f
ωc

) ' εa,f W a,f
ω ωc

ρv2
a

va

U + va
ωc (56)

where the numerical factorsεa,f describing the efficiency of
mode–couplings are shown to be of the order of 0.1. Using
Eqs. (56) and (47) and approximating(U +va) byU (i.e. super–
Alfv énic solar wind flow), we then arrive with Eq. (55) at:

εa,f W f,a
0

ρv2
a

va

U

(
ωc

ω0

)−γ0

ω2
c ' U

r
(57)

yielding the critical frequency as:

ωa,f
c ' ω0

[
U2

rva

ρv2
a

εa,fW f,a
0 ω2

0

] 1
2−γ0

(58)

Associated with the approximate expression for the linear wave
power sources one can derive the following expression for the to-
tal energy generation which cascades up to the nonlinear regime
from the critical frequencyω = ωc

Qa,f
c ' U

r

ωc∫
0

W a,f
ω dω =

U

r
W a,f

0

(
ωa,f

c

ω0

)−γc+1

× ω0

(1 − γ0)
(59)

Introducingωc from Eq. (54) one arrives at:

Qa,f
c ' U

r

W a,f
0

(1 − γ0)

[
U2

rva

ρv2
A

εa,fW a,f
0 ω2

0

] (1−γ0)
(2−γ0)

=
U

r
W a,f

0 (60)

The above expression forQa,f
c denotes the total spectral energy

flux in modes “a” and “f” respectively, integrated over the fre-
quency range of the inertial range whereγ0 = 3

2 is valid. Thus
the active heating sources resulting from energy dissipation in
the two modes are given by:

Qa,f = Qa,f
c ' U

r
wa,f

0 (61)

where the wave energyQf is dissipated to the electrons in the
whistler frequency domain, mostly at the highest frequency end,
i.e. atω ' Ωe, whereΩe is the electron cyclotron frequency.

7. Radial dependence of the dissipated wave energy

For purposes of an estimation we may base our considerations
on the background field given by Parker’s Archimedian spiral
and hence given by:

Br = B0

(r0

r

)2
; Bθ = 0; BΦ = B0

r2
0ΩS

Ur
sin(θ) (62)

whereθ is the ecliptic co–latitude andΩS is the solar rotation
frequency. We now define for clarification a critical radiusrc

where azimuthal and radial field components are just equal
given by: rc = U

(ΩS sin(θ)) . One can then study the radial

dependence ofQa,f for two distinct regions: i.e. for region I:
r ≤ rc, and for region II:r ≥ rc.

Region I: r ≤ rc. In this region, with dominance of the ra-
dial field component, the following radial dependences can be
assumed:

ρ ∝ r−2; va ∝ r−1; ρv2
a ∝ r−4; W0 ∝ r−3;

(WKB − theory!). (63)

With these dependences one evaluates Eq. (58) into the follow-
ing form:

Qa,f ∝ 1
r
r−3

[
1
r

] (1−γ0)
(2−γ0)

∝ 1
r
r

− (7−4γ0)
(2−γ0) . (64)

Thus one finds thatW a,f
0 has the followingr–dependence:

W a,f
0 ∝ r

− (7−4γ0)
(2−γ0) . (65)

For regionsr < 1 AU HELIOS A/B data show thatW0 ∝ r−3.5

(Tu & Marsch 1995). Comparing this result with Eq. (57) allows
one to conclude thatγ0 = 0, i.e. a nearly flat power spectrum.
Thus one derives the following radial dependence ofQa,f :

Qa,f ' Qa,f
c

(rc

r

)4.5
, with :r ≤ rc. (66)

Therefore one can conclude that the heat source connected with
the dissipated wave energy in this region falls off like:r−4.5.

Region 2:r ≥ rc. In this region the azimuthal field is dominant
and thus the following radial dependences have to be considered:

ρ ∝ r−2; va ' const.; ρv2
a ∝ r−2;

W0 ∝ r−2; (WKB − theory!). (67)

Evaluating again Eq. (61) we thus arrive at:

Qa,f ∝ 1
r
r

− (5−3γ0)
(2−γ0) (68)

For a substantially flat spectrum withγ0 ' 0 one therefore
derives in this region the following radial dependence:

qa,f ' Qa,f
c

(rc

r

)3.5
, r ≥ rc. (69)
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8. Relevance of electron heating by waves

Now, we estimate the importance of the wave energy source
given by Eq. (61) and evaluated for the regionr ≤ rc and
r ≥ rc by Eqs. (66) and (69). It is known that the level
of magnetic field turbulences, essentially of Alfvénic type, at
r ' rc ' 1 AU is moderate (see Tu & Marsch 1995), implying
that Wα

0 = <δB2>
4π ≤ B2

4π whereB is the background inter-
planetary magnetic field and< δB2 >=

∑
< δB2

ii > is the
variance of the field fluctuations.

The level of fast magnetosonic waves (compressive MHD
waves) responsible for the turbulent energy pumped into the
dissipative whistler frequency domain can be estimated using
relevant data of density fluctuations like those presented by Tu
& Marsch (1995) yielding:

< δn2 >

< n2 >
' 0.1

< δB2 >

B2 (70)

We may thus suppose thatW f
0 ' 0.1Wα

0 , also because in ad-
dition this estimate agrees with data given by Leamon et al.
(1998). Using this result we finally obtain the following expres-
sion for the powerQf transfered from fast magnetosonic waves
to electrons in form of thermal energy:

Qf ' Qf
c

(rc

r

)α

, (71)

whereα = 4.5 was obtained for region I:r ≤ rc, andα = 3.5
was obtained for region II:r ≥ rc. Evaluation ofQc in the form:

Qf
c ' W f

c

U

rc
' 0.1

B2
c

4π

U

rc
, (72)

with r ' rc ' 1 AU; U = 400 km s−1; andBc = 5 10−5

Gauss, yields:

qw = Qf
c rc ' 1

µW

m2 . (73)

A comparison ofqw given above with the mean value of the
electron heat flow at 1 AU, i.e.qe(r = 1AU) = 8.8µW

m2 , given
by Scime et al. (1994) and also taken into account the radial
dependence of this heat flow byqe ∝ r−3, one can conclude that
the direct heating of electrons by waves would not be sufficient
to maintain the electron heatflow at regionsr ≤ rc ' 1 AU
whereqw according to Eq. (62) is given byqw ' r−3.5 and
thus is falling off with distance faster thanqe. Wave heating
may, however, become important at distancesr ≥ rc, since
hereqw according to Eq. (66) is given by:qw ' r−2.5, and thus
drops off withr less rapidly thanqe.

On the other hand, in our concept of truncated Maxwellians
we need to assume that quasilinear electron- whistler-wave in-
teraction via pitch-angle scattering by waves is operating which
has to be energetically effective enough so that the wave energy
input into the whistler frequency domain is about equivalent to
the energy losses due to the growing truncation with increasing
distance. Inspection of Eq. (47) then requires that:

qw
c ' rcSe(rc) = (γe − 2)qer(rc)

rc

r
(74)

which with r = rc ' 1 AU and Eqs. (39) and (40) simply
requires that:

qw
c ' 1

µW

m2 ' qer(r = 1 AU) (75)

= 1.08 × 4.16
µW

m2 = 4.5
µW

m2 (76)

This shows that the concept of truncated Maxwellians presented
above regulating the solar wind electron heat flow connected
with energy absorption from fast magnetosonic waves cascading
up in frequency to the whistler frequency domain, appears to be
feasible and reasonable.
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Spitzer L. Jr., Ḧarm R., 1953, Phys. Rev. 89, 977
Tu C.Y., Marsch E., 1995, Space Sci. Rev. 73, 1


	Introduction to the exospheric view of the corona
	 Solar wind electron hydrodynamics basedhfill penalty -@M on truncated Maxwellians
	Estimated effect of truncated distribution functions 
	Calculation of the electron heat conduction flow
	The magnitude and radial gradienthfill penalty -@M of the electron heat flow 
	Dissipated wave energieshfill penalty -@M and modulated electron distributions 
	Radial dependence of the dissipated wave energy 
	Relevance of electron heating by waves 

