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Abstract. We reconsider the problem of stability of the trian-
gular Lagrangian equilibria of the restricted problem of three
bodies. We consider in particular the Sun–Jupiter model and the
Trojan asteroids in the neighbourhood of the point L4. In the
spirit of Nekhoroshev’s theory on stability over exponentially
large times, we are able to prove that stability over the age of the
universe is guaranteed on a region big enough to include a few
known asteroids. This significantly improves previous works on
the same subject.
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1. Introduction

We reconsider the problem of stability of the Lagrangian equi-
libria of the restricted problem of three bodies in the light of
Nekhoroshev’s theory of stability over exponentially large time
intervals. More precisely, we look for stability for times of the
order of the estimated age of the universe.

The problem has been previously investigated in the same
spirit by Giorgilli et al. (1989), Simó (1989) and Celletti &
Giorgilli (1991) . The underlying idea was to combine analytical
and numerical tools in order to prove that if the initial datum of
an orbit is sufficiently close to the equilibrium (in phase space),
then the orbit is confined in some neighbourhood of the equilib-
rium for a very long time, fixed in advance. The problem is to
produce realistic stability estimates, possibly applicable to real
asteroids. Actually, the work of Simó (1989) and of Celletti &
Giorgilli (1991) on the Sun–Jupiter–L4 case has produced re-
alistic estimates: roughly speaking, stability over the age of the
universe is proved in a neighbourhood the size of which is of or-
der 104 Km. Unfortunately, as discussed by Celletti & Giorgilli
(1991), the size of the region where asteroids are actually found
turns out to be larger, by a factor 300 (in the best case) to 3000,
than the estimated stability region.
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The problem is whether or not this kind of estimates can be
improved. We attempt to achieve a not negligible improvement
by taking into account three possible changes with respect to
the quoted work. The first point is concerned with the choice of
coordinates; the second point consists in a better choice of the
norms used in order to estimate the size of some functions; the
third point is connected with the possibility of making expansion
up to higher orders with respect to the previous works.

As to the first point, our remark is that numerical investiga-
tions show that the projection of the stability region on the plane
of Jupiter’s orbit is a banana–shaped region which lies close to
the circle with center in the sun and radius roughly equal to
the Sun–Jupiter distance. Now, all previous works were based
on expansions in cartesian coordinates around the Lagrangian
equilibrium point. That cartesian coordinates are not suitable to
describe regions with a circular shape is evident to everybody.
Thus, we used polar coordinates, which are better candidates.
This elementary remark is the most important source of im-
provement.

The second point is rather technical, and will be discussed
in detail in Sect. 2.3. Roughly speaking, the problem is how to
compute an estimate of the size of a function when we know the
coefficients of its Taylor expansion. With respect to previous
works we introduce here a better norm.

The third point can be illustrated as follows. According to
Nekhoroshev’s theory, the series arising from classical pertur-
bation theory have an asymptotic character. This means that at
some point one should reach an optimal value for the order of
expansion, which gives the best possible result. The exponen-
tial stability times typical of Nekhoroshev’s theory are actually
based on an analytical estimate of such an optimal order. From
a practical viewpoint it turns out that the optimal order could
be so high that it cannot be reached in explicit expansion using
computer algebra. However, it is legitimate to explore how the
results improve when the expansion order is increased. For this
reason, we decided to study the planar problem instead of the
spatial one, as considered in the quoted works. Indeed, reducing
the number of degrees of freedom from 3 to 2 allows us to make
perturbation expansion up to order 35 instead of 22. However,
the most interesting result is that looking for stability results
over the age of the universe for the known asteroids we find that
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sometimes the optimal order is less than 34, which means that
we are actually close to that limit.

The application of the present method to the known Trojan
asteroids in the Sun–Jupiter–L4 system shows that the overall
improvement gives realistic results. Indeed, it turns out that 4
known asteroids are inside the region where stability can be
guaranteed for a time as long as the estimated age of the universe.
Moreover, the majority of the real asteroids fail to enter this
region by just a factor 10. Thus, it is likely that with some
further improvement of our method we might succeed in proving
the practical stability of the orbit of most Trojan asteroids. A
possible suggestion is, for instance, choosing coordinates more
adapted to the actual shape of the stability domain, as given by
numerical computations.

2. Theoretical framework

We start with the Hamiltonian of the restricted problem of three
bodies in the planar circular case. For simplicity, we refer to
the Sun–Jupiter case. We introduce a uniformly rotating frame
(O, q1, q2) as follows: the origin is located at the center of mass
of the Jupiter–Sun system; the axes are oriented in such a way
that the Sun is always at the point (µ, 0) and Jupiter at the point
(1 − µ, 0); the physical units are chosen so that the mass of
Jupiter is µ and the mass of the Sun is 1 − µ, the distance
between Jupiter and the Sun is 1, and the angular velocity of
Jupiter is 1. Then the Hamiltonian has the form

H =
1
2

(p2
1 + p2

2) + q2p1 − q1p2

− 1 − µ√
(q1 − µ)2 + q2

2

− µ√
(q1 + 1 − µ)2 + q2

2

(1)

In this system of coordinates the Lagrangian point L4 is located
at q1 = − 1

2 (1 − 2µ), q2 =
√

3
2 , p1 = −q2, p2 = q1.

2.1. Expansion around the point L4

On the Hamiltonian (1) we perform a sequence of transforma-
tions.

(i) We move the origin to the Sun, thus considering a heliocen-
tric system. The generating function of the corresponding
canonical transformation is

W1 = −(Q1 + µ)p1 −Q2p2 + µQ2

where Q1, Q2, P2, P2 denote the heliocentric coordinates.
(ii) We introduce polar coordinates via the canonical transfor-

mation generated by

W2 = −%(P1 cosϑ + P2 sin ϑ) ,

where the polar coordinates are denoted by %, ϑ, and the
corresponding momenta will be denoted as p%, pϑ.

(iii) Forgetting that ϑ is an angle, we introduce a local reference
system in the neighbourhood of the point L4. Remarking
that in polar coordinates the point L4 is

% = 1 , ϑ =
2π
3

, p% = 0 , pϑ = 1 ,

the canonical transformation is generated by

W3 = px(%− 1) + (py + 1)ϑ− 2π
3
py .

The canonical coordinates will be denoted by x, y, px, py .
After these transformations the Hamiltonian is given the
form

H =
1
2

[
p2
x +

(py + 1)2

(x + 1)2

]
− py − µ(x + 1) cos

(
y +

2π
3

)
−1 − µ

x + 1
− µ√

(x + 1)2 + 1 + 2(x + 1) cos(y + 2π
3 )

(2)

(iv) We expand the Hamiltonian in Taylor series around the ori-
gin, thus giving it the form

H = H2 + H3 + H4 + . . . (3)

where

H2 =
1
2

(p2
x + p2

y) − 2xpy

+

(
1
2

+
9µ
8

)
x2 − 9µ

8
y2 +

3
√

3µ
4

xy (4)

and Hs for s > 2 is a homogeneous polynomial of degree s
in x, y, px, py . The explicit expansion of the terms of degree
s > 2 of the Hamiltonian up to a given order is actually
made by computer.

(v) The final transformation gives the quadratic part of the
Hamiltonian the diagonal form

H2 =
ω1

2
(x2

1 + y2
1) +

ω2

2
(x2

2 + y2
2) , (5)

where x1, x2, y1, y2 are the canonical coordinates, and ω1

and ω2 are the frequencies. This is done via the linear sym-
plectic transformation generated by the matrix

C = (e1m
−1/2
1 , e2m

−1/2
2 , f1m

−1/2
1 , f2m

−1/2
2 ) , (6)

where the real column vectors e1, e2, f1 and f2 are defined
as

ej + ifj =



8ω2
j + 4

√
3α + 9

8
16iωj + 4α + 3

√
3

8

iωj

(
8ω2

j + 4
√

3α + 9

8

)
iωj

4α + 3
√

3
8

+
4
√

3α + 9
4


, (7)

the real constants mj , (j = 1, 2) are given by

mj = ωjDj ,

Dj =

(
8ω2

j + 4
√

3α + 9

8

)2

(8)

−2

(√
3α +

9
4

)
+

(
4α + 3

√
3

8

)2

,

and ω2
1 , ω

2
2 , α are defined as

ω2
1 =

1
2

+
1
2

√
1 − 27

4
+ 4α2
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ω2
2 =

1
2
− 1

2

√
1 − 27

4
+ 4α2 , (9)

α = − (1 − 2µ)3
√

3
4

.

We emphasize that in order to have mj positive in (8) we
must put ω1 > 0 and ω2 < 0.

After these transformations the Hamiltonian turns out to be
a power series expansion of the form (3), withH2 in the diagonal
form (5). Remark that all the operations above can be explicitly
performed on computer, using for instance an algebraic manip-
ulator.

2.2. Construction of Birkhoff’s normal form

The form above of the Hamiltonian is specially adapted for ap-
plication of normal form theory. To this end, following Giorgilli
et al. (1989), we use the formalism of Lie transforms. For com-
pleteness sake, we recall the main points of the scheme. Con-
sidering a generating sequence {χs}s≥3, with χs(x, y) a homo-
geneous polynomial of degree s, we define the Lie transform
operator Tχ as

Tχ =
∑
s≥0

Es , (10)

where the sequence {Es}s≥0 of operators is recursively defined
as

E0 = 1 , Es =
s∑
j=1

j

s
Lχj+2Es−j ; (11)

here, Lχ· = {χ, ·}. The operator Tχ is linear and invertible, and
preserves products and Poisson brackets. For details and proofs,
see the paper of Giorgilli & Galgani (1978).

For a fixed integer r ≥ 3, we say that the Hamiltonian is in
Birkhoff’s normal form up to order r if it has the form

H (r) = H2 + Z3 + . . . + Zr + R(r) , (12)

where H2 has still the form (5), Zs (s = 3, . . . , r) depends only
on the actions Ij = (x2

j+y2
j )/2, and R(r) is a remainder, actually

a power series starting with terms of degree r+1. Under suitable
nonresonance hypotheses on the unperturbed frequenciesω, the
Hamiltonian can be given the normal form above up to order r
via a Lie transform generated by a finite generating sequence
χ(r) = {χ3, . . . , χr}, where χs is a homogeneous polynomial
of degree s.

Both the generating sequence and the normal form are de-
termined by solving with respect to the unknowns Z3, . . . , Zr

and χ3, . . . , χr the equation

Tχ(r)H (r) = H , (13)

where H is the original Hamiltonian. The explicit algorithm,
as well as a computer program doing all necessary algebraic
manipulations, is fully described by Giorgilli (1979), so we skip
all details.

2.3. Estimate of the stability time

The generating sequence χ(r) can be used to construct a canon-
ical transformation

x′ = Tχ(r)x , y′ = Tχ(r)y , (14)

where x′, y′ are the new variables, that we shall call “nor-
mal coordinates”. By construction, the transformed Hamilto-
nian H (r)(x′, y′) = T−1

χ(r)H is in normal form up to order r

(recall that the operator Tχ(r) is invertible). Thus, H (r) admits
approximate first integrals of the form

Ij(x′, y′) =
1
2

(
x′j

2 + y′j
2
)
, j = 1, 2 , (15)

which are actually action variables for the normalized part of
the Hamiltonian. This information is the basis of our estimate
of the size of the stability region. Indeed, we have

İj = {Ij , H (r)} = {Ij ,R(r)} , (16)

which is a power series starting with terms of degree r + 1.
We need now a few analytical tools, namely: domains, where

stability properties will be investigated, and norms, which will
allow us to estimate the size of various functions. We fix positive
constants R1, R2, and consider a family of domains of the form

∆%R =
{

(x, y) ∈ R4 : x2
j + y2

j ≤ %2R2
j

}
, (17)

where % is a positive parameter.
In order to introduce norms we need some considerations.

Consider a homogeneous polynomial f of degree s. We are
actually interested in estimating the maximum absolute value
of f over a domain ∆%R for fixed values of % and R. In other
words, we are interested in estimating a quantity like

|f |%R = sup
(x,y)∈∆%R

|f (x, y)| ,

namely the supremum norm of f over the domain ∆%R. Ac-
tually, computing such a quantity is impractical. So, we do the
following. We want to introduce polar coordinates rj , ϑj in each
of the coordinate planes xj , yj , namely, we want to transform
xj = rj cosϑj , yj = rj sin ϑj . Actually, it is more convenient
to perform the equivalent transformation to complex variables

xj =
1√
2

(
ξj + iηj

)
, yj =

i√
2

(
ξj − iηj

)
,

where

ξj =
rj√

2
e−iϑj , ηj = − irj√

2
eiϑj .

By this, the transformed function f (ξ, η) is still a homogeneous
polynomial of degree s, that we write as

f (ξ, η) =
∑

j1+j2+k1+k2=s

Cj1j2k1k2ξ
j1
1 ξ

j2
2 η

k1
1 ηk2

2 ,



A. Giorgilli & Ch. Skokos: On the stability of the trojan asteroids 257

where Cj1j2k1k2 are complex coefficient which are completely
determined by the transformation. From (x, y) ∈ ∆%R we
clearly have 0 ≤ rj < %Rj . Thus, it is an easy matter to con-
clude that the supremum norm |f |%R above does not exceed the
norm

‖f‖%R <
%s

2s/2

∑
j1j2k1k2

|Cj1j2k1k2 |Rj1+k1
1 Rj2+k2

2 . (18)

The latter norm is easy to compute; thus, we shall use it in the
following. Remark that, by definition, the elementary property
‖f‖%R = %s‖f‖R holds.

Of course, the domains (17) and the norm (18) are properly
defined both in the original coordinates (x, y) and in the normal
coordinates (x′, y′).

In order to estimate the stability time we use normal coor-
dinates. We remark that, by definition, one has (x′, y′) ∈ ∆%R

if and only if Ij ≤ %2R2
j/2. Suppose that the initial point of

an orbit lies in the domain ∆%0R for some positive %0. We fix
a larger domain ∆%R, with % > %0, and ask how long the orbit
will be confined in the latter domain. To this end, we use the
trivial inequality

|Ij(t) − Ij(0)| ≤ |t| sup
∆%R

∣∣İj∣∣ , (19)

which is clearly true until the orbit eventually escapes from
∆%R. The problem is how to estimate sup |İj |. To this end, we
proceed as follows. Write the remainder R(r) as a power series,
e.g.,

R(r) = H (r)
r+1 + H (r)

r+2 + . . . (20)

It is obviously impossible to determine the whole series, but the
first term, namely H (r)

r+1 can be easily constructed. Thus, we use
the approximate estimate

sup
∆%R

∣∣İj∣∣ < 2‖{Ij , H (r)
r+1}‖%R . (21)

This choice is heuristically justified as follows. Standard esti-
mates (see for instance Giorgilli et al. (1989)) allow to prove
that the power series above for the remainder is absolutely con-
vergent in the domain ∆%R provided % is small enough. More
precisely, one proves that one has ‖H (r)

s ‖R < Cs−r−1D for
some positive constant C and for D = ‖H (r)

r+1‖R. Actually, C−1

is the convergence radius for %. Now, if we take % ≤ C−1/2,
then the supremum of the remainder does not exceed the norm
of its first term multiplied by two. This justifies the factor 2 in
(21). Of course, we should check that the actual values of % sat-
isfy the restriction above. This technical point will be discussed
in Sect. 3.4 below.

Using (21), we estimate the escape time τr(%0, %) as

τr(%0, %) = min
j=1,2

R2
j(%2 − %2

0)

4‖{Ij , H (r)
r+1}‖%R

. (22)

This quantity still depends on the normalization order r, and
on the radii %0 and % of the initial and the final domain. We

now want to remove the dependence on r and %, thus getting an
estimated escape time depending only on the initial conditions,
namely on %0. To this end, we optimize the time with respect to
r and %. First, keeping r fixed, we write the r.h.s. of (22) as

R2
j(%2 − %2

0)

4%r+1‖{Ij , H (r)
r+1}‖R

, (23)

here, the mentioned property of the norm has been used. This
expression has clearly a maximum for

% = %0

√
r + 1
r − 1

; (24)

this is the value of % that we shall put in (22), thus getting τ
depending only on r and %0. Secondly, we compute this quantity
for r running from 3 to some maximal value r̃, and choose an
optimal value, ropt say, which maximizes the estimated escape
time. Thus, we produce an estimated escape time depending on
%0 only, namely

T (%0) = max
3≤r≤r̃

sup
%>%0

τr(%0, %) . (25)

The actual value of r̃ clearly depends on the power of the com-
puter and on the efficiency of the program doing all the necessary
algebraic manipulations.

3. Results

All our work is based on polynomial expansions. The key remark
is that a polynomial in several variables is uniquely represented
by an array of coefficients. Thus, performing algebraic manip-
ulations on power series truncated at some order just requires
routines for the following operations:

(i) storing and retrieving the coefficient corresponding to a
given monomial, which in turn is identified by the expo-
nents of the variables;

(ii) algebraic operations such as sum, products, differentiation
and Poisson brackets, linear change of coordinates;

(iii) solution of the homological equation during the process
of computation of the normal form, i.e., the equation
{H2, χs}+Zs = Qs whereχs is the generating function,Zs

is the normal form and Qs is a known polynomial of degree
s.

A detailed description of the program doing all such manipula-
tions is given by Giorgilli (1979).

All the expansions have been done with a program written
ad hoc. Use of general purpose symbolic manipulators has been
restricted to checking some of the operations.

3.1. Expansion of the Hamiltonian and computation
of the normal form

All the algebraic manipulations were done on power expansions
truncated at order r̃ = 35. The expansion of a function of 4
variables up to degree 35 requires 82 251 coefficients. On the
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other hand, the process of construction of normal form requires
the computation of several functions, with a total of 2 549 782
coefficients.

We start with the Hamiltonian in form (2), and expand it in
Taylor series around the origin. To this Hamiltonian we apply
the linear transformation with the matrix (6), using as parameter
µ the value 9.5387536×10−4, corresponding to the Sun–Jupiter
case. The harmonic frequencies turn out to be

ω1 ' 9.9675752552 × 10−1, ω2 ' −8.0463875837 × 10−2 .

At the end of this procedure the Hamiltonian has the form of a
power expansion H2 + H3 + . . . + Hr̃, with H2 in the diagonal
form (5).

The second step consists in determining the generating func-
tion which gives the Hamiltonian the normal form (12). At the
same time, for 3 ≤ r < r̃ we compute the coefficients of the
first term H (r)

r+1 of the remainder that we need in order to use
(21). This is an easy byproduct of the program computing the
normal form.

Having determined the generating sequence, we can deter-
mine the canonical transformation (14) as well as its inverse (if
we need) by just applying the operator Tχ defined by (10).

The final step consists in estimating the escape time. This
is done via a straightforward application of the procedure at the
end of the previous section. The results will depend, of course,
on the choice of the parameters R1, R2 entering the definition
(18) of the norm.

3.2. General results concerning the time and the region
of stability

For a general discussion we use the values R1 = R2 = 1 in the
definition of the norm. The results are summarized in Fig. 1. In
the upper part the graph of the estimated escape time T (%0) is
reported. Recall that this is the minimal time required for an
orbit starting on the domain ∆%0R to reach the border of the
domain ∆%R, with % given by (24). The value of r to be used
in this formula is the optimal one computed according to the
procedure at the end of Sect. 3.1, and can be seen in the lower
graph of the figure. One will notice that the upper curve in Fig. 1
is composed of straight segments, the slope of which changes
in correspondence with a change in the optimal order r. This is
easily understood from formula (23). Of course, the actual value
of r can not exceed 34, because we stopped the computation of
all functions, including the remainder, at order 35.

Let us now consider the problem of stability for an object
in the neighbourhood of the point L4. Precisely, let us look for
stability for a time as long as the age of the universe. Since the
time unit is (2π)−1 the period of Jupiter, the estimated age of
the universe is about 1010 time units. The corresponding value
of Log %0 is −1.536, namely, %0 ' 2.911 × 10−2.

In order to find the meaning of this value for the physical
system we should perform all transformations back to the polar
coordinates. This is a hard task to be performed by hand, of
course, because the domains are defined in normal coordinates.

Fig. 1. Upper figure: estimated stability time T as a function of the size
%0 of the initial domain, in Log Log scale. The estimated age of the
universe corresponds to LogT ' 10. Lower figure: optimal order r as
a function of %0

However, a rough evaluation is the following. Accepting that
the transformation from the old coordinates to the normal ones

x = T−1
χ(r)x

′ , y = T−1
χ(r)y

′ , (26)

namely the inverse of (14), is well defined on the domain ∆%0 ,
the image T−1

χ(r) (∆%0R) is close to a polydisk in the old coor-
dinates. An estimate of the size of the latter domain can be
computed as follows. Consider the actions Ij = (x2

j + y2
j )/2 and

I ′j = (x′j
2 +y′j

2)/2 in the old and normal variables, respectively.
Consider also the function

Ij(x, y)
∣∣
x=T−1

χ(r)x
′ , y=T−1

χ(r)y
′ =
(
T−1
χ(r)Ij

)
(x′, y′)

(here, we used the well known property of Lie transforms that
the substitution of coordinates can be effected by transforming
the functions). The r.h.s. of the latter expression is a power series
the lowest order term of which is exactly I ′j ; let us write this

series as I ′j + Φ(3)
j + Φ(4)

j + . . .. Thus, we get the approximate
estimate∣∣Ij − I ′j

∣∣
%0R

< %3
0

∥∥Φ(3)
j

∥∥
R

+ . . . + %r̃0
∥∥Φ(r̃)

j

∥∥
R
.
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Again, this is reasonable provided %0 is smaller than, say, half
of the convergence radius of the series (26). For a further dis-
cussion on this point, see Sect. 3.4 below. The r.h.s. of the latter
expression can be explicitly computed, since the generating se-
quence is known, and so the operatorsE1, . . . , Er̃max are known,
too. Using the explicit expressions of the functions and the value
above of %0, we find∣∣I1 − I ′1

∣∣
%0R

' 5.032 × 10−5 < 0.119 I ′1 .∣∣I2 − I ′2
∣∣
%0R

' 1.834 × 10−4 < 0.217 I ′2 .

We conclude that the stability domain in the old coordi-
nates contains a polydisk of radius % =

√
%2

0 − 2|I2 − I ′2| '
2.192× 10−2. Now, the coordinates of Jupiter are (1.307022×
10−3,−3.990948 × 10−3,−4.541613 × 10−3, 1.717878 ×
10−1), so that Jupiter is on the border of a polydisk of radius
%Jup ' 1.718342× 10−1. Thus, the estimated size of the stabil-
ity domain is roughly 0.127 times the distance of Jupiter from
the point L4.

3.3. Comparison with the existing asteroids

In order to see how far our estimates can be applied to the ex-
isting asteroids we follow Celletti & Giorgilli (1991). Using the
1994 catalog we extract the elements of the Trojan asteroids at
a fixed epoch, namely December 14, 1994, J.D.= 2449700.5.
Next, we find the elements of Jupiter at the same epoch. As-
suming that the orbit of Jupiter is circular, the position of the
point L4 is easily found. Then we transform the elements of
the asteroids in cartesian coordinates in a rotating heliocentric
system with the z axis orthogonal to the plane of Jupiter’s orbit.
In order to reduce the problem to a planar one, we project the
position of the asteroid in the x, y plane by forcing z = 0, and
finally we determine the position relative to the point L4, and
the coordinates x1, x2, y1, y2 which diagonalize the quadratic
part of the Hamiltonian. The latter transformation is explicitly
described in Sect. 3.1. At this point we adapt the radiiR1, R2 for
the computation of the norm to the initial data of each asteroid

by just puttingRj =
√
x2
j + y2

j . Finally, we determine the radius

%0 which ensures stability, in the sense above, for the age of the
universe. The results are reported in Table 1. The first column
reports the number of the asteroid; the next two columns give
the values of the parameters R1, R2; the third column gives the
estimated value of %0. By the definition ofR1, R2 the asteroid is
inside the stability region if %0 ≥ 1. It is seen that four asteroids
fall inside the estimated stability region. On the other hand, in
the worst case the estimated size is too small by a factor 30. It
is also interesting to remark that for most asteroids an improve-
ment of our estimates by a factor 10 would ensure stability.
Thus, the present study constitutes a significant improvement
with respect to the previous works. We emphasize that the im-
provement concerns both the choice of the polar coordinates,
which fit better the actual shape of the stability domain with
respect to the cartesian ones, and the estimate of the size.

Table 1. Estimated stability region for the known asteroids. The first
column gives the catalog number. The second and the third column are
the radii R1, R2 corresponding to the initial data. The fourth column
gives the value of %which ensures stability over the age of the universe;
the asteroid is inside if % > 1. The fifth column is the optimal order
for the wanted time, with a maximum of 34. The table is sorted in
decreasing order with respect to the stability parameter %

88181612 3.130230 10−2 2.101250 10−3 1.487790 33
89211605 3.314960 10−2 1.959370 10−2 1.135130 34
41790004 1.651660 10−2 3.106310 10−2 1.100990 34

1870 3.871410 10−2 1.717610 10−2 1.048060 33
2357 4.234620 10−2 2.850950 10−2 8.470200 10−1 34
5257 3.183610 10−2 4.242410 10−2 7.504500 10−1 34

88181912 7.083260 10−2 6.687100 10−3 6.597200 10−1 33
5233 4.163300 10−2 4.662950 10−2 6.495000 10−1 34
4708 7.099190 10−2 1.894850 10−2 6.275300 10−1 32

88181311 3.914500 10−2 5.262120 10−2 6.063800 10−1 34
1871 5.121390 10−2 4.691570 10−2 6.000700 10−1 34

31080004 7.002890 10−2 2.745100 10−2 5.956600 10−1 32
94031908 1.443780 10−2 6.123500 10−2 5.928600 10−1 34

2674 6.527500 10−2 3.592170 10−2 5.894200 10−1 34
88180412 7.829610 10−2 1.451120 10−2 5.876200 10−1 32
88180710 5.420360 10−2 5.338740 10−2 5.425600 10−1 34
88191102 9.320020 10−2 1.316370 10−2 4.979700 10−1 33
88182510 8.859670 10−2 3.638490 10−2 4.658500 10−1 32

2207 1.747150 10−2 8.093470 10−2 4.487900 10−1 34
89201902 7.247770 10−2 6.844550 10−2 4.163900 10−1 34
94031500 4.552550 10−2 8.358320 10−2 4.075300 10−1 34
89212405 3.008840 10−2 8.992360 10−2 4.005000 10−1 34
89211705 6.369570 10−2 8.261660 10−2 3.826400 10−1 34

5907 9.759570 10−2 6.062860 10−2 3.790100 10−1 34
88181411 9.442780 10−2 6.523500 10−2 3.757900 10−1 34

4792 1.091900 10−1 5.448570 10−2 3.617700 10−1 34
88180811 1.160100 10−1 5.001570 10−2 3.519900 10−1 33

3240 1.362500 10−1 2.751300 10−2 3.359200 10−1 32
5638 1.079900 10−1 8.124580 10−2 3.162000 10−1 34

43690004 1.018300 10−1 9.101430 10−2 3.061600 10−1 34
31630002 1.430300 10−1 4.449490 10−2 3.046700 10−1 32

4348 1.265200 10−1 7.450120 10−2 2.977800 10−1 34
4827 5.760190 10−2 1.213100 10−1 2.868400 10−1 34
4722 1.354100 10−1 8.204770 10−2 2.755600 10−1 34
1173 1.600900 10−1 4.983620 10−2 2.721800 10−1 32

10240002 8.412220 10−2 1.368200 10−1 2.434500 10−1 34
2594 9.109540 10−2 1.393500 10−1 2.360100 10−1 34
4829 6.679660 10−2 1.486500 10−1 2.358500 10−1 34

88180812 1.671900 10−1 9.927530 10−2 2.247200 10−1 34
4754 4.806640 10−2 1.677300 10−1 2.157600 10−1 34
4707 1.470000 10−1 1.294500 10−1 2.138800 10−1 34

43170004 1.345900 10−1 1.403400 10−1 2.106900 10−1 34
89210305 1.881300 10−1 1.057300 10−1 2.032200 10−1 34
88182012 1.910400 10−1 1.094400 10−1 1.989500 10−1 34

4805 1.221800 10−1 1.606700 10−1 1.974600 10−1 34
5511 1.328100 10−1 1.631800 10−1 1.908600 10−1 34

89211505 1.139400 10−1 1.739200 10−1 1.890100 10−1 34
20350004 1.754200 10−1 1.475100 10−1 1.838900 10−1 34

884 1.441100 10−1 1.686700 10−1 1.820300 10−1 34
2893 1.219200 10−1 1.871300 10−1 1.758800 10−1 34
1872 8.983270 10−2 2.039900 10−1 1.723100 10−1 34
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Table 1. (continued)

88181213 1.130100 10−1 2.026600 10−1 1.673900 10−1 34
51910004 1.823100 10−1 1.740300 10−1 1.644500 10−1 34

4828 5.293490 10−2 2.216600 10−1 1.637500 10−1 34
5130 5.491180 10−2 2.227200 10−1 1.629200 10−1 34
5476 9.824540 10−2 2.389300 10−1 1.483600 10−1 34

88181410 7.307780 10−2 2.659600 10−1 1.362000 10−1 34
88191602 2.174600 10−1 2.189900 10−1 1.333500 10−1 34

2223 7.393250 10−2 2.835900 10−1 1.278500 10−1 34
40350004 5.551710 10−2 2.853600 10−1 1.272900 10−1 34
88180813 1.353000 10−1 2.759800 10−1 1.255000 10−1 34

2241 6.331600 10−2 2.929700 10−1 1.239700 10−1 34
6002 1.724500 10−1 2.683600 10−1 1.230000 10−1 34

88192301 8.331460 10−2 2.981600 10−1 1.214500 10−1 34
3708 2.174100 10−1 2.654700 10−1 1.171100 10−1 34

88190103 1.383900 10−1 3.006200 10−1 1.162400 10−1 34
88181810 1.248200 10−1 3.104200 10−1 1.144900 10−1 34
87171400 1.661600 10−1 3.084000 10−1 1.106500 10−1 34
88191003 1.184300 10−1 3.296100 10−1 1.089100 10−1 34

5119 1.935700 10−1 3.044200 10−1 1.086700 10−1 34
88180512 2.171600 10−1 2.968600 10−1 1.079300 10−1 34
88190703 1.325300 10−1 3.294100 10−1 1.078800 10−1 34

1172 1.178100 10−1 3.436400 10−1 1.046900 10−1 34
31040004 1.007800 10−1 3.769800 10−1 9.614220 10−2 34

4715 1.572100 10−1 3.739900 10−1 9.453910 10−2 34
4832 2.347900 10−1 3.473200 10−1 9.399910 10−2 34

90221206 2.372900 10−1 4.004800 10−1 8.377690 10−2 34
1873 6.303730 10−2 4.416100 10−1 8.205510 10−2 34

88180701 2.256900 10−1 4.698200 10−1 7.394110 10−2 34
41010004 1.736500 10−1 4.898900 10−1 7.333020 10−2 34

617 2.613400 10−1 4.619700 10−1 7.324830 10−2 34
88181510 1.879700 10−1 5.021700 10−1 7.132770 10−2 34
88182511 2.228500 10−1 5.151500 10−1 6.839150 10−2 34

5648 2.483200 10−1 5.119400 10−1 6.776230 10−2 34
88191203 2.284500 10−1 5.581600 10−1 6.354580 10−2 34

5637 2.749200 10−1 5.709900 10−1 6.081990 10−2 34
90202212 2.078400 10−1 6.032100 10−1 5.963150 10−2 34

2895 1.843700 10−1 6.294600 10−1 5.746530 10−2 34
5120 2.533600 10−1 6.210100 10−1 5.713580 10−2 34
3451 2.285800 10−1 6.288900 10−1 5.705220 10−2 34
4791 1.298900 10−1 6.811600 10−1 5.332690 10−2 34
4709 1.737100 10−1 6.851900 10−1 5.294080 10−2 34
3317 3.085000 10−1 7.051000 10−1 4.989590 10−2 34
4867 2.331200 10−1 7.362600 10−1 4.901550 10−2 34
1867 2.169200 10−1 7.582500 10−1 4.773260 10−2 34

88172500 2.429700 10−1 9.020800 10−1 4.017310 10−2 34
1208 3.619200 10−1 9.975700 10−1 3.597040 10−2 34
2363 2.937300 10−1 1.012520 3.573360 10−2 34

3.4. A critical discussion of our approximation method

At some points of our procedure we used approximations of
some values by truncating the series at some finite order. We
refer in particular to the estimate of the remainder in Sect. 2.3,
formula (21) and to the estimate of the deformation in Sect. 3.2.
In both cases, the main question is whether the domain of con-
vergence of the series expansions for the transformation of coor-
dinates, the normal form and so on contains or not the polydisk

∆%0R for the values of %0 that we are considering. For defi-
niteness, let us consider the case R1 = R2 = 1, and for %0 the
value 2.911× 10−2, which, according to our estimates, ensures
stability for the age of the universe.

An analytical estimate can be attempted in the following
way. We use a result of Giorgilli et al. (1989). It is proven there
that if the generating sequence satisfies ‖χs‖R ≤ as−3b for
all s ≥ 3 and for some positive a and b, then the coordinate
transformation (14) is absolutely convergent in a polydisk ∆%R

with % =
(
3b + 8a/3

)−1
. The same is easily proven for the

inverse transformation (26), and for the transformation of any
other function, for instance the actions Ij or I ′j . Now, since
the generating sequence is finite, the constants a and b can be
explicitly determined by direct computation of the norms and
best fitting. For, it is enough to set

b = ‖χ3‖R , a = max
3≤s≤r̃

(‖χs‖R
‖χ3‖R

)1/(s−3)

.

We find a ' 14.164 and b ' 6.526, which gives a convergence
radius 1.744× 10−2, too small by a factor 1.67 with respect to
our value of %0.

However, we stress that the estimates above are purely an-
alytic, and so certainly pessimistic. So, let us proceed heuristi-
cally as follows. Consider for instance the series T−1

χ Ij that we
used in Sect. 2.3. Since we know the expansion of that series
up to order 35, we can try to evaluate its convergence radius by
using some convergence criterion for power series. To this end,
having computed the norms of Φ(3)

j , . . . ,Φ(35)
j , for 3 ≤ s ≤ 33

we fit them with a geometric sequence, i.e., we look for con-
stants c and d such that ‖Φ(s)

j ‖ ≤ cds. We do the same for the
coordinate transformations and find the following values:

Function c d

χ 6.526 14.164

Tχx1 1.0 14.693

Tχx2 1.0 14.890

Tχy1 1.0 14.782

Tχy2 1.0 15.123

T−1
χ I1 0.5 13.522

T−1
χ I2 0.5 14.047

The worst case gives d ' 15.123, which gives an estimated
convergence radius % ' 6.612 × 10−2. If we accept the latter
value as a good indicator of the true convergence radius, we
conclude that the value above of %0 is actually smaller than the
convergence radius of the series by a factor 2.2. Thus, our values
are safely inside the convergence domain.

Perhaps one might remark that the extra factor 2 that we
inserted in the estimate (21) in order to take into account the
effect of the rest of the series is actually too small. However,
the heuristic argument above shows that replacing 2 by some
bigger factor (10 or 100, for instance) should give a correct
result. On the other hand, looking at Fig. 1 it is immediately seen
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that the effect on the estimated value of %0 is not so relevant:
according to formula (22) the curve for T%0 is simply translated,
taking slightly smaller values, but the slope of the segment in
the region corresponding to %0 ' 2.911 × 10−2 is so high that
the value of % giving the age of the universe is changed only a
little. For instance, replacing 2 by 100 would change %0 only by
13 percent.

Acknowledgements. We thank Prof. G. Contopoulos for very useful
discussions. One of the authors (Ch. S.) is indebted to the State Schol-
arships Foundation of Greece (I.K.Y.) for a grant on behalf of Erasmus
programme F-1319. Part of this work has been done when one of the au-
thors (A.G.) was guest of the Forschunginstitut für Mathematik, ETH,
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