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Abstract. This paper considers the gas phase chemistry in a
protoplanetary accretion disk, especially the chemistry initiated
in the gas phase by destruction of dust close to the central star.

Slow radial particle transport moves gas and dust from the
cold outer parts of a protoplanetary accretion disk into its warm
central part where chemical reactions in the gas phase are acti-
vated. At the same time gases frozen on the surface of dust grains
are vaporized and later the dust grains themselves are vaporized
or destroyed by chemical surface reactions. These processes
initiate a rich chemistry in the protoplanetary accretion disk.

The simulation of chemical reactions, as in the case of an
accretion disk, mostly leads to a large and stiff system of differ-
ential or differential-algebraic equations. For the integration of
such systems implicit methods are required. We present an ef-
ficient BDF-method and give a detailed description of the error
and stepsize control and the strategies to minimize the numer-
ical effort of the linear algebra problems. Typical applications
for chemical processes (chemistry and dust destruction) in an
accretion disk are treated with this method. The corresponding
code DAESOL turned out to be more robust and much faster
than the more conventional code used first.

Some results for the chemistry in a protoplanetary accretion
disk are briefly discussed.

Key words: accretion disks – molecular processes – solar sys-
tem: formation – methods: numerical – dust

1. Introduction

It is generally thought that the process of star formation is ini-
tiated by a gravitational collapse in slowly rotating molecu-
lar cloud cores. Such a collapse quickly enhances centrifugal
forces, giving rise to a highly flattened configuration, i.e. a disk
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or a solar nebula associated with a stellar embryo. The early
protostar grows through rapid accretion of material out of the
disk. While there is evidence that the formation of disks around
pre-main-sequence objects is quite common (e.g., Beckwith and
Sargent 1993, Strom et al. 1993), there is no clear observational
evidence with respect to the final fate of the disk. Either the
material dissipates after feeding the stellar embryo, or a second
star or perhaps a brown dwarf is formed from the disk material
(see Mathieu (1994) for a review) or, as we know at least for
one single case a planetary system forms from the disk.

In this paper we are interested in this last case of a protoplan-
etary accretion disk from which at some late stage of the disks
evolution planetary companions do form by a process which
starts with assembling interstellar micron sized dust particles
into millimeter to centimeter sized particles and which ends up
after going through a hierarchy of several different accumula-
tion processes with bodies of planetary size (see Lissauer 1993
for a review).

The evolution of the solar nebula principally can be divided
into three stages (Cameron 1988). During the first stage, the for-
mation stage, the protoplanetary disk is built up from infalling
matter from a molecular cloud core. The formation time of the
disk equals roughly the collapse time of the protostellar cloud of
≈ 105 yr. In this stage, the disk mass may be large compared to
the stellar mass since the central star has not yet accreted much
of its final mass. The infalling matter passes a strong accre-
tion shock standing at the surface of the disk where the gas and
grains may be considerably processed (Neufeld and Hollenbach
1994). If the external supply of mass ceases the disk enters into
the second stage, the viscous stage. In this stage internal torques,
generated for instance by viscosity associated with convective
flows, cause a redistribution of angular momentum within the
disk. Mass is transported inwards and finally is incorporated
into the sun while angular momentum is transported outwards
causing a secular spread of the disk (Lynden-Bell and Pringle
1974). The ratio of disk mass to the protostellar mass is small
and the scale height of the disk at every distance from the star
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is small compared to the distance itself, i.e. the disk is geomet-
rically thin. It is possible that heating of the disk surface by the
sun suppresses convection and the accretion flow may cease en-
tirely. The duration of this phase is of the order of a few 105 yr. In
the third stage, the clearing stage the gaseous component of the
nebula is dispersed, probably by powerful pre-main sequence
stellar winds (Horedt 1978, Elmegreen 1978). This final stage
lasts for less than ≈ 107 yr (see Beckwith and Sargent 1993).

In this paper we concentrate on the viscous phase where
the accretion rate is small (of the order of 10−7 M�/yr) and
feeding of the disk by infalling material has ceased. During this
phase, planetary formation starts with agglomeration of dust
particles. The molecular cloud material added to the disk dur-
ing the first stage, which passed through a strong accretion shock
and changes its chemical composition by dissociation and dust
sublimation and subsequent reformation of molecules and con-
densates (Neufeld and Hollenbach 1994) has been accreted into
the sun. The material forming the disk during the accretion phase
has not passed through strong shocks and is likely to be nearly
unprocessed material from the molecular cloud.

The chemistry in a protoplanetary disk during this phase has
been discussed up to now on the basis of chemical equilibrium
considerations (cf. the reviews of Prinn (1993) and van Dishoek
et al. (1993) and references therein). While this may be correct
in the warm and dense inner parts of the disk at distances of
the order of 1 AU or less, this is unlikely to be true in the cold
outer parts (Duschl et al. 1996). In this paper we calculate the
chemical composition in the protoplanetary disk from reaction
kinetics.

We determine the chemical composition in a gas element as
it moves towards the centre. The physical state of the gas phase is
calculated from a model for the accretion disk which is coupled
to the chemistry of the gas and the dust. Due to the exponen-
tial temperature dependence of the chemical rate coefficients
and the close coupling between temperature, opacity and dust
evaporation the system of equations describing the problem is
extremely stiff and highly nonlinear.

For the solution of the stiff and nonlinear system we use
the integrator DAESOL (Bleser 1986, Eich 1987, Bauer 1994),
a multistep-method with variable coefficients. DAESOL is not
only suited for the solution of ordinary differential equations but
also for linear implicit index 1 differential-algebraic equations
of the following type

A(t, y, z) Çy = f (t, y, z)

0 = g(t, y, z) .

Emphasis is laid on the error and stepsize control, based on true
variable grid formulas, allowing the order and step size to change
in every step. We describe efficient monitor strategies that re-
duce the computational effort for evaluation and decomposition
of the Jacobian matrix, used in the implicit multistep-method.
The code DAESOL is compared with DDRIV3 (Kahaner et
al. 1989) which is widely used in astrophysics and also based
on BDF-formulas with variable coefficients, but with different
strategies in error control and order and step size selection. We

demonstrate that DAESOL is not only more robust but also
much faster.

The plan of this paper is as follows: In Sects. 2 and 3 we
briefly outline the accretion disk model and the basic equations
for the chemistry of the gas phase. Sect. 4 describes the method
used for calculating vaporization and dust destruction and the
coupling of these processes to the gas-phase chemistry. Sect. 5
describes some assumptions for the model calculation. In Sect.
6 we illustrate a BDF-method and detail the special strategies
used in the BDF-code DAESOL. Sect. 7 gives a short discussion
of the results for the chemistry in the protoplanetary accretion
disk.

2. Model of the accretion disk

A simple semi-analytical approach for the structure of a viscous
thin protoplanetary accretion disk was discussed in Duschl et
al. (1996, henceforth called paper I). Our calculation of the
chemistry in the accretion disk is based on this simplified model.
The basic equations for the disk structure are
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The radial coordinate s is in units of astronomical units (AU).
Σ is the surface density, h the (half) thickness of the disk, and
P and T are the pressure and temperature in the midplane of
the disk. κ is the mass absorption coefficient and µ the mean
molecular weight. The opacity is determined by (i) the opacity
of the gas, (ii) the opacity of the dust, and (iii) the opacity of
ices, if present (see Sect. 5.1 for details). κ and µ depend on P
and T .

The inwards directed drift velocity of the matter in the disk
is

vs = 26.94
cm
s
s−

2
5 ÇM−7 . (6)

The radial position of a gas parcel, starting at s0 at time t = 0
and drifting inwards with velocity vs is

s1.4 = s1.4
0 − 2.52 · 10−12 ÇM−7 t (7)

at time t.
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Table 1. Model parameters of the accretion disk used in the computa-
tion of disk structure

mass M 1M�
mass-loss rate ÇM 10−7 M�/yr
surface density Σ 2500 g/cm2 at s = 1

The accretion disk shrinks with decreasing s. According to
this, the slow radial inward drift of the gas in the accretion disk
is accompanied by a vertical velocity component vz given by

vz =
∂h

∂s
· vs ∼ z

s
vs . (8)

For symmetry reasons vz vanishes in the midplane. At a distance
h over the midplane vz equals the value given by (8). The z-
gradient of vz in the continuity equation is approximated, then,
by

∂vz
∂z
∼ vz

h
. (9)

This velocity is small enough not to disturb local hydrostatic
equilibrium.

The total density of hydrogen nuclei (assuming all H to be
in H2 and an abundance of He of 0.1) is

NH = 8.68 · 1014 cm−3
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The disk parameters used in the model calculations are listed in
Table 1.

3. Chemistry in the accretion disk

Chemical processes in cosmical objects usually proceed far
away from thermal equilibrium. In order to determine the chem-
ical composition of such objects, a kinetic treatment of the possi-
ble reaction pathways leading to the different atomic and molec-
ular species is necessary. For a protoplanetary accretion disk, it
has been argued in paper I that in the dense and warm central
parts of the disk the chemistry easily evolves into a chemical
equilibrium state. An equilibrium calculation for the composi-
tion of the gas phase has, then, been performed for the central
regions (where s ≤ 1) but it is questionable, whether even in
these dense inner regions of the disk the chemistry operates
under chemical equilibrium conditions. Here we consider ex-
plicitly the reaction kinetics in the protoplanetary disk.

3.1. Equations for the gas-phase chemistry

The gas phase chemistry in the disk is determined by two–body
and three–body reaction processes between neutral atomic and
molecular species. Usually ternary reactions are inefficient in
the chemistry of cosmic objects. For protostellar accretion disks,

however, three-body reactions have to be considered at least for
the hydrogen atoms and molecules in a simulation of the chem-
istry since (i) the density in the central part of the protoplanetary
system is quite high and collisional de-excitation by a third par-
ticle during two particle collisions becomes efficient, and (ii) the
available time for the system to evolve its chemistry is also long
compared to the reaction timescales of ternary reactions. We do
not take into account in this paper the different photoprocesses
(dissociation, ionization) by UV radiation possibly emitted by
the protosun because the disk is optically thick nor do we con-
sider the ionization by cosmic radiation since this process is
unlikely to be important in a protoplanetary disk (Dolginov and
Stepinsky 1994). We also neglect the possibility of ionization
by extinct radionuclides like Al26 or I129 which are known to
have existed in the early planetary system (see, e.g., Swindle
1993) and may form the source for some ionization of the mat-
ter (Umebayashi and Nakano 1981).

The basic equation governing the number density of a spe-
cific atomic or molecular species is the continuity equation. Ifni
denotes the particle density per unit volume of a given species i,
the equation describing the time evolution of ni without chem-
ical reactions is

∂ni
∂t

+∇ · (niv) = 0 . (11)

For the accretion disk we adopt a cylindrical coordinate system
with s denoting the radial distance from the protosun and z
denoting the height over the midplane of the disk. The change
of ni along a streamline of the gas flow is

dni
dt

=
∂ni
∂t

+ vs
∂ni
∂s

+ vz
∂ni
∂z

. (12)

We assume independence of all physical quantities on the azi-
muthal angular coordinate and add the contribution of the chem-
ical reactions to Eq. (11). Then we obtain the following ordinary
differential equation for ni in the comoving frame

dni
dt

= −ni
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)
(13)

−ni
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vs and vz are determined by the disk model, see Eqs. (6) and
(9). The second term on the r.h.s. describes the loss of species
i due to reactions between species i with species j. The third
term represents the gain of species i due to reactions between
species j and l and the fourth and fifth term describe the loss
and production of species i due to three particle collisions, re-
spectively. The kij , kijl, and kijlm are the rate coefficients of
the corresponding reactions.

The rate coefficients are approximated as usual by the Ar-
rhenius form

k = k0T
αexp

(
− Ea

kBT

)
. (14)
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Ea is the activation energy barrier, k0 and α are constants.
The differential equation (13) governs the time evolution of

each species i in the mixture of atoms and molecules within a
specific parcel of gas and we have such an equation for every
species i. We obtain, then, a system of coupled nonlinear ordi-
nary differential equations describing the time evolution of the
chemistry in the comoving frame of a gas element. These equa-
tions have to be solved simultaneously with a set of algebraic
equations for the disk structure. These are Eqs. (3) and (4) for
the state of the gas, Eq. (7) for the actual radial position s of the
gas parcel at each instant t and the equations determining the
mean molecular weight µ and the opacity κ, which are speci-
fied later. Eqs. (3), (4) and (7) can be solved directly whereas the
equations for the opacity κ and for the mean molecular weight
µ are implicit. In mathematical language, we deal with a sys-
tem of Differential Algebraic Equations (DAE), which requires
special methods for its efficient solution, described in detail in
Sect. 6.

3.2. The chemical reaction network

We consider in this paper the gas-phase chemistry of the four
most abundant elements H, C, N and O. Helium is considered in
some reactions as collision partner for dissociation or deexcita-
tion. The chemical reaction network for the neutral-neutral gas
phase reactions used in our calculation is that given by Mitchell
(1984)1. The rates are updated, where possible, by the rates
given in Baulch et al. (1992). The system of Mitchell is ex-
tended by some reactions given in Baulch et al. which are not
contained in the list of Mitchell, but we only considered such
reactions from Baulch et al. (1992) where either the determina-
tion of the corresponding backward reactions were possible or
where the backward reaction is inefficient for energetic reasons.

The system of binary reactions is extended by the following
ternary reactions of atomic and molecular hydrogen

H2 + H + H ←→ H2 + H2 (15)

H + H + H ←→ H + H2 . (16)

Rate coefficients for these reactions are taken from Baulch et
al. 1992. Usually, three particle reactions need not to be taken
into account if the densities of the species are as low as in the
interstellar matter or in circumstellar shells. But this does not
hold for the protoplanetary accretion where the particle density
of hydrogen is very high up to a considerable distance from the
protosun (at least up to some AU, cf. Eq. 10). The first reaction
(15) is responsible for the formation of H2 in the outermost parts
of the disk, when almost all the available hydrogen is bound into
H2, keeping the abundance of free H atoms at a very low level.
The second reaction (16) is important in the region where the
molecular hydrogen starts to dissociate where it prevents a rapid
complete dissociation.

The vaporization of silicate dust injects besides oxygen the
molecule SiO and the atoms Fe and Mg into the gas phase (see

1 Corrected for some misprints in that list.

paper I). The reaction network, for this reason, considers addi-
tionally the free atoms Si, Mg, and Fe and the molecule SiO. No
other compounds of these elements are considered in this calcu-
lation. At high temperature the SiO is dissociated by collisional
dissociation with hydrogen

SiO + H −→ Si + O + H (17)

SiO + H2 −→ Si + O + H2 . (18)

The rate coefficients for this reactions are estimated from those
of the similar CO collisional dissociation. The coefficient k0 is
assumed to be the same and the activation energy is set equal
to the binding energy of SiO (E=8.28 eV). The rate coefficient
for the two reactions is then assumed to be

k = 6 · 10−9 exp

(
−96000

T

)
.

Totally, our reaction network considers 450 reactions be-
tween 80 molecular species of the elements mentioned above.

4. Vaporization of ice and dust destruction

As in paper I we assume that the dust component consists of
a mixture of carbon and iron-magnesium-silicate dust. In this
paper we consider additionally the presence of H2O and CO
ice mantles on the dust grains. At the very low temperatures
(10 . . . 200 K) prevailing in the outer regions of the disk any
gaseous carbon monoxide and water vapor will freeze out on
the surface of solid particles. Other sorts of ices are observed
in the interstellar medium (Sandford & Allamandola, 1993) but
these are not considered here, because they do not form major
components of the ice mantles. We simply assume that the dust
grains are coated by an inner H2O–ice layer, which itself is
embedded in an outer CO–ice layer. This corresponds to the
assumption, that the ice mantles of all grains grew under the
same conditions in the parent molecular cloud, from which the
protostellar system has formed.

Our assumption is motivated by the fact that CO ice has
the lowest vaporization temperature (about 30K) while H2O
vaporizes at about 150K. Laboratory measurements seem to
indicate (Sandford and Allamandola 1988) that the CO may
diffuse into the H2O ice layer and form a mixed H2O-CO ice
which, then, may show a complex outgassing behaviour for the
CO component during warming up the ice. We do not consider
such complications in this paper.

The vaporization of the ices injects CO and H2O molecules
into the gas phase. This has not an immediate consequence on
the chemistry, since vaporization of the ices occurs at such a
low temperature, that the chemistry of the neutral molecules is
effectively frozen in due to activation energy barriers. It does,
however, increase the abundance of these molecules in the gas
phase and later when the temperature raises to such a level that
the neutral-neutral chemistry starts to operate, these molecules
are involved in the gas phase chemistry.

The fundamental method for calculating the vaporization is
outlined in paper I. We give here a brief explanation how this is
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coupled to the calculation of the gas phase chemistry. Consider
the vaporization of a given species i (either CO or H2O) from
a grain surface. We denote by Jai the rate of attachment of the
species i at the grain surface per unit time and unit surface area.
This is given by

Jai = αiAnivi . (19)

ni is the particle density in the gas phase,

vi =

√
kT

2πmi
(20)

its root mean square average thermal velocity2, A the particle
surface and αi the sticking probability. The reverse process, i.e.
the dissociation rate Jdi , is given by

Jdi = αiAvi
P eq
i

kT
. (21)

P eq
i denotes the partial pressure in chemical equilibrium of the

species i. The net loss rate by vaporization is therefore

Ji = Jdi − Jai = αiAvi
(P eq

i

kT
− ni

)
. (22)

The equation of change for the particle radius a is

da
dt

= V0 ·
∑
i

Ji (23)

where

V0 =
AmmH

ρD
(24)

is the volume occupied by the nominal molecule in the conden-
sate. Am is the molecular weight of the nominal molecule, mH

the hydrogen atom mass and ρD the bulk density of the solid.
We then have

da
dt

=
∑
i

αiV0vi
(
ni − P eq

i

kT

)
. (25)

The experimentally determined sticking coefficient of wa-
ter at temperatures below 230 K is close to unity (Pruppacher
& Klett 1978). We decided to use a value of α = 0.9 in our
calculation. The same value is used for CO. The density of ice
at 150 K and below is slightly less than that at room temperature
(Pruppacher & Klett 1978) but since this does not have much
influence on the results, we simply use the data for room tem-
perature. The vapor pressures of H2O and CO over their ices
are taken from Léger et al. (1985). More recent experimental
values for latent heat of vaporization (Sandford & Allaman-
dola 1988, 1993) seem to indicate slightly less values than that
used in our calculation. The density of solid CO is from CRC-
handbook (Weast & Astle 1982)3. The numerical values for the
coefficients used in our calculation are listed in Table 2.
2 Note that the rate (19) refers to unit surface area of the particle and
not to unit cross section. The rate per unit cross section is higher by a
factor of 4.
3 To determine the influence of such parameters on the solution sen-
sitivity analysis should be performed. DAESOL is already equipped
with efficient tool for this task.

Table 2. Data used for calculating the vaporization of ices

substance ρD[g/cm2] A α pvap[dyn/cm2]

H2O 1 18.015 0.9 P eq = e−6070/T+30.86

CO 1.25 28.01 0.9 P eq = e−1030/T+27.37

Sources of Data see text.

The data used for the calculation of the destruction of the
carbon and silicate dust grains are given in paper I.

Now we consider that we have an ensemble of dust grains
with a broad size spectrum. We assume that all these particles
have an inner ice mantle of H2O of thickness DH2O and an outer
ice mantle of CO of thicknessDCO. The central carbon or silicate
dust grains which serve as the condensation centres for the ices
are assumed to be spherical and to have the size distribution of
the Mathis-Rumpl-Nordsieck dust model (MRN) (Mathis et al.
1977)

f (a)da = Ca−
7
2 da .

We use logC = −15.20 for carbon dust and logC = −15.14 for
silicate dust. This corresponds to a 100% condensation of Si into
silicate grains and a 70% condensation of C into carbon grains.
These values forC are slightly different from the values given by
Mathis et al. (1977) because they used the element abundances
given by Cameron (1973), whereas we use the abundances given
by Anders & Grevesse (1989). The grains have sizes between
a minimum size amin = 0.005µm and a maximum size amax =
0.25µm. Outside this interval, the distribution function f (a)
vanishes. f (a) gives the number of grains per size interval and
per hydrogen nucleus.

The MRN size distribution is not a really good approxima-
tion for the size spectrum of carbon and silicate dust grains in the
protoplanetary accretion disk since it is known that in molecular
cloud cores, from which new stars are formed, small grains are
less abundant than predicted by the MRN model (e.g. Dorschner
and Henning 1995). But this is not a real problem for the model
calculation, since the vaporization of ices occurs close to equi-
librium and in this case is independent of the number of grains
and the thickness of their ice coatings.

Real grains with outer ice layers will not have the simple
spherical structure assumed above, but a much more compli-
cated structure due to agglomeration. However, nothing can be
said at present about the real structure of icy grains in the proto-
planetary accretion disk. For this reason we may take our model
as a crude zero order approximation for treating the problem of
ice vaporization.

The vaporization process is most conveniently described by
the total change ∆a of the particle radius during the past history
up to the present instant. The equation for this quantity is

d∆a

dt
= −da

dt
= −

∑
i

αiV0vi
(
ni − P eq

i

kT

)
(26)
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and this equation has to be solved subject to the initial condition
∆a = 0 at some instant where vaporization has not yet occurred.

Equation (26) has to be integrated simultaneously with the
equations for the chemistry and the disk model until ∆a be-
comes equal to the original thicknessDCO orDH2O, respectively.
At this limit, the corresponding ice layer is completely vapor-
ized and the equation (26) needs not to be integrated further. The
vaporization of CO and H2O are well separated in temperature.
Thus, the two differential equations (26) for the two sorts of
ice layers can be considered separately. Only one of these two
equations has to be included in the calculations at one time.

The total volume of the water ice layer is after reduction of
its original thickness DH2O by ∆aH2O

VH2O = NH
4
3
C

∫ amax

amin

a−
7
2 · (a + DH2O −∆aH2O

)3
da . (27)

NH is the particle density of hydrogen nuclei. Similar, the vol-
ume of the outer CO layer is given by

VCO = NH
4
3
C

∫ amax

amin

a−
7
2 · (a + DH2O + DCO −∆aCO

)3
da (28)

A simple integration yields the volumes VH2O and VCO as low
order polynomials in ∆a, from which they can easily be calcu-
lated. The change of the concentration ni of CO or H2O in the
gas phase due to the vaporization of the ice layer is

dni
dt

= − 1
V0

dVi
dt

(29)

(observe that Vi is reduced by the vaporization). V0 is given by
(24) and has to be calculated from the data of CO and H2O.
The r.h.s. of (29) has to be added as an additional rate term
to the r.h.s. of Eq. (13) for CO and H2O, respectively. This
determines the increase of the density ni of molecules from the
vaporizing ice layer in the gas phase and this in turn determines
the vaporization rate in Eq. (26).

In this way we have included the vaporization of ices in our
model calculation.

The dust grains are destroyed at much higher temperatures.
The basic processes are discussed in some detail in paper I.
In this paper vaporization is the only destruction process for
grains that is considered in the numerical simulation. In reality,
chemical sputtering by OH is the dominating process for the
carbon dust component, see Paper I and Lenzuni et al. (1995).
The precise destruction process has only a marginal influence
on the disk structure since carbon dust in any case is destroyed
prior to silicate dust. As shown in paper I, only the destruction
of the last dust component strongly modifies the disk structure.4

We include the vaporization of the two dust components in
the model calculation in just the same way as we did for the
vaporization of the ices. The reduction ∆a of grain size due to
vaporization is determined for both, the carbon and the silicate

4 The precise process, however, strongly influences the details of the
gas phase chemistry.

dust, by an equation of the form (26). The total volume of the
dust grains after reduction of their size by ∆a is

Vdust = NH
4
3
C

∫ amax

max(amin,∆a)
a−

7
2 · (a−∆a)3 da . (30)

The amount of vaporized material injected into the gas phase
has again to be determined from Eq. (29). For the numerical
simulation this changes the r.h.s. of the differential equations
and there appears a discontinuity both in the equations for gas
phase chemistry and in the equation for the change of grain
radius when the last grains disappear. This has to be treated
carefully in the numerical calculation.

The carbon injects mainly C1 and C3 and a small amount of
a lot of other species into the gas phase (for details see paper
I). For simplicity we have assumed that carbon is only injected
as C atoms into the gas phase. The association of carbon from
the gas phase is neglected in the case of carbon vaporization
(see paper I and Lenzuni et al. 1995). This means, that in Eq.
(26) the term proportional to ni is neglected. Except for this,
the details of the calculations are just the same as in the case of
vaporization of ices.

For the silicate dust we assume that the dust decomposes
into a number of small molecules since the nominal molecule
MgFeSiO4 of the solid silicate material does not exist as a free
molecule. Due to the lack of thermochemical data for the iron-
magnesium silicate we calculate the decomposition rate for the
following reaction

Mg2SiO4 −→ 2Mg + SiO + 3O (31)

which gives the dominating products for the decomposition of
the pure magnesium silicate. One of the liberated magnesium
atoms is counted as an Fe atom in the chemical rate equations.
The change of the particle radius (26) is calculated from the
effective vaporization rate of SiO molecules from the surface
(see paper I). The injection rate for SiO into the gas phase is
determined from the r.h.s. of Eq. (29) and this is added as an
additional rate term to the r.h.s. of Eq. (13) for SiO. The cor-
responding rate terms in the Eqs. (13) for Mg and Fe are the
same as that for SiO and the rate term in the equation for O
is three times that of SiO. In this way we have calculated the
decomposition of the silicate dust.

The main difference of the present treatment of silicate de-
struction compared to paper I is that we do not assume qua-
sistationary decomposition as in paper I but treat it as a time
dependent process, though in fact the numerical solution of the
time dependent problem confirms that the decomposition pro-
cess always operates close to a quasistationary equilibrium state.

5. Model calculation

5.1. The opacity

The mass absorption coefficient κ is approximated as in paper
I as a linear superposition of the three components: gas, carbon
dust and silicate dust. The contribution of the ice layers existing
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at low temperatures is neglected since this paper concentrates
on the chemistry in the warm inner parts of the disk.

The gas opacity is set to the constant value κgas =
10−3cm2 g−1. The dust opacity is calculated for the carbon and
the silicate dust using the approximations of the small particle
limit (see, for instance, Draine & Lee 1984) and the optical con-
stants of Draine (1985). Rosseland mean opacities are calculated
for each dust component separately and the mass absorption co-
efficient of the gas-dust mixture is set to

κ =
ρcarb

ρ
κcarb +

ρsil

ρ
κsil + κgas (32)

where ρcarb and ρsil are the mass density of the carbon and
silicon dust component in the gas-dust mixture and ρ the to-
tal mass density. Since the κcarb and κsil are of the order of
100 . . . 1000 cm2 · g−1 and the mass fraction of the dust is of
the order of 1%, the mass absorption coefficient of the mixture
is of the order of 1 cm2 · g−1. The assumed superposition of the
opacities to obtain the Rosseland mean opacity of the mixture
is not completely correct but should be of sufficient accuracy to
study the effect of the opacity variations during grain destruc-
tion.

The opacity of the two dust components is strongly tem-
perature dependent while the temperature given by (3) depends
itself on the opacity. This results in a nonlinear coupling be-
tween the temperature structure in the disk and the opacity. This
dependence is not strong, however, because κ enters with the
fourth square root in Eq. (3). On the other hand, if more than
90% of the dust has been destroyed the temperature structure
reacts strongly on the reduced opacity. This introduces a further
and strongly nonlinear coupling between the problem of disk
structure and chemistry, since the vaporization rate is extremely
temperature dependent. This coupling poses a high nonlinearity
for the numerical integration of the DAE–system.

5.2. Initial conditions

The elemental composition of the protoplanetary disk deter-
mines to a large extent its chemical state. There is no reason to
suspect that the composition of the material with high angular
momentum which collapsed to form the protoplanetary disk was
different from low angular momentum material which directly
fell into the central star. Thus, the element abundances in the
disk are believed to be the same in the disk and in the proto-sun.
We used in this calculation the solar system element abundances
as derived by Anders and Grevesse (1989) from solar, terrestrial
and meteoritic material.

As initial conditions for the gas phase chemistry, we pre-
scribe the chemical composition of the gas at a radius s =
1 000 AU. In this paper we assume an initial mixture consist-
ing of H2, H, and N2. Almost all of the available hydrogen is
bound in H2, only 1% is assumed to exist as free H-atoms. All
carbon that is not bound in dust particles is bound in CO, which
is frozen out on the surface of the dust grains. The oxygen in
the molecular cloud gas is partially present as free O atoms and
partially has formed H2O molecules. If the infalling molecular

cloud material passes the accretion shock close to the surface
of the disk, the gas is heated and the oxygen reacts with the hy-
drogen to form H2O (Neufeld and Hollenbach 1994). If the gas
cools down again the water vapour condenses onto the grains.
Thus we assume that all oxygen that is not bound into the sili-
cate dust is in H2O, which is frozen out on the surface of dust
grains. All nitrogen is assumed to be in N2.

This is a strong simplification of the chemical mixture which
is expected to come from the parent molecular cloud into the
accretion disk (Pollack et al. 1994). A lot of additional molecules
are observed in dense star forming regions and especially some
of the carbon should be in CH3OH and some of the nitrogen
is observed to have formed NH3. The bulk of these elements,
however, is in CO and N2 and for simplicity we initially neglect
all less abundant molecules in the gas phase since this most
likely has no influence on the chemistry in the warm and dense
inner portions of the disk.

A real protoplanetary disk is much smaller, typically only
100 AU (Ruden and Pollak 1991), than our choice of 1 000 AU
for the radius where we started our inwards integration. We
choose this bigger outer radius to achieve that the H/H2 ratio
has relaxed to a quasistationary equilibrium state before the gas
enters into the region of real interest, since the true initial H/H2

ratio is not known in advance.

6. The method of integration

The modeling of the chemistry in an accretion disk leads to
initial value problems for systems of Ordinary Differential
Equations (ODE), sometimes coupled to algebraic equations,
then resulting in so-called Differential Algebraic Equations
(DAE).

The matter in the accretion disk undergoes huge tempera-
ture changes. The rate coefficients depend exponentially on the
temperature, which varies from a few K to 2000 K or more.
These huge changes make the integration, especially the last
part, highly nonlinear. Simulation showed that the system is
also very stiff, which means, that some chemical reactions are
in the transient phase (the equilibrium point will be reached
very soon) and others vary more slowly. The Jacobian of the
right-hand side of the differential equations has then some large
negative real eigenvalues. A fast and reliable solution of such
systems requires solvers that are especially developed to cope
with these difficulties.

For the integration of such stiff systems implicit meth-
ods – mostly multistep-methods – are used (for a survey see,
e.g., Bock et al. 1995). Especially BDF-methods (Backward
Differentiation Formulae) have proven to be very successful
because of their good stability qualities (see, e.g., Brenan et al.
1989).

6.1. Backward differentiation formulae

BDF-methods are multistep-methods, based on polynomial in-
terpolation of the last, already computed values. The formulas



280 I. Bauer et al.: Chemical reactions in protoplanetary disks

have been developed first by Curtiss and Hirschfelder (1952)
and have been applied to DAEs by Gear (1971).

First we want to introduce shortly the principles of BDF-
methods. For the sake of lucidity we restrict to ordinary differ-
ential equations. Afterwards the principles are applied to DAEs
and the special strategies in the BDF-code DAESOL are de-
scribed.

In every step an explicit multistep-formula is used to com-
pute an initial guess for the implicit corrector polynomial:

Considering the nonlinear ODE

Çy = f (t, y), y(t0) = y0, y ∈ IRm, (33)

the idea is to approximate the derivative Çy by backward differ-
ences of the y-values.

In a k-step BDF-method the solution is approximated by a
polynomial PC

n+1 of order k, that fulfills the following condi-
tions:

Given already values for the solution at the last k time
points tn, . . . , tn+1−k the polynomial is required to interpolate
the computed solution at these points

PC
n+1(tn+1−i) = yn+1−i, i = 1, . . . , k,

and its derivative is equal to the right-hand side of the ODE

ÇPC
n+1(tn+1) = f (tn+1, P

C
n+1(tn+1)) .

The value at the actual time point tn+1 is then given by

PC
n+1(tn+1) = yn+1.

These k + 1 conditions define a unique polynomial of degree k.

Thus, in every step of the integration, one must solve

ÇPC
n+1(tn+1) =: − 1

h
(α0yn+1 + cc) = f (tn+1, yn+1) , (34)

with cc the constant part of the corrector polynomial except the
unknown yn+1.

This set of nonlinear equations is implicit and has to be solved
by an iterative method, like Newton’s method, which has been
proved good for stiff systems.

Solving the nonlinear system (34) via Newton iteration re-
quires a starting guess y(0)

n+1 (predictor). This is obtained by eval-
uating a polynomial PP

n+1 which interpolates the last, already
given k + 1 y-values

PP
n+1(tn+1−i) = yn+1−i, i = 1, . . . , k + 1,

at the point tn+1

PP
n+1(tn+1) = yPn+1 .

The polynomialPP
n+1(t) extrapolating the valuesyn, . . . , yn+1−k

is given by

PP
n+1(tn+1) =

k∑
i=0

pi(tn+1)∇iyn

with

pi(t) =

{
1 i = 0∏i

j=1(t− tn+1−j) i = 1, . . . , k + 1

and the divided differences

∇0yn = yn (35)

∇iyn =
∇i−1yn −∇i−1yn−1

tn − tn−i
.

(36)

Instead of the divided differences itself so-called modified di-
vided differences are stored. This reduces the expense of updat-
ing and storing the coefficients from step to step.

To denote the predictor and corrector polynomials PP
n+1 and

PC
n+1 in terms of modified divided differences we have to intro-

duce the following quantities:

/υj(n + 1) = tn+1 − tn+1−j = /υj−1(n) + hn+1

βj(n + 1) =
/υ1(n + 1) · . . . · /υj−1(n + 1)

/υ1(n) · . . . · /υj−1(n)
, βj(1) = 1

γj(n + 1) =
j∑
i=1

1
/υi(n + 1)

The modified divided differences are of the form

Φ∗
j (n) = /υ1(n + 1) · . . . · /υj−1(n + 1)∇j−1yn

and

δj(n + 1) =
j∑
i=1

Φ∗
i (n) .

denotes the sum of them.

The predictor is then given by

yPn+1 = yn +
k∑
j=1

Φ∗
j+1(n)

and for the corrector we have

ÇyCn+1 = ÇPC
n+1(tn+1)

= hn+1γk+1(n + 1)yCn+1 − cc

with

cc =
k∑
j=1

1
/υj(n + 1)

δj(n + 1) . (37)

From step to step only the quantities /υj and δj have to be stored.
(For a detailed description of the predictor and corrector poly-
nomials see, e.g., Brenan et al. (1989), Eich (1991)).
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6.2. Error estimation and stepsize control

Because the global error is not easily accessible, error control
of integration methods is based on estimates of the local error.
In contrast to other solvers the error estimates in DAESOL are
made on variable grids.

In the following we describe the error estimation and step
size selection for DAESOL based on the quantities given above.

6.2.1. Error estimation

The local error of a discretization method is defined by the
difference between the exact solution of the differential equation
inserted into the difference equation and the solution itself. In a
BDF-method of order k in step n + 1 we choose an estimate for
the local error

Ek(n + 1) =
hn+1

hn+1γk+1(n + 1)
(38)

·/υ1(n + 1) · . . . · /υk(n + 1) · ‖∇k+1yn+1‖ .
After every step we check this error formula. If the estimated
error Ek(n + 1) is bigger than a tolerance TOL, TOL a pre-
scribed value given by the user, the step is rejected and the step
size has to be reduced. The step size reduction after rejected
steps is described in detail at the end of this chapter.

The error in the next step of integration depends on the one
hand on the discretization of the BDF-method and on the other
hand on evaluating only an approximate solution. The first one
is the main part of the error and in the following we will only
take this one into consideration.

With the error in step n + 1 equal to (38), the accumulated
error in step n + 2 is of the form

Ek(n + 2) =
hn+2

hn+2γk+1(n + 2)
(39)

·/υ1(n + 2) · . . . · /υk(n + 2) · ‖∇k+1yn+2‖
Ç=

h2
n+2

hn+2γk+1(n + 2)
· q(hn+2) · [‖∇k+1yn+1‖ +

(/υk+2(n + 2) + /υk+1(n + 2)) · ‖∇k+2yn+1‖
]

with

q(hn+2) = (hn+2 + /υ1(n + 1)) · . . . · (hn+2 + /υk−1(n + 1)) .

6.2.2. Step size and order selection

The step size should be determined such that

Ek(n + 2) ≤ TOL.

Because it is very difficult to estimate a new step size from
formula (39), most solvers use a simplified error formula and
proceed as follows:

The analogue to formula (38) on equidistant grids is

Êk(n + 1) :=
1

hn+1γk+1(n + 1)
· k!hk+1‖∇k+1yn+1‖ .

With Êk(n + 1) ≤ T̂OL one obtains the new step size

ĥ =
k+1

√
hγk+1(n + 1) · T̂OL
k! ‖∇k+1yn+1‖ . (40)

To estimate a new step size and order this formula is evaluated
for different orders k′ = k−1, k, k+1 with TOL < T̂OL, e.g.,
T̂OL = 1

2 ·TOL. We increase or decrease the order by one if the
calculated step size according to this order is significantly bigger
than the one according to the order in the last step. Otherwise
the order is retained.

But formula (40) seems to be unsuitable for the computation
with changing step sizes. On the one hand it is based on error
formulas on variable grids (factor γk+1(n+ 1) ) and on the other
hand the step size is regarded as to be constant ( (k + 1)-st root).

Therefore DAESOL uses a different strategy for step size
control:

First also the maximal step size ĥ is chosen in the previous
mentioned damped way. For the next step the chosen step size
should fulfill the non-equidistant error formula (39):

Ek(n + 2) Ç=
h2

hn+2γk+1(n + 2)
· q(h) · [‖∇k+1yn+1‖ + (41)

(/υk+2(n + 2) + /υk+1(n + 2)) · ‖∇k+2yn+1‖
]

≤ TOL.

If that is true, the step size is accepted, otherwise it will be
reduced (by the way of formula (41)):

h2 =
1

q(h∗)
· (42)

hγk+1(n + 2) · TOL[‖∇k+1yn+1‖ + (/υk+2(n + 2) + /υk+1(n + 2)) · ‖∇k+2yn+1‖
]

with h∗ the previously chosen step size (see also Bock et al.
1995).

The order and step size control with step size selection based
on variable grids and released order leads to more reliability and
on an average to less rejected steps, which was shown by Bleser
(1986) for the examples of STIFF DETEST (Enright et al. 1975).

6.2.3. Scaling

The variables of the solution are often of different magnitude.
To take this into account, e.g., for error control, a weighted norm
is used instead of the l2-norm ‖y‖2

‖yn‖ =
1
m

√√√√ m∑
i=1

(
yn(i)

yscaln(i)

)2

with yscaln(i) = max (|yn(i)|, yscaln−1(i), atol(i)).
atolmay be a scalar or a vector. For problems whose solution

components are scaled very differently from each other it is
advisable to provide the tolerances vector valued. With the value
atol(i) one can weight component i of y. Components which are
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less than atol(i) · TOL will not be considered for error control
in the integration. This simple measure will save a lot of run
time.

The scaling described above is not the only one availabe
for DAESOL but the one used for the numerical results in this
paper. It is useful for stiff systems where one is not so much
interested in small solution components fading away very fast.

6.3. Solution of the nonlinear system - monitor strategy

The BDF-code DAESOL solves initial value problems for DAEs
of the following rather general linear implicit form

A(t, y, z) Çy = f (t, y, z)

0 = g(t, y, z), y(t0) = y0,
(43)

whereas A(t, y, z) and ∂g
∂z are assumed to be regular (A may be

the identity). The DAE is then said to be of index 1 (for a further
description of the index definition see, e.g., Brenan et al. 1989).

Inserting the BDF-formulas in (43) results in

A(tn+1, yn+1, zn+1)(α0yn+1 + cc) = −h f (tn+1, yn+1, zn+1)

0 = g(tn+1, yn+1, zn+1) .
(44)

This system defines implicitly the unknownxn+1 = (yn+1, zn+1).
We obtain an estimate xPn+1 for all components of xn+1 from the
predictor polynomial. This estimate is an initial guess for the
Newton-like method, used to solve the nonlinear system.

Defining (44) shortly as

F (xn+1) = 0, with xn+1 = (yn+1, zn+1)

a Newton-step is given by

x(m+1)
n+1 = x(m)

n+1 + ∆x(m+1)
n+1

whereas ∆x(m+1)
n+1 solves the linear system of equations

J(x(m)
n+1) ·∆x(m+1)

n+1 = −F (x(m)
n+1),

with

J(x(m)
n+1) =

(
α0A + Aycc + h fy Azcc + h fz

gy gz

)

the Jacobian of F and with cc the constant part of the corrector
polynomial approximating Çyn+1, defined in (37).

For many applications, especially when the system is large
or the functions of the DAE are very complex, evaluation and
decomposition of the Jacobian J takes most part of time of
the integration. In general the Jacobian J changes very little
during the Newton iteration and even during several steps of
integration. In order to save computing time, it is advisable to
keep the decomposition of J frozen as long as possible, but, on
the other hand, freezing the Jacobian impairs the convergence
ratio of the Newton-like method.

In the following we describe a monitor-strategy that is de-
signed to reduce the total computational effort for the integration
by freezing the Jacobian as long as possible.

Convergence of the Newton-like method holds on the fol-
lowing assumptions (Bock 1987):

Let J = ∂F
∂x be the Jacobian of F and J̃−1 the approxi-

mate inverse of J . For all τ ∈ [0, 1] and all m there are
bounds ω and κ such that

‖J̃−1(xm+1)(J(xm)− J(xm − τ∆xm)) ·∆xm‖
≤ ωmτ‖∆xm‖2, ωm ≤ ω <∞

‖J̃−1(xm+1)(F (xm)− J(xm)J̃−1(xm)F (xm))‖
≤ κm‖∆xm‖, κm ≤ κ < 1

and the starting point of the iteration has to fulfill

δ0 :=
ω0

2
‖∆x0‖ + κ0 < 1 . (45)

Then the iteration converges with

‖∆xm+1‖ ≤ (
ωm

2
‖∆xm‖ + κm)‖∆xm‖ ≤ ‖∆xm‖

and for the m-th iterated there is an a priori estimate

‖xm − x∗‖ ≤ ‖∆x0‖ δm0
1− δ0

. (46)

ω denotes the nonlinearity of the Jacobian J and κ is a measure
for the quality of the approximate inverse J̃−1.
After two iterations estimates about the behaviour of the con-
vergence ratio

‖∆x(1)‖
‖∆x(0)‖ ≈ δ0 (47)

can be given.
We require that maximal three Newton-iterations should be

taken in order to reduce the error of the predictor sufficiently,
e.g.,

‖xm − x∗‖ ≤ ‖∆x0‖ δm0
1− δ0

≤ 1
12
‖∆x0‖ .

After two Newton-iterations we get an estimate for the con-
vergence ratio from formula (47) and may decide whether to
perform an additional Newton-step or not. If the ratio δ0 is less
than 1

4 , the Newton-iteration is regarded as convergent, if the
ratio is less than 1

3 , it is regarded as convergent after one further
iteration. If the ratio is bigger than 1

3 the Newton-iteration failed
to converge.

A poor convergence ratio respectively no convergence may
have different reasons:

• a big change of the coefficients αi of the BDF-method and
of the step size h
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• a big change of the matrices ∂f
∂x , ∂A

∂x or ∂g
∂x• the predicted starting value for the Newton-method is not

sufficiently close to the solution

In the first two cases, κ is too big, that means that J̃−1 is too in-
accurate. The convergence of the Newton-iteration slows down
or the computed search direction for the solution is wrong. J̃−1

should be calculated anew.
In the last caseω is too big, the starting point for the Newton-

iteration does not lie in the domain of local convergence. The
BDF-step has to be repeated with reduced step size.

The succession of the error causes comes up to the effort of
repairing the poor convergence respectively no convergence of
the Newton-method.

Therefore the procedure in DAESOL is as follows

1) As long as
‖∆x1‖
‖∆x0‖ ≤ δ, e.g., δ = 1

3 , J̃−1 is frozen.

2) If the convergence ratio is too bad, keep the matrices ∂f
∂x ,

∂A
∂x and ∂g

∂x frozen but decompose J anew with actual BDF-
coefficients αi and actual stepsize h.

3) If J is still too inaccurate, reevaluate the matrices ∂f
∂x , ∂A

∂x

and ∂g
∂x and decompose J anew.

4) If there is still no convergence repeat the step with reduced
step size.

In most solvers step 2) is omitted. But experience showed that
it results in one third to one half evaluations of the matrices ∂f

∂x ,
∂A
∂x and ∂g

∂x .
The step size reduction in DAESOL after a failure of the

convergence is based on estimates on variable grids and the
step size is not only decreased, e.g., by a constant factor as
in other codes. The step size should be reduced such that the
Newton-method of the next step converges after two (or three)
iterations. To achieve this according to the above sketched step
size estimation

δ(new)
0 ≤ 1

4

has to be fulfilled.
In the following we describe an estimation of the step size

after rejected steps which takes the actual error into considera-
tion.

Because the steps 1) to 4) are performed in succession, the
approximate inverse J̃−1 of the Jacobian has been evaluated and
decomposed anew (in step 3)). The quantity κ is therefore 0 and
so we obtain from (45)

δ0 =
ω0

2
‖∆x(0)‖ .

With

δ(new)
0 =

ω0

2
‖∆x(0)

(new)‖ ≤
1
4

we have to fulfill

‖∆x(0)
(new)‖ ≤

‖∆x(0)‖
4 · δ0

.

Table 3. Comparison of DAESOL and DDRIV3 on the reduced model

TOL 10−4 10−5

DDRIV3 DAESOL DDRIV3 DAESOL

steps 30 240 804 57 178 1 262
rejected steps 14 561 83 25 945 108
average order 2.23 3.07 2.08 3.12
eval. of RHS 924 072 14 239 1 705 577 21 503
eval. of Jac. 18 085 234 33 346 355
dec. of Jac. 18 085 602 33 346 898

CPU-time [s] 1 772.1 33.1 3 386.1 51.3

We estimate the new error according to error formula (38). De-
creasing the tolerance TOL in this formula will implicitly re-
duce the step size. With Ek an approximation of Ek(n + 1) the
error formula

‖Ek‖ ≈ 1
hγk+1(n + 1)

· h

tn+1 − tn−k
· ‖∆x(0)‖

should require ‖Ek‖ ≤ TOL′ instead of ‖Ek‖ ≤ TOL, with

TOL′ =
1

hγk+1(n + 1)
· h

tn+1 − tn−k
· ‖∆x(0)‖

4 · δ0
.

Inserting TOL′ in (38) instead of TOL will lead to

δ(new)
0 ≤ 1

4
.

7. Results and interpretation

We followed the chemical evolution in a gas element which
moves from a large initial radius towards the centre of the disk.
The temperature and pressure both strongly increase and this
causes strong changes in the chemical composition of a specific
gas parcel in the course of time.

7.1. Numerical results

To show the efficiency of the integrator we compare DAESOL
with DDRIV3 (Kahaner et al. 1989), a code that is widely used
for the solution of initial value problems in astrophysics. The
code is also a multistep-method based on Backward Differenti-
ation Formulae, but with different strategies in error control and
order and step size selection.

For the comparison we consider a reduced model with 46
species and with the opacity κ and the mean molecular weight µ
held constant. This leads to a system of 46 differential equations.

Table 3 shows the comparison of the two codes from the
beginning of the integration (1000 AU) to 0.56 AU with different
achieved accuraciesTOL. The system was computed on an SGI
Indy with a R4600 processor.
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Fig. 1. Radial run of midplane temperature in the accretion disk. The
full line shows the result of the model calculation. The dotted line
shows, for comparison, the run of temperature in a model without dust.

For DDRIV3 the number of steps taken and of rejected steps
increases rapidly when higher accuracies have to be achieved,
which is also reflected in the long run-times.

To avoid instabilities order and step size in DDRIV3 are
fixed for at least k + 1 steps. This results in an average order of
about one lower than for DAESOL, where order and step size
may change in every step.

Also the number of function evaluations differs very much.
The higher number of steps in DDRIV3 is not the only reason
but also the monitor strategy in DAESOL which reduces the
number of evaluations of the Jacobian needed for the Newton-
method.

7.2. Disk structure

The general structure of the protoplanetary disk turns out to be
very similar to that obtained in paper I, since the disk structure
does not strongly depend on the details of the chemistry. The
essential process is the mutual coupling between dust absorp-
tion, temperature and vaporization of the last dust component.
Details of the disk structure, however, change.

Fig. 1 compares the central plane temperature in the accre-
tion disk for two models, one with dust and the other without
taking dust opacities into account. The dotted line indicates the
case of no dust opacity i.e. only with an assumed Rosseland
mean opacity of 0.001 cm2·g−1 for the gas phase. The radial dis-
tribution of temperature in the disk model shows two plateaus
corresponding to the evaporation of the carbon dust in the region
between≈ 1 and≈ 0.5 AU and of the olivine dust in the region
between ≈ 0.5 and ≈ 0.1 AU. They are caused by the decrease
of opacity in the course of dust evaporation which counteracts

Fig. 2. Radial run of disk height (in units AU) in the accretion disk.
The full line shows the result of the model calculation. The dotted line
shows, for comparison, the disk height in a model without dust.

the temperature increase with decreasing radius. When all dust
particles have disappeared, the two temperature curves join.

As in paper I we observe the reduction in the thickness of the
accretion disk due to dust destruction and the short plateau due
to the change in the mean molecular weight because of H2 dis-
sociation (cf. Fig. 2). There is one essential difference, however.
The molecular hydrogen dissociation occurs in the protoplan-
etary accretion disk in a state far from equilibrium. The rather
high particle density results in efficient H-H-recombination to
H2 which is not readily compensated by collisional dissocia-
tion. This shifts the region of hydrogen dissociation from around
≈ 0.25 AU in a model based on chemical equilibrium down into
a region of higher temperature around s ≈ 0.05 AU. The de-
gree of dissociation of hydrogen in the protoplanetary disk is
less than in chemical equilibrium.

7.3. Molecules in the gas phase

Fig. 3 shows the chemical composition of the gas phase in the
disk’s central plane in the region where carbon and silicate dust
evaporates. The initial composition changes only slightly. At
s ≈ 21 AU where T ≈ 30 K the CO ice evaporates and intro-
duces CO into the gas phase. At ≈ 8 AU where T ≈ 150 K
the water ice evaporates and introduces H2O into the gas phase.
The initially assumed 1% fraction of free H atoms drops to a
very low level due to H2 formation by three body collisions.
Ternary reactions are efficient in the protoplanetary disk due to
its high particle density and the rather long available reaction
time of the order of 105 yr. This simple composition of the gas
phase (mainly H2, H2O, CO, N2) prevails until the temperature
of the inwards moving gas parcel has climbed to a temperature
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Fig. 3. Run of molecular abundances in the accretion disk in the region of dust destruction.

of≈ 1000 K and collisional H dissociation and dust evaporation
sets in.

7.3.1. Carbon vaporization

Carbon dust evaporates first in the radius regime between 1 and
0.5 AU whereT ≈ 1 200 . . . 1 300 K. This results in an increase
of the CO abundance in the gas phase since CO is the most stable
carbon compound in an oxygen rich element mixture at elevated
temperatures. The conversion of the carbon into CO requires
several intermediate chemical reaction steps. In the course of
this process, the evaporated carbon atom reacts in the gas phase
first with the abundant H and forms the hydrocarbon molecules
CHi (i = 1, . . . 4). Due to the high H2 abundance the hydrogen
addition reactions

CHi + H2 −→ CHi+1 + H

proceed faster than the hydrogen abstraction reactions

CHi+1 + H −→ CHi + H2

and most of the carbon injected into the gas phase accumulates
in CH4 and a small fraction in CH3, CH2, CH. These simple hy-
drocarbons are found with noticeable abundances as temporary
products of carbon destruction at s ≈ 1 (cf. Fig. 3).

The oxidation of the hydrocarbons has to occur by reac-
tion with an oxygen bearing compound. The abundant water
molecule does react with the CHi via

CHi + H2O ←→ CHi+1 + OH .

This reaction is fast in both directions but has practically no in-
fluence on the abundance of CHi, since it cannot compete with
the more frequent reactions with hydrogen. Direct oxidation re-
actions of the hydrocarbons with the water vapor are known
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Fig. 4. Run of molecular abundances in the accretion disk in the innermost region of molecule dissociation.
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from flame chemistry to be inefficient. Oxidation reactions oc-
cur for hydrocarbons with OH and O (Warnatz 1981, 1983)
which are present in the gas phase as dissociation products of
water5:

CH3 + O −→ CH2O + H

and

CH2 + OH −→ CH2O + H .

The formaldehyde reacts with H to form the formyl radical

CH2O + H −→ CHO + H2

and this reacts again with H to form CO

CHO + H −→ CO + H2 .

A different possible pathway to CO goes through the con-
densation reaction

CH3 + CH3 −→ C2H4 + H2 .

The C2H4 looses in a series of reactions with H its hydrogen
atoms

C2Hi + H −→ C2Hi−1 + H2 .

until the ethynyl radical C2H is formed. This finally reacts with
O to form CO

C2H + OH −→ CO + CH2 .

These main reaction paths for the oxidation of the methane are
shown schematically in Fig. 5. They are just the same in the
accretion disk as in the combustion of hydrocarbons.

A lot of additional reactions occur besides these ones in
the conversion of the intermediate product CH4 into the final
product CO. More details will be discussed in a different pa-
per (Finocchi et al. 1996). The present results for the gas phase
chemistry are somewhat modified if carbon oxidation is consid-
ered (Finocchi et. al. 1996a).

7.3.2. Olivine evaporation

Between 0.5 and 0.1 AU (T ≈ 1 500 . . . 1 600 K) the olivine
dust particles evaporate and eventually are destroyed. This in-
jects Mg, Fe, SiO, and O into the gas phase. The evaporation of
the last dust component (in our case the olivine) is in numerical
respect the most critical one for solving the DAE system. The
strong nonlinear coupling between temperature, dust opacity
and dust evaporation and the very strong variation of physical
timescales over small temperature intervals makes it a hard task
to solve this problem numerically as a time dependent process.
In paper I this was treated in the simplifying approximation of
a quasistationary vaporization, which sails round most of the

5 In laboratory methane combustion they result from dissociation or
reaction of O2.

Fig. 5. A chemical pathway for CO formation

problems occurring in the time dependent case. Attempts to
solve this problem with known algorithms for stiff problems
failed. The algorithm finally used in this calculation, which is
discussed in Sect. 6, turned out to work fine without any prob-
lems.

The vaporization of the silicate injects besides the metals Mg
and Fe the molecule SiO and the atom O into the gas phase. In
our current calculations Fe and Mg remain unchanged because
no reactions of these species are taken into account as yet. The
SiO is dissociated later, at a higher temperature, by collisions
with H2 and H yielding Si and O in the gas phase. The free
oxygen atoms injected into the gas phase forms H2O according
to the two following reactions

O + H2 −→ OH + H

and

OH + H2 −→ H2O + H

Fig. 4 shows the inner part of the protoplanetary disk in
which a huge number of different molecular species occurs.
This is due to the fact that at temperatures above 1 500 K many
reactions become possible which are kinetically forbidden at
lower temperatures. Most of the molecules dissociate at radii
below ≈ 0.06 AU. Dissociation of molecular hydrogen occurs
at ≈ 0.05 AU. Close to the centre of the disk the temperature
increases so much that only the free atoms C, H, O, N, Mg, Fe,
and Si remain.

8. Summary

We have investigated the gas phase chemistry in a protoplanetary
accretion disk. In doing so we have concentrated on that aspects
of gas phase chemistry that is initiated by destruction of dust in
the vicinity of the accreting young star.
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For handling the stiffness of the system of DAEs for this
problem, together with the huge changes of the rate coefficients
resulting from the wide range of temperatures, we have pre-
sented and discussed a new BDF-method for the integration of
the equation system (Sect. 6). We find that the corresponding
numerical code DAESOL is more robust and faster than the
code used originally (Duschl et al. 1996), by typically a factor
of ≈ 30 in CPU time on otherwise identical systems.

The accretion disk was assumed to be in a stationary phase of
its evolution. We have used a semi-analytical description based
on the standard models for accretion disks (Sect. 2). For the
chemical aspect of the disk models, we considered explicitly the
reaction kinetics under the conditions of a protoplanetary disk
(Sect. 3). We mainly took into account the four most abundant
elements, H, C, N, and O. The dust at large radii was modelled
as a mixture of C- and of Fe-Mg-Si-dust with H2O and CO in the
dust grains’ ice mantles (Sect. 4). In addition to the formation
and dissociation of molecules, we allowed for vapourisation of
the ice mantles and for destruction of the dust thus linking the
evolution of the gas and of the dust phases in the disk. The direct
coupling between the accretion disk structure and the descrip-
tion of the chemistry manifests itself in the opacity coefficient
κ through its dependence on temperature, density and chemical
composition of the disk matter (Sect. 5).

While the general features of the disk structure are very sim-
ilar to what Duschl et al. (1996) find for the case without explicit
consideration of the gas phase chemistry, details that may be im-
portant for planetary evolution change considerably (Sect. 7).
This is mainly due to deviations from chemical equilibrium.

We observe dust destruction in the radial range of ≈
1 . . . 0.5 AU for carbon dust and between ≈ 0.5 and 0.1 AU
for olivine dust. Under the more realistic dust/gas coupling, hy-
drogen dissociation occurs at smaller radii (≈ 0.05 AU) than
in previous models (c.f., Duschl et al. 1996: ≈ 0.25 AU). For
radii < 0.05 AU all molecules are dissociated leaving only free
atoms C, H, O, N, Mg, and Si in our protoplanetary accretion
disk.
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