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Abstract. We present high-spatial resolution studies of the den-
sity field as predicted by Lagrangian perturbation approxima-
tions up to the third order. The first-order approximation is
equivalent to the “Zel’dovich approximation” for the type of
initial data analyzed. The study is performed for two simple
models which allow studying of typical features of the clus-
tering process in the early non-linear regime. We calculate the
initial perturbation potentials as solutions of Poisson equations
algebraically, and automate this calculation for a given initial
random density field. The presented models may also be use-
ful for other questions addressed to Lagrangian perturbation
solutions and for the comparison of different approximation
schemes. In an accompanying paper we investigate a detailed
comparison with various N-body integrators using these models
(Karakatsanis et al. 1996).

Results of the present paper include the following: 1. the
collapse is accelerated significantly by the higher-order correc-
tions confirming previous results by Moutarde et al. (1991);
2. the spatial structure of the density patterns predicted by the
“Zel’dovich approximation” differs much from those predicted
by the second- and third-order Lagrangian approximations; 3.
second-order effects amount to internal substructures such as
“second generation” -pancakes, -filaments and -clusters, as are
also observed in N-body simulations; 4. the third-order effect
gives rise to substructuring of the secondary mass-shells. The
hierarchy of shell-crossing singularities that form features small
high-density clumps at the intersections of caustics which we
interprete as gravitational fragmentation.
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cosmology: large-scale structure of universe

1. Introduction

It is commonly appreciated that Lagrangian perturbation so-
lutions provide useful models of large-scale structure. Com-
parison with numerical simulations have put them into a
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strong position in the list of currently discussed analytical or
semi-analytical approximations (see: Melott 1994 for a sum-
mary). Lagrangian perturbation schemes have been optimized
by smoothing the high-frequency end of the power spectrum of
density inhomogeneities such that they are capable of replacing
N-body integrators above some scale close, but smaller than the
non-linearity scale (i.e., where the r.m.s. density contrast is of
order unity) (Coles et al. 1993, Melott et al. 1994, 1995, Bouchet
et al. 1995, Sathyaprakash et al. 1995, Weiß et al. 1996). While
their application to pancake models, i.e., models with a large
high-frequency cutoff, demonstrates an excellent performance
up to the epoch when shell-crossing singularities in the cosmic
flow develop (Buchert et al. 1994), their application to later non-
linear stages fails unless the initial data are smoothed to avoid
substantial post-singularity evolution. This way the large-scale
structure is restored, and small-scale features arise due to the
collapse of the waves which were left in the initial data.

In the present work we want to look in more detail at the col-
lapsing structures around the epoch of shell-crossing on smaller
scales by using high-resolution techniques described by Buchert
& Bartelmann (1991) (however, here, we do not interpolate ini-
tial data). The present study can be viewed in line with previous
high-resolution studies of pancakes (Buchert 1989a,b, Melott
& Shandarin 1990, Beacom et al. 1991 (2D), and Buchert &
Bartelmann 1991 (2D and 3D)).

The applicability of the Lagrangian approximations has
been tested in previous work on the basis of cross-correlation
statistics of density fields in which the internal substructures are
not resolved. We here address the question which substructures
are predicted by these approximations and we shall single out
first-, second-, and third-order effects in the evolution of caustics
in the density field. The work by Alimi et al. (1990), Moutarde
et al. (1991) and the comparison of Lagrangian perturbation so-
lutions with the spherically symmetric solution by Munshi et al.
(1994) comprise steps in this direction.

We have taken care of the precision with which we realize
the Lagrangian schemes. Thus far, these analytical models have
to be realized numerically to set up the initial data in Fourier
space. In particular, the third-order model provides a complica-
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tion, since products of derivatives of perturbation potentials at
first and second order (as solutions of Poisson equations) form
the input for the third-order perturbation potentials, which de-
scribe interaction of perturbations (see the next subsection for
details). It is therefore desirable to control this realization of ini-
tial data in an optimal way to minimize numerical uncertainties.
We did this by calculating the perturbations fully analytically.
We have also automated the process of finding the perturba-
tion potentials from a single given initial velocity potential, or
density field, respectively, by using algebraic manipulation sys-
tems. This procedure is suitable for spectra with not too much
modes like in models with coherence length. Another advan-
tage of this analytical procedure is the possibility of improving
particle number, since we are not limited by storage as in the
case of FFT realizations. We therefore can present realizations
using 10243 particles. The structures shown can only be seen at
resolutions higher than 2563 particles in the simulation box.

We start with the derivation of a simple plane-wave model
attempted earlier by Moutarde et al. (1991) (see also Alimi et
al. 1990). Their third-order solution was derived just for this
model. (However, this solution did not pass a test we did by
inserting it into the Euler-Poisson system in Lagrangian form.)
We, here, proceed differently. We start from the generic third-
order solution given by Buchert (1994) and insert the plane-
wave model as a special case. Since both the generic model
and the special model have been checked to solve the original
equations (by using algebraic manipulation systems), we are
confident in our calculations. Besides automating algebraically
the derivation of the potentials as mentioned above, we also
exemplify the use of a set of local forms given by Buchert &
Ehlers (1993) and Buchert (1994) in the case of the Moutarde
et al. problem (see the appendix). We stick to that model first,
since it is simple and already shows the principal features of
the gravitational collapse we are interested in. Also in other
work on related subjects this model is useful as an example
(Mo & Buchert 1990, Matarrese et al. 1992), and can be used as
a toy-model to compare different approximation schemes. We
then move to generic initial data, i.e., data with no symmetry,
but restricted to a small enough box to assure the resolution of
patterns we are interested in.

2. A generic third-order solution

Let us recall the class of third-order solutions on which we
base our models. We require that, initially, the peculiar-velocity
u(X, t) to be proportional to the peculiar-acceleration w(X, t):

u(X, t0) = w(X, t0)t0 , (1)

where we have defined the fields as usual (compare Peebles
1980, Buchert 1992). Henceforth, we denote the peculiar-
velocity potential at the initial time t0 by S, u(X, t0) =: ∇0S,
and the peculiar-gravitational potential at t0 by φ, w(X, t0) =:
−∇0φ, where∇0 denotes the nabla operator with respect to the
Lagrangian coordinates X . The restriction (1) has proved to be
appropriate for the purpose of modeling large-scale structure,

since the peculiar-velocity field tends to be parallel to the grav-
itational peculiar-field strength after some time, related to the
existence of growing and decaying solutions in the linear regime
(Buchert & Ehlers 1993, Buchert 1994).

With a superposition ansatz for Lagrangian perturbations
of an Einstein-de Sitter background the following mapping
q = F (X, a) as irrotational solution of the Euler-Poisson sys-
tem in Lagrangian form up to the third order in the perturba-
tions from homogeneity has been obtained (Buchert 1994). F
defines the displacement map from Lagrangian coordinates X
to Eulerian coordinates q which are comoving with the un-
perturbed Hubble-flow; the general set of initial conditions
(φ(X), S(X)) is restricted according to S = −φt0 (see equa-
tion (1)); a(t) = (t/t0)2/3:

F = X + q1(a) ∇0S
(1)(X) + q2(a) ∇0S

(2)(X)

+ qa3 (a) ∇0S
(3a)(X) + qb3(a) ∇0S

(3b)(X)

− qc3(a) ∇0 × S(3c)(X) , (2)

with:
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where the initial displacement vectors have to be constructed
by solving seven elliptic boundary value problems (summation
over repeated indices; i,j,k = 1,2,3 with cyclic ordering).

∆0S
(1) = I(S,i,k) t0 , (2f )

∆0S
(2) = 2II(S(1)

,i,k) , (2g)

∆0S
(3a) = 3III(S(1)

,i,k) , (2h)

∆0S
(3b) =

∑
a,b,c

εabc
∂(S(2)

,a , S
(1)
,b , Xc)

∂(X1, X2, X3)
, (2i)

(∆0S
(3c))k = εpq[j

∂(S(2)
,i] , S

(1)
,p , Xq)

∂(X1, X2, X3)
. (2j, k, l)

An important remark relevant to any realization of the solution
(2) concerns the possibility of setting S(1) = St0 without loss of
generality, if initial data are spatially periodic (compare Buchert
1996, Ehlers & Buchert 1996 for details and proofs). With
this setting, the first-order solution reduces to the well-known
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“Zel’dovich approximation” (Zel’dovich 1970, 1973; Buchert
1992), which then assumes its familiar local form. Also, the
truncated third-order model (i.e., neglecting interaction terms)
is then, although of course non-locally, expressible in terms of
the initial data (compare eqs. (2f-h)).

The scalar potential S(3b) and the vector potential S(3c) gen-
erate interaction among the first- and second-order perturba-
tions. The general interaction term is not purely longitudinal:
inspite of the irrotationality of the flow in Eulerian space, vortic-
ity is generated in Lagrangian space starting at the third order
for this set of intial data. For more general initial data, this
happens already at second order. As our analysis of the so-
lution will show, it has sense to include the interaction term
S(3b) only, neglecting the transverse part altogether. However,
as will be demonstrated, keeping only the generating function
S(3a) results in a density pattern, which is not an adequate gen-
eralization of the second-order approximation. This “truncated
third-order” model has been proposed in (Buchert 1994) as the
“main body” of the perturbation sequence in the early nonlinear
regime, since all higher-order solutions are made up of interac-
tion terms among the perturbation potentials. A closer look at
the features presented in this work shows that the third-order
model has to be run with the interaction term S(3b).

3. Special clustering models in closed form

In the appendix we demonstrate how to construct special models
by using “local forms” for the displacement vectors. Although
analytically interesting, this procedure is cumbersome if applied
to more complex initial data. In this section we describe how
we can automate the process of finding closed form expressions
for the perturbation potentials.

In general, we are interested in a class of initial data which
can be represented by a finite Fourier sum of plane waves having
random amplitudes and random phases. The random variables
can, e.g., be specified in terms of a power spectrum of a Gaus-
sian random density field. Usually, such initial conditions are
generated by FFT (Fast Fourier Transform), a method which
was also used to realize the generic model in (Buchert et al.
1994, Melott et al. 1995, Weiß et al. 1996). However, there are
two limitations of this method which both restrict the power of
spatial resolution, an advantage which is in principle offered
by analytical solutions. One of these limitations is due to the
limited CPU storage for employing the FFT routine, the other
is due to a lack of precision which may arise by constructing
the initially small displacements from a given density field, or
by interpolating the particle displacements into a smooth den-
sity field (using, e.g., CIC binning), respectively. As an alter-
native, we suggest to solve the Poisson equations in eqs. (2)
algebraically by comparing the coefficients of Fourier sums in
the source terms and the perturbation potentials. This way the
solutions can be calculated to high accuracy without hitting on
CPU storage limitations. Since the model is a one-timestep map-
ping, the CPU time needed for the realization is still reasonably
small (5123 particles require CPU times of a few hours for the
generic model discussed below). However, we admit that the

algebraic procedure to solve for all seven perturbation poten-
tials in (2) is still limited by the CPU storage for the algebraic
program, and the compilation time of, e.g., plot routines can
be large for a large number of Fourier modes. Using the ma-
nipulation system Mathematica, we are able to construct all
perturbation potentials for ≈ 50 Fourier modes on a worksta-
tion with 256M storage. The results obtained with this method
have also been checked to solve the original equations using two
algebraic manipulation systems (Reduce and Mathematica).

For the special models constructed algebraically in this way
we have also run the previous code (using FFT), which con-
structs displacements from given density fields (A.G. Weiß ,
priv. comm.), and found as expected that the result is a slightly
smoothed variant of a direct calculation pursued in the present
work. At the same time, this was an independent check of the
third-order program used in previous work (compare Weiß &
Buchert 1993).

Besides the special model given in the appendix (Model I),
i.e., for the initial potential (ε = 2/3)

S(1)
I :=

−ε
(2π)2

(
αx cos(2πX) + αy cos(2πY ) + αz cos(2πZ)

)
,

(3a)

we have analyzed a generic model (Model II) with the following
initial potential (here, the coordinates are normalized by 2π):

S(1)
II := 0.1953

[
4.82 sin(−X − Y ) + 3.95 cos(−X − Y )

+8.82 sin(−X − Z) + 2.5 cos(−X − Z) + 5.32 sin(−X)

+2.11 cos(−X) + 3.29 sin(−X + Z) + 1.83 cos(−X + Z)

+6.7 sin(−X + Y ) + 4.05 cos(−X + Y ) + 6.92 sin(−Y − Z)

+1.2 cos(−Y − Z) + 3.8 sin(−Y ) + 4.77 cos(−Y )

+1.8 sin(−Y + Z) + 4.58 cos(−Y + Z) + 1.29 sin(−Z)

+6.6 cos(−Z) + 8.25 sin(Z) + 4.77 cos(−Z)

+3.67 sin(Y − Z) + 3.48 cos(Y − Z) + 2.4 sin(Y )

+6.02 cos(Y ) + 7.86 sin(Y + Z) + 6.64 cos(Y + Z)

+9.33 sin(X − Y ) + 0.87 cos(X − Y ) + 0.56 sin(X − Z)

+4.48 cos(X − Z) + 3.4 sin(X) + 5.77 cos(X)

+4.54 sin(X + Z) + 4.46 cos(X + Z) + 9.8 sin(X + Y )

+3.13 cos(X + Y )
]
. (3b)

The random coefficients have been determined by the require-
ment that the power spectrum had the slope +1 down to the
smallest wavelength, and the r.m.s. density contrast had the same
value as Model I. Model I is the model studied by Moutarde
et al. (1991); it has also been used by Mo & Buchert (1990)
(at first order) as a statistical toy-model, and by Buchert &
Ehlers (1993) (at second order) to demonstrate secondary shell-
crossings; Matarrese et al. (1992) and Kate Croudace (priv.
comm.) have compared general relativistic with Newtonian dy-
namics with the help of this model.

All seven perturbation potentials and the corresponding dis-
placement vectors are listed in the appendix for Model I. For
Model II the potentials and the displacement vectors can be
obtained on request (buchert@stat.physik.uni-muenchen.de).
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Fig. 2.

Fig. 1.
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4. High-resolution studies

We present high-resolution studies of the density field as pre-
dicted by the Lagrangian schemes for both models. This is done
by collecting 10243 trajectories into a (comoving) Eulerian grid
of 5123 cells for Model I (5123 into a grid of 2563 for Model II)
(for the method see Buchert & Bartelmann 1991).

Fig. 1 displays three evolution stages of the density field
predicted by Model I for the first-, second-, and third-order
perturbation solutions. (Initial data were given at z0 = 1000;
a(z0) = 1.) A manifest feature is the delay of the collapse time
for perturbation solutions at different orders; higher-order cor-
rections significantly accelerate the collapse. This result was
already stated by Moutarde et al. (1991). To compare the spa-
tial patterns for the different orders, we can roughly compare
the density fields “diagonally” in Fig. 1 (this way of compar-
ison will be discussed quantitatively in a forthcoming paper:
Karakatsanis et al. 1996): while the first-order solution (the
“Zel’dovich approximation”) carries mainly kinematical infor-
mation beyond the epoch of shell-crossing, the second-order
solution modifies the shape of the first mass-shell after cross-
ing and generates a second mass-shell as well as secondary
sheets and filaments inside the first structures (in agreement with
the previous study of the trajectory field by Buchert & Ehlers
1993); the third-order correction redistributes mass inside the
two mass-shells as well as in sheets and filaments.

Fig. 2 displays the third-order density field splitted into dif-
ferent parts of the third-order corrections in the solution (2): we
infer that the transverse part of the “interaction term” (2j,k,l)
is not of crucial importance here and might be neglected, it
merely deconcentrates the inner mass-shell more from the cen-
ter (which can be seen by comparing full third-order with or
without transverse part, or “truncated third-order” with or with-
out transverse part). However, to neglect the “interaction terms”
altogether results in a pattern which is further away from the
second-order approximation than the full third-order approx-
imation. The outer caustic is even absent. This indicates that
the third-order approximation without “interaction terms” is not
useful, the “main body” of the perturbation sequence is not a
good model as was speculated in (Buchert 1994).

Fig. 1. Slices of the density field at three evolution stages (expansion factors a = 1000, 1200, 1500) are shown for the first-order approximation
(the “Zel’dovich approximation”), (top), the second-order approximation (middle), and the third-order approximation (bottom). The initial
condition is a special periodic function which maps principal elements of the large-scale structure such as sheets, filaments and clusters. At
a stage shortly after the first shell-crossing (in this normalization at a = 1000) the three approximations mainly differ in their prediction of
the collapse time. The higher-order corrections accelerate the collapse significantly and generate “second generation” pancakes, filaments and
clusters. If we renormalize the amplitudes such that the collapse occurs at the same instant in all three approximations, then we can read the
figures in a diagonal manner, i.e., the second stage in the upper row roughly corresponds to the first stage in the middle row, etc. .
Fig. 2. A zoom (1/4 of the box) into the density pattern of the third-order approximation for Model I is shown. The contributions to the third-order
effect have been splitted into a part (upper left) which belongs to the “main body”(see Section 2), a longitudinal interaction effect added to it
(upper right), and a transverse interaction effect added to it (lower right). The full third-order approximation is shown in the lower left corner.

We continue by looking at Fig. 3 which presents the density
field of Model II for the different orders at a late evolution stage,
late, because we then are able to separate the different structures
visually which appear much earlier in the evolution. Again the
features quoted above are visible, the collapse is delayed by
a huge factor in the first-order (“Zel’dovich”) approximation.
Also, the similarity between second- and third-order is striking,
while the first-order model lacks some internal structures, which
can be attributed to secondary shell-crossing events (a second-
order effect).

An interesting aspect of these high-resolution studies re-
lates to a new interpretation of the longstanding “fragmenta-
tion problem” in classical pancake theory: we appreciate small
“fragments” sitting at the intersections of caustics (see Figs. 1-
3). Since a finite resolution brings the density to a finite value,
these “fragments” show up as almost spherical blobs with poten-
tial wells that have about 2 times more height than the potential
of the mass-shells. In realistic situations, physical processes at
the location of caustics and velocity dispersion in a dark colli-
sionless component will do a similar job. We may interprete this
phenomenon as “gravitational fragmentation”: although the ini-
tial fluctuation is coherent like in pancake models, the collapse
process forms fragments on a substantially smaller scale. This
interpretation is appropriate, if gravity is the dominating inter-
action related to the existence of a mass dominating dark matter
component in the Universe. It has far reaching consequences in
a self-gravitating medium, since we expect the phenomenon of
multiple shell-crossing (termed “non-dissipative gravitational
turbulence” by Gurevich & Zybin 1988a,b) to continue down to
smaller and smaller scales yielding a hierarchy of nested caus-
tics. This has been demonstrated in a two-dimensional simu-
lation by Doroshkevich et al. (1980). Since further and further
mass-shells are generated in the center of a cluster, more and
more caustics are simultaneously present and consequently cre-
ate a huge number of “fragments” as an internal organization of
mass-shells. This way, a cluster naturally creates a gravitational
potential which is distinctly rippled and thereby prepares the
sites for galaxy formation: we expect the baryons to preferen-
tially drop into these “fragments”.
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Fig. 3. A comparison similar to Fig. 1, however, for the generic clustering model. The density pattern predicted by the first-order
(“Zel’dovich-”)approximation is shown in the upper left panel, that for second-order in the upper right, for third-order in the lower left,
and for third-order without “interaction terms” in the lower right panel. The same effects as quoted for Model I can be seen.

Although this consideration has to remain premature at this
stage, we think that “gravitational fragmentation” as we describe
it is a generic effect in gravitational clustering and should be
taken seriously as soon as a dark matter component dominates
the matter density. The fact that we need high-spatial resolu-
tion studies to uncover these fragments explains their absence
in the literature. It is interesting to note here that another type
of fragments appeared in a two-dimensional numerical simula-
tion at high resolution (Melott & Shandarin 1990), which re-

sults from a redistribution of mass inside filaments (compare
their plot with the filaments in the third-order approximation
in Fig. 1).

The detailed study of caustic metamorphoses begun by
Arnol’d et al. (1982) for the “Zel’dovich-approximation” in
two spatial dimensions will provide the necessary insight to
further understand this phenomenon. We have continued this
study in three spatial dimensions (Buchert et al. 1996a,b); for
an overview see (Buchert 1995).
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Appendix A: analytical construction of displacement vectors
for Model I

The first-order displacement vector

In this section we exemplify how special solutions to (2) can
be constructed by using a set of local forms which provide first
integrals of the seven Poisson equations (2f-l). Let us consider
a simple plane-wave model for the initial peculiar-velocity po-
tential S;S(1) := St0, which was studied earlier by Moutarde et
al. (1991):

S(1) :=
−ε

(2π)2

(
αx cos(2πX) + αy cos(2πY ) + αz cos(2πZ)

)
.

(A.1a)

The amplitude ε plays the role of the perturbation parameter
here and is related to the total amplitude σ of the density con-
trast δ := (ρ − ρH )/ρH as σ = 3

2ε. The amplitudes αx, αy, αz

allow for triaxial deformations of the model; one has to choose
α2
x + α2

y + α2
z = 1 in order to keep the r.m.s. amplitude of δ the

same. In this paper we shall use αx = 1, αy = 1, αz = 1, since
different amplitudes give no further information about internal
structures of the model. Although the model (A.1a) is simple,
it has no symmetries which destroy the generic feature of the
singularites formed like plane or spherical symmetry would do.
The structure of the cluster formed will only retain reflection
and rotational symmetries manifest in the potential (A.1a) for
our choice of amplitudes. As, e.g., demonstrated in (Buchert
& Ehlers 1993) for a similar two-dimensional model, we have
with models like (A.1a) the possibility of studying principal
kinematical features of a generic collapse such as the formation
of cusped caustics, interconnected network structures, infall of
matter onto the cluster. Additionally, internal differentiation of a
multi-stream system resulting in a hierarchy of shell-crossings,
which are attributed to a generic feature of a gravitational col-
lapse, can be demonstrated nicely with this model. The model
has periodic boundary conditions which makes it accessible for
numerical treatment.

From (A.1a) we have for the first order displacement vector:

∇0S
(1) =

ε

2π

(
αx sin(2πX)
αy sin(2πY )
αz sin(2πZ)

)
. (A.1b)

We now scetch a procedure how to construct the higher-order
potentials from this initial condition. The procedure is based
on a list of local forms given by Buchert & Ehlers (1993) and
Buchert (1994), which are first integrals of the quadratic and
cubic source terms in the Poisson equations of the solution (2).

These integrals only hold for special classes of initial data, al-
though they might also be useful as approximations for generic
initial data. For the potential (A.1a) it turns out that it belongs
to the class of initial data which, for all orders, admits such first
integrals.

The second-order displacement vector

According to corollary 1 proved in (Buchert & Ehlers 1993),
a local form can be obtained for second-order displacements. It
reads

∇0S
(2) = ∇0S (∆0S)− (∇0S · ∇0)∇0S ;

∇0S ×∆0∇0S = 0 . (A.2a, b, c, d)

The local form (A.2) is constructed such that its divergence
agrees with the source term in (2g), its curl is, however, in gen-
eral non-zero, it only vanishes if (A.2b,c,d) are statisfied. Insert-
ing the potential (A.1a) we immediately obtain the second-order
displacement vector:

∇0S
(2) =

ε2

2π

(
αx sin(2πX)(αy cos(2πY ) + αz cos(2πZ))
αy sin(2πY )(αx cos(2πX) + αz cos(2πZ))
αz sin(2πZ)(αx cos(2πX) + αy cos(2πY ))

)
.

(A.2e)

The vector (A.2e) is curl-free as can be easily demonstrated, so it
obeys the constraints (A.2b,c,d) necessary to admit a potential.
This potential can now be guessed from (A.2e) to be of the form

S(2) := − ε2

(2π)2
(+ αxαy cos(2πX) cos(2πY )

+ αyαz cos(2πY ) cos(2πZ)
+ αxαz cos(2πX) cos(2πZ)) . (A.2f )

The third-order displacement vector of the “truncated model”

Similarily, we can ask for a local vector form whose divergence
agrees with the source term in equation (2h). An expression
given in Buchert (1994, corollary 1) has the required property:
The vector ∇0S

(3a) with the components

(∇0S
(3a))k =

∑
i

(∇0S
(1)),iJ

S
i,k (A.3a)

has the property

∆0S
(3a) = 3III(S(1)

,i,k) ,

where JS
i,k are the subdeterminants of the tensor (S(1)

,i,k) (a
comma always denotes partial derivative with respect to La-
grangian coordinates). The following constraints have to be sat-
isfied in order that ∇0S

(3a) be curl-free:∑
i

(∇0S
(1)),iJ

S
i,[k,j] = 0 , k /= j . (A.3b, c, d)
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Inserting the potential (A.1a) into (A.3a) gives for the displace-
ment vector

∇0S
(3a) =

ε3

2π
αxαyαz

( sin(2πX) cos(2πY ) cos(2πZ)
sin(2πY ) cos(2πX) cos(2πZ)
sin(2πZ) cos(2πX) cos(2πY )

)
.

(A.3e)

Again, the vector (A.3e) is found to be curl-free which renders
the contraints (A.3b,c,d) satisfied. A potential generating this
displacement is again easily found from (A.3e). It reads

S(3a) := − ε3

(2π)2
αxαyαz cos(2πX) cos(2πY ) cos(2πZ) .

(A.3f )

The third-order displacement vector of the interaction term -
longitudinal part

The source term in (2i) which describes the longitudinal part
of the interaction of first- and second-order perturbations has a
similar structure as the second-order source term (2g). We are
able to construct a local form by analogy (Buchert & Ehlers
1993, corollary 1):

∇0S
(3b)=λ1

(∇0S
(2)(∆0S

(1))− (∇0S
(2) · ∇0)∇0S

(1)
)

+ λ2
(∇0S

(1)(∆0S
(2) −∇0S

(1) · ∇0)∇0S
(2)
)
. (A.4a)

Here, the linear combination of the two possible integrals as a
general integral has to be taken, where λ1 + λ2 = 1. In order to
satisfy the requirement that the vector (A.4a) be a solution of
the Poisson equation (2i), we have to assure that it is curl-free
which implies (Buchert & Ehlers 1993, corollary 1):

λ1
(∇0S

(2) ×∆0∇0S
(1)
)

+ λ2
(∇0S

(1) ×∆0∇0S
(2)
)

= 0 .

(A.4b, c, d)

As can be seen from (A4), we have to determine the parameters
λ1 and λ2 suitably in order to fulfil the constraints (A.4b,c,d).
Although, we can find the two first integrals for the potential
(A.1a), the resulting vectors are not curl-free. It is a matter of
some algebra until one finds the correct linear combination of
the two vectors, which is curl-free. This can be achieved by first
guessing the form of the potential S(3b) from the two vectors.
It is clear that, in general, we will not be successful. We obtain
λ1 = 3

5 , λ2 = 2
5 . Thus, the displacement vector reads

∇0S
(3b) =

ε3

2π

{3
5

A +
2
5

B
}

with

A :=

(
αx sin(2πX)[αy cos(2πY ) + αz cos(2πZ)]2

αy sin(2πY )[αx cos(2πX) + αz cos(2πZ)]2

αz sin(2πZ)[αx cos(2πX) + αy cos(2πY )]2

)

B :=

(
αx sin(2πX)αx cos(2πX)(αy cos(2πY ) + αz cos(2πZ))
αy sin(2πY )αy cos(2πY )(αx cos(2πX) + αz cos(2πZ))
αz sin(2πZ)αz cos(2πZ)(αx cos(2πX) + αy cos(2πY ))

)
−αx sin(2πX)

{
[αy cos(2πY ) − αz cos(2πZ)]2 − (α2

y + α2
z)
}

αy sin(2πY )
{

[αx cos(2πX) − αz cos(2πZ)]2 − (α2
x + α2

z)
}

αz sin(2πZ)
{

[αx cos(2πX) − αy cos(2πY )]2 − (α2
x + α2

y)
}


i.e.,

∇0S
(3b) =

ε3

5π
·(

αx sin(2πX)αx cos(2πX)(αy cos(2πY ) + αz cos(2πZ))
αy sin(2πY )αy cos(2πY )(αx cos(2πX) + αz cos(2πZ))
αz sin(2πZ)αz cos(2πZ)(αx cos(2πX) + αy cos(2πY ))

)

+
ε3

π

(
αxαyαz sin(2πX) cos(2πY ) cos(2πZ)
αxαyαz sin(2πY ) cos(2πX) cos(2πZ)
αxαyαz sin(2πZ) cos(2πX) cos(2πY )

)
+

ε3

10π
·(

αx sin(2πX)[α2
y cos2(2πY ) + α2

z cos2(2πZ) + 2(α2
y + α2

z)]
αy sin(2πY )[α2

x cos2(2πX) + α2
z cos2(2πZ) + 2(α2

x + α2
z)]

αz sin(2πZ)[α2
x cos2(2πX) + α2

y cos2(2πY ) + 2(α2
x + α2

y)]

)
,

(A.4e)

with the potential

S(3b) := − ε3

(2π)2

1
5

{
α2
x cos2(2πX)[αy cos(2πY ) + αz cos(2πZ)]

+ 10αxαyαz cos(2πX) cos(2πY ) cos(2πZ)

+ α2
y cos2(2πY )[αx cos(2πX) + αz cos(2πZ)]

+ α2
z cos2(2πZ)[αx cos(2πX) + αy cos(2πY )]

+ 2[αx(α2
y + α2

z) cos(2πX) + αy(α2
x + α2

z) cos(2πY )

+ αz(α2
x + α2

y) cos(2πZ)]
}
. (A.4f )

The third-order displacement vector of the interaction term
- transverse part

Finally, we ask for a first integral of the transverse part of the
interaction vector (2j,k,l). In (Buchert 1994, corollary 2) the
vector form needed has been given again as a linear combination
of the two possible integrals. The vector

Ξ :=−∇0 × S(3c) =

µ1
(
(∇0S

(2) · ∇0)∇0S
(1)
)− µ2

(
(∇0S

(1) · ∇0)∇0S
(2)
)

(A.5a, b, c)

has the property

(∇0 × Ξ)k = εpq[j
∂(S(2)

,i] , S
(1)
,p , Xq)

∂(X1, X2, X3)
, i, j, k = 1, 2, 3 (cyclic) .

(A.5a, b, c)

We have to assureµ1+µ2 = 1. In order to satisfy the requirement
that the vector components (A.5a,b,c) be solutions of the Poisson
equations (2j,k,l), we have to guarantee that the vector field
Ξ is source-free which implies after using well-known vector
identities

∆0(∇0S
(1)∇0S

(2)) + µ1
(∇0S

(2)∆0∇0S
(1) −∇0S

(1)∆0∇0S
(2)
)

+ µ2
(∇0S

(2)∆0∇0S
(1) −∇0S

(1)∆0∇0S
(2)
)

= 0 . (A.5d)
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Again, we find the two integrals after inserting the potential
(A.1a) to be not source-free. We have to determine the correct
linear combination of the two integrals. As in the longitudinal
case we first guess the form of the vector potentialS(3c) from the
two integrals. We are successful with the parametersµ1 = 3

5 , and
µ2 = 2

5 , but we have to add another functionµP∇0P (1);µP = 1
5

such that the total displacement is source-free. The potential
P (1) is given by

P (1) = αx(α2
y + α2

z) cos(2πX) + αy(α2
x + α2

z) cos(2πY )

+ αz(α2
x + α2

y) cos(2πZ) . (A.5e)

(This is possible, since the local forms discussed above are only
determined up to the gradient of some potential, see Buchert
1994). The vector displacement Ξ = −∇0 × S(3c) reads

Ξ =
3ε3

10π

(
α2
x sin(2πX) cos(2πX)[αy cos(2πY ) + αz cos(2πZ)]

α2
y sin(2πY ) cos(2πY )[αx cos(2πX) + αz cos(2πZ)]

α2
z sin(2πZ) cos(2πZ)[αx cos(2πX) + αy cos(2πY )]

)

− ε3

5π

(
α2
x sin(2πX) cos(2πX)(αy cos(2πY ) + αz cos(2πZ))

α2
y sin(2πY ) cos(2πY )(αx cos(2πX) + αz cos(2πZ))

α2
z sin(2πZ) cos(2πZ)(αx cos(2πX) + αy cos(2πY ))

)

− ε3

5π
·(

α2
x sin(2πX)[α2

y cos2(2πY ) + α2
z cos2(2πZ) − (α2

y + α2
z)]

α2
y sin(2πY )[α2

x cos2(2πX) + α2
z cos2(2πZ) − (α2

x + α2
z)]

α2
z sin(2πZ)[α2

x cos2(2πX) + α2
y cos2(2πY ) − (α2

x + α2
y)]

)

− ε3

10π

(
αx(α2

y + α2
z) sin(2πX)

αy(α2
x + α2

z) sin(2πY )
αz(α2

x + α2
y) sin(2πZ)

)

=
ε3

10π

(
α2
x sin(2πX) cos(2πX)(αy cos(2πY ) + αz cos(2πZ))

α2
y sin(2πY ) cos(2πY )(αx cos(2πX) + αz cos(2πZ))

α2
z sin(2πZ) cos(2πZ)(αx cos(2πX) + αy cos(2πY ))

)

− ε3

10π
·(

α2
x sin(2πX)[2α2

y cos2(2πY ) + 2α2
z cos2(2πZ) − (α2

y + α2
z)]

α2
y sin(2πY )[2α2

x cos2(2πX) + 2α2
z cos2(2πZ) − (α2

x + α2
z)]

α2
z sin(2πZ)[2α2

x cos2(2πX) + 2α2
y cos2(2πY ) − (α2

x + α2
y)]

)
,

(A.5f )

with the vector-potential

S(3c) := − ε3

(2π)2

1
5
·(

αyαz sin(2πY ) sin(2πZ)(αy cos(2πY ) − αz cos(2πZ))
αxαz sin(2πX) sin(2πZ)(αz cos(2πZ) − αx cos(2πX))
αxαy sin(2πX) sin(2πY )(αx cos(2πX) − αy cos(2πY ))

)
.

(A.5g)

Remarks

For the following discussion we need the explicit expressions of
the source terms in the solution (2) for the special model (A.1a).
We derive

I(S,i,k) = ε{αx cos(2πX) + αy cos(2πY ) + αz cos(2πZ)} , (A.6a)

II(S,i,k)=ε2{αxαy cos(2πX) cos(2πY )

+ αyαz cos(2πY ) cos(2πZ)

+ αxαz cos(2πX) cos(2πZ)} , (A.6b)

III(S,i,k) = ε3{αxαyαz cos(2πX) cos(2πY ) cos(2πZ)} , (A.6c)

∑
a,b,c

εabc
∂(S(2)

,a , S,b, Xc)
∂(X1, X2, X3)

=

ε3{α2
x cos2(2πX)[αy cos(2πY ) + αz cos(2πZ)]

+ α2
y cos2(2πY )[αx cos(2πX) + αz cos(2πZ)]

+ α2
z cos2(2πZ)[αx cos(2πX) + αy cos(2πY )]

+ 6αxαyαz cos(2πX) cos(2πY ) cos(2πZ)} , (A.6d)

εpq[j
∂(S(2)

,i] , S,p, Xq)

∂(X1, X2, X3)
=

ε3

(
αyαz sin(2πY ) sin(2πZ)(αy cos(2πY ) − αz cos(2πZ))
αxαz sin(2πX) sin(2πZ)(αz cos(2πZ) − αx cos(2πX))
αxαy sin(2πX) sin(2πY )(αx cos(2πX) − αy cos(2πY ))

)
.

(A.6e, f, g)

From the generating functions constructed above we infer the
following property: except for the longitudinal part of the inter-
action term, the perturbation potentials obey equations which
are typical for bound systems:

∆0S
(1)= −(2π)2 S(1) , (A.7a)

∆0S
(2)= −(2π)2 2 S(2) , (A.7b)

∆0S
(3a)= −(2π)2 3 S(3a) , (A.7c)

∆0S
(3b)= −(2π)2 {5 S(3b) − 4 S(3a) + 2 P (1)} , (A.7d)

∆0S
(3c)= −(2π)2 5 S(3c) . (A.7e, f, g)

Recall that the condition (A.7a) implies∇0δ(t0) ∝ u for an
initially irrotational peculiar-velocity fieldu(t0);∇0×u(t0) = 0,
i.e., the motion is initiated to follow the gradient of the density-
contrast field. At the third order the evolution model shows that
this property of the flow is lost.

(The algebraic program we used to compute the perturbation po-
tentials for Model II also reproduces the perturbation potentials
derived here.)
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