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Abstract. The calculation of distances is of fundamental im-
portance in extragalactic astronomy and cosmology. However,
no practical implementation for the general case has previously
been available. We derive a second-order differential equation
for the angular size distance valid not only in all homogeneous
Friedmann-Lemaı̂tre cosmological models, parametrised by λ0

and Ω0, but also in inhomogeneous ‘on-average’ Friedmann-
Lemaı̂tre models, where the inhomogeneity is given by the (in
the general case redshift-dependent) parameter η. Since most
other cosmological distances can be obtained trivially from the
angular size distance, and since the differential equation can
be efficiently solved numerically, this offers for the first time
a practical method for calculating distances in a large class of
cosmological models. We also briefly discuss our numerical im-
plementation, which is publicly available.

Key words: cosmology: theory – methods: numerical – cos-
mology: distance scale – gravitational lensing

1. Introduction

The determination of distances is one of the most important
problems in extragalactic astronomy and cosmology. Distances
between two objects X and Y depend on their redshifts zx
and zy , the Hubble constant H0, the cosmological constant λ0,
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the density parameter Ω0 and the inhomogeneity parameter η.1

Usually, smaller distances are determined by the traditional ‘dis-
tance ladder’ technique and larger distances are calculated from
the redshift, assuming some cosmological model. Since the red-
shift is for most purposes exactly measurable, knowledge of
or assumptions about two of the factors (a) Hubble constant,
(b) other cosmological parameters and (c) ‘astronomical dis-
tance’ (i.e. ultimately tied in to the local distance scale) deter-
mines the third. In this paper we discuss distances given the
Hubble constant H0, the redshifts zx and zy and the cosmolog-
ical parameters λ0, Ω0 and η. Traditionally, a simple cosmolog-
ical model is often assumed for ease of calculation, although
the distances thus obtained, and results which depend on them,
might be false if the assumed cosmological model does not ap-
propriately describe our universe. A general method allows one
to look at cosmological models whether or not they are easy-to-
calculate special cases and offers the possibility of determining
cosmological distances which are important for other astrophys-
ical topics once the correct cosmological model is known.

We stress the fact that the inhomogeneity can be as important
as the other cosmological parameters, both in the field of more
traditional cosmology and in the case of gravitational lensing,
where, e.g. in the case of the time delay between the different
images of a multiply imaged source, the inhomogeneity cannot
be neglected in a thorough analysis (Kayser & Refsdal 1983).
For an example involving a more traditional cosmological test,
Perlmutter et al. (1995) (see also Goobar & Perlmutter (1995))
discuss using supernovae with z ≈ 0.25–0.5 to determine q0;
for z near the top of this range or larger, the uncertainty due to

1 When discussing the distance between two objects, one can always
make a coordinate transformation such that the contribution from the θ
and φ terms in Eq. (1) vanish. Then one simply needs the redshifts and
cosmological parameters in order to determine the distance between
them. When discussing the distances between several objects, for ex-
ample QSOs with α, δ and z as coordinates, this is no longer possible.
In many cases, however, suitable geometrical approximations can be
made so that the most complicated part of the problem is essentially a
determination of a distance between two objects. This point is further
discussed in Sect. 5.
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our ignorance of η is comparable with the other uncertainties of
the method.

The plan of this paper is as follows. In Sect. 2 the basics of
Friedmann-Lemaı̂tre cosmology are briefly discussed; this also
serves to define our terms, which is important since various con-
flicting notational schemes are in use. (For a more thorough dis-
cussion using a similar notation see, e.g., Feige (1992).) Sect. 3
defines the various distances used in cosmology. In Sect. 4 our
new differential equation is derived. Similar efforts in the litera-
ture are briefly discussed. Sect. 5 briefly describes our numerical
implementation and gives the details on how to obtain the source
code for use as a ‘black box’ (which however can be opened)
for use in cosmology and extragalactic astronomy. The sym-
metry properties of the angular size distance, analytic solutions
and methods of calculating the volume element are addressed
in three appendices.

2. Basic theory

Considering for the moment homogeneous Friedmann-Lemaı̂tre
cosmological models, we can write the familiar Robertson-
Walker line element:

ds2 = c2dt2 −R2(t) ×(
dσ2(

1− kσ2
) + σ2dθ2 + σ2 sin2 θdφ2

)
, (1)

where the symbols are defined as follows (with the correspond-
ing units):

s 4-dimensional interval [length]
c speed of light [velocity]
t time [time]
R scale factor [length]
σ radial coordinate [dimensionless]
k curvature constant [dimensionless]
θ angular coordinate [dimensionless]
φ angular coordinate [dimensionless]

The dynamics of the universe is given by the Friedmann equa-
tions

Ṙ2(t) =
8πGρ(t)R2(t)

3
+

ΛR2(t)
3

− kc2 (2)

and

R̈(t)
R(t)

= −4πGρ(t)
3

+
Λ
3
, (3)

where dots denote derivatives with respect to t, G is the grav-
itational constant, ρ(t) the matter density (this paper assumes
negligible pressure), Λ the cosmological constant and the sign
of k determines the curvature of the 3-dimensional space.

Introducing the usual parameters

H =
Ṙ

R
(Hubble parameter)

Ω =
8πGρ
3H2

(density parameter) (4)

λ =
Λ

3H2
(normalised cosmological constant)

(Ω and λ are dimensionless and H has the dimension t−1) we
can use Eq. (2) to calculate

kc2 = R2H2 (Ω + λ− 1) , (5)

so that

k = sign (Ω + λ− 1) . (6)

Since R > 0 we can write

R =
c

H

1√|Ω + λ− 1| ; (7)

this is the radius of curvature of the 3-dimensional space at
time t. For k = 0 it is convenient to define the scale factor R to
be c/H . In the following the index 0 will be used to denote the
present value of a given quantity, fixed, as usual, at the time t0
of observation.2 The explicit dependence on t will be dropped
for brevity. Taking matter conservation into account and using
the present-day values, we have

ρR3 = ρ0R
3
0 (8)

and so from Eqs. (2), (4), (5) and (8) follows

Ṙ2 = H2
0R

2
0

(
Ω0R0

R
+
λ0R

2

R2
0

− (Ω0 + λ0 − 1)

)
. (9)

Since below we want to discuss distances as functions of the
cosmological redshift z, by making use of the facts that

z =
R0

R
− 1 (10)

and that R0 is fixed, we can use Eq. (9) to get

dz =
dz
dR

Ṙdt = −H0(1 + z)
√
Q(z) dt, (11)

where

Q(z) = Ω0(1 + z)3 − (Ω0 + λ0 − 1)(1 + z)2 + λ0. (12)

Note: Throughout this paper, the √ sign should be

taken to signify the positive solution, except that sign
√
Q(z) =

sign(Ṙ) always.

3. Distance measures

3.1. Distances defined by measurement

In a static Euclidean space, one can define a variety of distances
according to the method of measurement, which are all equiv-
alent.

2 Note that this paper is concerned with the calculation of distances
from redshift. We are not concerned with a change in redshift with t0.
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3.1.1. Angular size distance

Let us consider at position y two light rays intersecting at x
with angle θ. If l is the distance between these light rays, it is
meaningful to define the angular size distance Dxy as

Dxy =
l

θ
, (13)

since an object of projected length l at position y will subtend
an angle θ = l/Dxy (for small θ) at distance Dxy .

3.1.2. Proper motion distance

The proper motion distance is similar to the angular size dis-
tance, except that l is given by vt, where v is the tangential
velocity of an object and t the time during which the proper
motion is measured.

3.1.3. Parallax distance

Parallax distance is similar to the proper motion distance, except
that the angle π is at y instead of x, so that we have

Dπ
xy =

l

π
. (14)

In the canonical case, l = 1 AU.

3.1.4. Luminosity distance

Since the apparent luminosity L of an object at distance D is
proportional to 1/D2, one can define the luminosity distance as

DL = DL
0

√
L0

L
, (15)

where L0 is the luminosity at some fiducial distance DL
0 .

3.1.5. Proper distance

By proper distance DP we mean the distance measured with a
rigid ruler.

3.1.6. Distance by light travel time

Finally, from the time required for light to traverse a certain
distance, one can define a distance Dc by

Dc = ct (16)

where t is the so-called look-back time.

3.2. Cosmological distances

3.2.1. General considerations

In a static Euclidean space, which was used above when defining
the distances through a measurement description, these distance
measures are of course equivalent. In the general case in cos-
mology, where the 3-dimensional space need not be flat (k = 0)
but can be either positively (k = +1) or negatively (k = −1)
curved, and where the 3-dimensional space is scaled by R(t),
not only do the distances defined above differ, but also (in the
general case) Dxy /= Dyx. The definitions are still applicable,
but different definitions will result in different distances.

In reality, of course, the universe is neither perfectly homo-
geneous nor perfectly isotropic, as one assumes when deriv-
ing Eq. (1). However, as far as the usefulness of the Friedmann
equations in determining the global dynamics is concerned, this
appears to be a good approximation. (See, for example, Longair
(1993) and references therein for an interesting discussion.) The
approximation is certainly too crude when using the cosmologi-
cal model to determine distances as a function of redshift, since
the angles involved in such cases can have a scale comparable
to that of the inhomogeneities. In this paper, we assume that
these inhomogeneities can be sufficiently accurately described
by the parameter η, which gives the fraction of homogeneously
distributed matter. The rest (1 − η) of the matter is distributed
clumpily, where the scale of the clumpiness is by definition of
the same order of magnitude as the angles involved.

For example, a halo of compact MACHO type objects
around a galaxy in a distant cluster would be counted among the
homogeneously distributed matter if one were concerned with
the angular size distance to background galaxies further away,
but would be considered clumped on scales such as those im-
portant when considering microlensing by the compact objects
themselves. Since we don’t know exactly how dark matter is
distributed, different η values can be examined to get an idea as
to how this uncertainty affects whatever it is one is interested in.
If one has no selection effects, then, due to flux conservation,
the ‘average’ distance cannot change (Weinberg 1976); η intro-
duces an additional uncertainty when interpreting observations.
It is generally not possible to estimate this scatter by comparing
the cases η = 0 and η = 1, since, depending on the cosmolog-
ical parameters and the cosmological mass distribution, not all
combinations are self-consistent. For instance, if one looks at
scales where galaxies are compact objects, and the fraction of
Ω0 due to the galaxies is x, then η must be ≤ (1− x).

We further assume that light rays from the object whose
distance is to be determined propagate sufficiently far from all
clumps. (See Schneider et al. (1992) – hereafter SEF – for a more
thorough discussion of this point.) Compared to the perfectly
homogeneous and isotropic case, the introduction of the η pa-
rameter will influence the angular size and luminosity distances
(as well as the proper motion and parallax distances) since these
depend on angles between light rays which are influenced by
the amount of matter in the beam, but not the proper distance
and only negligibly the light travel time. The last two distances
are discussed briefly in Sect. 3.2.2 and in Appendix B3 and B6.
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Since there is a simple relation between the angular size distance
and the luminosity distance (Sect. 3.2.2) which also holds for
the inhomogeneous case (see Appendix A), for the general case
it suffices to discuss the angular size distance, which we do in
Sect. 4.

3.2.2. Relationships between different distances

Without derivation3 we now discuss some important distance
measures, denoting the redshifts of the objects with the indices
x and y. Due to symmetry considerations (see Appendix A)

Dyx = Dxy

(
1 + zy
1 + zx

)
, (17)

where the term in parentheses takes account of, by way of
Eq. (10), the expansion of the universe. It is convenient, in keep-
ing with the meaning of angular size distance, to think of the
expansion of the universe changing the angle θ in Eq. (13) and
not l, if one identifies l as the (projected) size of an object. The
angle is defined at the time when the light rays intersect the
plane of the observer. Thus Dxy with the observer at x = 0
defines what one normally thinks of as an angular size distance.
On the other hand, Dxy and Dyx with x in general /= 0 can be
important in, for example, gravitational lensing.4

Although the angle between the rays (at the source) at the
time of reception of the light is important for the luminosity
distance, this distance is not simply Dyx, since in the cosmo-
logical case the observed flux is obtained by multiplying the
‘non-redshifted flux’ by the factor (1 + zx)2/(1 + zy)2. One fac-
tor of (1 + zx)/(1 + zy) occurs because a given wavelength is
increased by (1+zy)/(1+zx), which reduces the flux correspond-
ingly; an additional factor of (1 + zx)/(1 + zy) occurs because
the arrival rate of photons is also decreased. Therefore, since
DL is inversely proportional to the square root of the (observed,
‘redshifted’) flux the luminosity distance is

DL
xy = Dyx

(
1 + zy
1 + zx

)
. (18)

From this and Eq. (17) follows the relation

DL
xy = Dxy

(
1 + zy
1 + zx

)2

. (19)

This means that the surface brightness of a ‘standard candle’
is ∼ (1 + z)−4, a result independent of the cosmological model

3 See, e.g., Feige (1992) Berry (1986) or Bondi (1961) for a more
general discussion. What we present in the rest of this section is not
new, but is important in order to clarify the notation. The results are
obvious from the definitions introduced above.
4 Although not useful in cosmology or extragalactic astronomy,
for completeness we mention the fact that the proper motion dis-
tance is equivalent to Dyx and the parallax distance is equivalent to
Dyx/

√
1− kσ2.

parameters, including η.5 (This result also holds for the inhomo-
geneous case, since Eq. (17) still holds (see Appendix A) and
the additional factor due to the expansion of the universe (given
by the term in parentheses in Eq. (18)) is of course present in
the inhomogeneous case as well.)

Of course, this applies only to the bolometric luminosity.
Observing in a finite band introduces two corrections. The so-
called K-correction as it is usually defined today (see, e.g.,
Coleman et al. (1980) or, for an interesting and thorough dis-
cussion, Sandage (1995)) takes account of these, both of which
come from the fact that the observed wavelength interval is
redshifted compared to the corresponding interval on emission.
This means that, first, for a flat spectrum, less radiation is ob-
served, because the bandwidth at the observer is (1 + z) times
larger than at the source. Second, the spectrum need not be flat,
in which case additional corrections based on the shape of the
spectrum have to be included.6 Thus,

m = M + 5 log

(
DL[pc]
10 pc

)
+ K (20)

wherem is the apparent magnitude,M the absolute magnitude,
DL is the luminosity distance and K is the K-correction as
defined in Coleman et al. (1980). Perhaps more convenient is

m = M + 5 logDL + K + N (21)

where N is a normalisation term: N = −5 for DL in units of
1 pc, N = 25 for DL in units of 1 Mpc and N = x− 5 logh for
DL in units of the Hubble length7 c/H0, where

x = 5 log

(
Hubble length

1 pc

)
− 5 ≈ 42.384

and h is the Hubble constant in units of 100 km/s/Mpc. In
practice one has to add terms to correct for various sources of
extinction and consider the fact thatM is the absolute magnitude
of the object when the light was emitted, which of course could
be different from the present M of similar objects at negligible
redshift.

The light travel time (or lookback time) txy = tx − ty be-
tween zx and zy (where tx = t(zx) > ty = t(zy)) is given by
the integration of the reciprocal of Eq. (11):

txy =

zx∫
zy

(
dz
dt

)−1

dz =
1
H0

zy∫
zx

dz

(1 + z)
√
Q(z)

, (22)

5 Thus, a ‘surface brightness test’ can in principle show that cosmo-
logical redshifts are due to the expansion of the universe and not to
some other cause. See, e.g., Sect. 6 in Sandage (1995).
6 Since the observed objects generally evolve with time, and red-
shifted objects are necessarily observed as they were when the radi-
ation was emitted, some authors include an evolutionary term in the
K-correction. Still other authors prefer to absorb one or more of these
terms into the definition of the luminosity distance. Our luminosity
distance is a bolometric distance based on the geometry and includes
the unavoidable dimming due to the redshift. Our K-correction takes
account of both effects of a finite bandwidth. Evolutionary effects are
considered separately from distances.
7 For example, as given by our numerical implementation; see Sect. 5
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where the minus sign from Eq. (11) is equivalent to the swapped
limits of integration on the right-hand side so that the integral
gives tx − ty instead of ty − tx, making the light travel time
increase (for Ṙ > 0) with z; thus Dc

xy = ctxy .

Since the proper distance would be the same as Dc were
there no expansion, the former can be calculated by multiplying
the integrand in Eq. (22) by c(1 + z). Thus

DP
xy =

c

H0

zy∫
zx

dz√
Q(z)

. (23)

This gives the proper distance at the present time. Since DP

scales linearly with the expansion of the universe, the proper
distance at some other time can be obtained by dividing Eq. (23)
with (1 + zi), where zi is the redshift at the corresponding time.
For homogeneous (η = 1) cosmological models,8 the propaga-
tion of light rays is determined by the global geometry, so that
there is a simple relation betweenDP andD and, thus,DL. This
is discussed in Sect. B3. Although not ‘directly’ observable, the
proper distance is nevertheless important in cosmological the-
ory, since it is the basic distance of general relativity. Although
not useful as a distance, the light travel time is of course impor-
tant when considering evolutionary effects.

For inhomogeneous models, where this relation between
global geometry and local light propagation does not exist, an-
other approach must be used, which takes account of both the
expansion of the universe as well as the local propagation of
light, when calculating angle-defined distances such as the an-
gular size distance.

4. The general differential equation for the angular size dis-
tance

In a series of papers Zeldovich (1964), Dashevskii and Zel-
dovich (1965) and Dashevskii and Slysh (1966) developed a
general differential equation for the distance between two light
rays on the boundary of a small light cone propagating far away
from all clumps of matter in an inhomogeneous universe:

l̈ = −4πGηρ l +
Ṙ

R
l̇ (24)

where η and ρ are functions of the time t (not the lookback time
of Eq. 22). The first term can be interpreted as Ricci focusing
due to the matter inside the light cone, and the second term is
due to the expansion of space during the light propagation. We
now have to transform this time dependent differential equation

8 This includes empty models (Ω0 = 0); although η has no meaning
here, the same arguments apply.

into a redshift dependent differential equation. From Eq. (11)
we obtain9

dt = −
(
H0(1 + z)

√
Q
)−1

dz, (25)

and thus

dl
dt

= −H0(1 + z)
√
Q

dl
dz

(26)

and

d2l

dt2
= H2

0 (1 + z)
√
Q

d
dz

(
(1 + z)

√
Q

dl
dz

)
(27)

= H2
0

((
(1 + z)Q + (1 + z)2 1

2
dQ
dz

)
dl
dz

+ (1 + z)2Q
d2l

dz2

)
. (28)

Furthermore, since R = R0/(1 + z) (Eq. (10)), we obtain, using
Eq. (25),

dR
dt

= −H0(1 + z)
√
Q

dR
dz

. (29)

From the definition of Ω (Eq. (4)) and matter conservation
(Eq. (8)) we obtain

4πGρ =
3
2
H2

0 Ω0(1 + z)3 . (30)

If we now insert Eqs. (26), (28), (29) and (30) into Eq. (24),
sort the terms appropriately and cancel H2

0 , which appears in
all terms, we obtain

Q l′′ +

(
2Q

1 + z
+

1
2
Q′
)
l′ +

3
2
ηΩ0(1 + z) l = 0 , (31)

where a prime denotes a derivative with respect to redshift and
from Eq. (12) follows

Q′(z) = 3Ω0(1 + z)2 − 2(Ω0 + λ0 − 1)(1 + z) . (32)

From the definition of the angular size distance (Eq. (13)) it is
obvious that it follows the same differential equation as l:

QD′′ +

(
2Q

1 + z
+

1
2
Q′
)
D′ +

3
2
ηΩ0(1 + z)D = 0 (33)

with special boundary conditions at the redshift zx where the
two considered light rays intersect. The first boundary condition
is trivially

D = 0 for z = zx , (34)

9 This transformation causes problems if the integration interval con-
tains a point where Ṙ = 0 and thus

√
Q changes sign. In this case the

integration interval (tx, ty) has to be transformed into two integration
intervals, namely (zx, zmax) and (zmax, zy), where zmax is the redshift at
Ṙ = 0, with the boundary conditions for the second integration interval
chosen appropriately.
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Fig. 1. The angular size distance from the observer (z1 = 0) and from
z1 = 2 (lower right) as a function of the redshift z2 for different cosmo-
logical models. Thin curves are for η = 0, thick for η = 1. The upper
curves near z = 0 (z = 2 at lower right) are for λ0 = 2, the lower for
λ0 = 0. Ω0 = 1 for all curves. The angular size distance D is given in
units of c/H0

and the second boundary condition follows from the Euclidean
approximation for small distances, i.e.

dD
dt

∣∣∣∣
z=zx

= c sign(tx − ty), (35)

hence

D′ =
c

H0

1

(1 + zx)
√
Q(zx)

sign(ty − tx) for z = zx, (36)

where the sign has been chosen such that D is always > 0 lo-
cally. We denote these special solutions of Eq. (33) with Dx(z),
and, following the definition (Eq. (13)), the angular size distance
of an object at redshift zy is then given as

Dxy = Dx(zy) . (37)

Fig. 1 shows the influence of z, η and λ on the angular size
distance, calculated using Eq. (33) with our numerical imple-
mentation.

For completeness we note that after the original derivation
by Kayser (1985) an equivalent equation was derived by Lin-
der (1988) which, however, is difficult to implement due to the
cumbersome notation.

Special mention must be made of the so-called bounce mod-
els, which expand from a finite R after having contracted from
R = ∞. (See, e.g., Feige (1992).) A glance at Eq. (10) shows
that in these cosmological models there must be four distances
for an (ordered) pair of redshifts. If we denote the distances
by D12, D14, D34 and D32, where 1(2) und 3(4) refer to z1(z2)

during the expanding (contracting) phase, then symmetry con-
siderations dictate that D12 = D34 and D14 = D32 as long as
the dependence of η on z is the same during both phases. In
this case, there are two independent distances per (ordered) pair
of redshifts. If this is not the case, the degeneracy is no longer
present and there are four independent distances per (ordered)
pair of redshifts.

5. Numerics and practical considerations

For the actual numerical integration of the differential equation,
we have found the Bulirsch-Stoer method to be both faster and
more exact than other methods such as Runge-Kutta. However,
the conventional method of rational function extrapolation is
rather unstable in this particular case; fortunately, using polyno-
mial extrapolation solves the problem. Although programming
the integration is rather straightforward in theory, in numeri-
cal practice considerable effort is needed to determine combi-
nations of free parameters which work for all cases. We have
tested the finished programme intensively and extensively, for
example by comparing the results of calculations for η = 1 (the
value of η plays no special role in the integration of the dif-
ferential equation) with those in Refsdal et al. (1967) or given
by the method of elliptical integrals as outlined in Feige (1992)
and have used it in Kayser (1995), Helbig (1996) and Helbig &
Kayser (1996). For a general discussion of various methods of
integrating second-order differential equations, see Press et al.
(1992). Those interested in technical details can read the com-
ments in our source code and the accompanying user’s guide.

Since H0, in contrast to the other cosmological parameters,
merely inversely scales the angular size distance, our routine
actually calculates the angular size distance in units of c/H0.
This dimensionless quantity must be multiplied by c/H0 (in
whatever units are convenient) in order to obtain the actual dis-
tance. Other than reducing numerical overhead, this allows all
distances to be calculated modulo c/H0, which is convenient for
expressing quantities in anH0-independent manner. In practice,
H0 cancels out of many calculations anyway.

Apart from auxiliary routines which the user does not have
to be concerned with, our implementation consists of four
FORTRAN77 subroutines. The first, INICOS, calculates z-
independent quantities used by the other routines, some of which
are returned to the calling programme. ANGSIZ calculates the
angular size distance. Normally, η is used as a z-independent
cosmological parameter, on an equal footing with λ0 and Ω0. If
desired, however, the user can let INICOS know that a variable
(that is, z-dependent) η is to be used; this is given by the func-
tion VARETA. We supply an example; the user can modify this
to suit her needs. In particular, many different dependencies of
η on z can be included, and a decision made in the calling pro-
gramme about which one to use. This feature is also included
in our example. ANGSIZ returns only the distance D12; if one
is interested in the other distances in the bounce models, our
subroutine BNGSIZ returns all of these (though internally cal-
culating only the independent distances, of course, depending
on the dependence of η on z).
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Due to the fact that not everyone has a Fortran90 compiler
at his disposal, we have coded the routines in FORTRAN77.
Only standard FORTRAN77 features are used, and thus the rou-
tines should be able to be used on all platforms which support
FORTRAN77. Since standard FORTRAN77 is a subset of For-
tran90, the routines can be used without change in Fortran90 as
well.

With the exception ofDc, all distance measures can be easily
transformed into one another. Thus, it suffices to calculate the
angular size distance for a given case.10

When discussing the distance between two objects other
than the observer, rather than between the observer and one
object, in many cases one of two simplifying assumptions can
be made:

D(∆z) � D(β) In this case, the proper distance DP at the
time of emission between the two objects is βD0x ≈ βD0y ,
where β � 1 is the angle in radians between the two objects
on the sky.

D(β) � D(∆z) In this case, the angular size distance between
the two objects is Dxy .

D(∆z) (D(β)) refers to the distance due to ∆z (β) when setting
β (∆z) equal to zero. In the first case, where the two objects
are practically at the same redshift, one uses the angular size
distance to this redshift to transform the observed difference in
angular position on the sky into the proper distance between the
two objects at the time of emission. This follows directly from
the definition of the angular size distance. Since the distance
between the objects is much less than the distance from the ob-
server to the objects, the differently defined distances between
the objects are for practical purposes degenerate. A practical
example of this case would be the distance between individ-
ual galaxies in a galaxy cluster at large redshift. Naturally, one
should use one redshift, say, of the cluster centre; the individual
redshifts will in most cases be overlaid with the doppler redshift
due to the velocity dispersion of the cluster, so the difference
in cosmological redshifts is negligible. (Of course, the present
distance would be a factor of (1 + z) larger, due to the expan-
sion of the universe, were the objects comoving and not, as in
a galaxy cluster, bound.) In the second case, which is typical of
gravitational lensing, the angles on the sky between, for exam-
ple, source and lens, are small enough to be neglected, so that
the angular size distance between the objects is determined by
the difference in redshift. If neither of these assumptions can be
made, any sort of distance between the two objects is probably
of no practical interest. (Of course, there is the trivial case where
the redshifts are all� 1 in which case one can simply use α, δ
and cz/H0 as normal spherical coordinates.)

10 The proper distance, which is η-independent, can be calculated
from the angular size distance assuming η = 1, by making use of the
simple relation between proper distance and angular size distance in
this case. The result holds of course for all values of η.

6. Summary

After discussing cosmological distances with an emphasis on
practical distance measures for general use in cosmology and
extragalactic astronomy, we have obtained a new differential
equation, which gives the angular size distance for a class of
‘on average’ Friedmann-Lemaı̂tre cosmological models, that
is, models described not only by λ0 and Ω0 but also by η(z),
which describes the clumpiness of the distribution of matter. We
have also developed a practical numerical method of solving
this equation, which we have made publicly available. Since
the equation is valid for all cases, this offers for the first time
an efficient means of calculating distances in a large class of
cosmological models.

The numerical implementation (in FORTRAN77), user’s
guide and a copy of the latest version of this paper (includ-
ing appendices) can be obtained from either of the following
URLs:

http://www.hs.uni-hamburg.de/english/persons/helbig/
Research/Publications/Info/angsiz.html

ftp://ftp.uni-hamburg.de/pub/unihh/astro/angsiz.tar.gz

Acknowledgements. It is a pleasure to thank O. Czoske, S. Refsdal and
A. Smette for helpful discussions and comments on the manuscript.

References

Berry M. V., 1986, Cosmology and Gravitation. Adam Hilger, Bristol
Bondi H., 1961, Cosmology. Cambridge University Press, Cambridge
Coleman G. D., Wu C.-C., Weedman D. W., 1980, ApJS 43, 393
Dashevskii V. M. , Slysh V. J., 1966, Sov. Astr. 9, 671
Dashevskii V. M. , Zeldovich Y. B., 1965, Sov. Astr. 8, 854
Feige B., 1992, Astr. Nachr. 313, 139
Goobar A., Perlmutter S., 1995, ApJ 450, 14
Helbig P., 1996, Predicted lens redshifts and magnitudes. In: Kochanek

C. S., Hewitt J. (eds.) Astrophysical Applications of Gravitational
Lensing (IAU Symposium 173). Kluwer, Dordrecht

Helbig P., Kayser R., 1996, A&A 308, 359
Kayser R., Refsdal S., 1983, A&A 128, 156
Kayser R., 1985, doctoral thesis, University of Hamburg
Kayser R., 1995, A&A 294, L21
Linder E. V., 1988, A&A 206, 190
Longair M., 1958, QJRAS 34, 157
Perlmutter S., Pennypacker C. R., Goldhaber G., et al., 1995, ApJ 440,

L41
Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1992,

Numerical Recipes in FORTRAN. Cambridge University Press,
Cambridge

Refsdal S., Stabell R., de Lange F. G., 1967, Mem. R. Astron. Soc.
71, 143

Sandage A., 1995, Practical Cosmology: Inventing the Past. In:
Binggeli B., Buser R. (eds.) The Deep Universe. Springer, Berlin

Schneider P., Ehlers J., Falco E. E., 1992, Gravitational Lenses.
Springer-Verlag, Heidelberg

Weinberg S., 1976, ApJ 208, L1
Zeldovich Y. B. , 1964, Sov. Astr. 8, 13

This article was processed by the author using Springer-Verlag LaTEX
A&A style file L-AA version 3.


