Astron. Astrophys. 318, 819-834 (1997)
3.
Stellar parameters
For the analysis of the stellar wind and its variability, the
stellar parameters are required. The distances were adopted from the
table of Bieging et al. (1989) ( Sco ,
), from Federman & Lambert (1992)
(HD 169454, ), and from Barlow & Cohen
(1977) (HD 190603, ).
The extinction values were taken from
Leitherer & Wolf (1984) ( Sco and
HD 169454) and from Lennon et al. (1992) (HD 190603). With
these extinction values we derived good continuum fits for all three
stars. The glactic extinction law given by Cardelli et al. (1989) was
used.
To derive the effective temperature and
gravity , a -
curve for the measured equivalent width of
is interpolated. The calculated
equivalent widths were taken from the BALMER 6
grid based on hydrostatic plane-parallel line-blanketed
atmospheres in LTE by Kurucz (1979).
The abundances required for the equivalent
widths of the Si lines listed in Table 2
were calculated using the LTE-code by Baschek
et al. (1966). We used several atmospheres
located on the - curve
for the equivalent width and a set of
microturbulences . For HD 169454 the
SiII lines were not measurable due to the high noise in
this wavelength range. The measured equivalent widths are given in
Table 2.
![[TABLE]](img41.gif)
Table 2.
Equivalent widths of the and the Si lines
This method gives curves for every Si line in the
- plane with different
slopes for different ionization stages. These curves converge to a
common intersection only for one microturbulence
, as can be seen in Fig. 2. The position of
the intersection provides . The accuracy of the
method in temperature is about 1000 K. Interpolating the above
mentioned - curve gives
with an accuracy of about 0.3 dex, which is
sufficient for our purpose. The values for
should be regarded as upper limits, because the model atmospheres do
not converge for lower values at this
temperature due to the high radiative acceleration. The atomic data
were taken from Kaufer et al. (1994), who describe the method more in
detail. The Si abundances obtained are in the range of
. They correspond with solar values within the
uncertainties of the analysis.
![[FIGURE]](img43.gif) |
Fig. 2. The silicon ionization equilibrium for Sco. The plot shows the abundances necessary to yield the equivalent widths given in Table 2. The abundance required to produce a given equivalent width is decreasing with temperature for higher ionization stages. The -value for a given is constrained by the equivalent width of .
|
Radius and the luminosity
were derived by fitting a model continuum to
low-resolution IUE spectra and Johnson and Strömgren photometry.
For the model continuum a final atmosphere was
calculated using the observed values for and
(cf. Table 3). For HD 190603 only
Johnson photometry was available. The mean Strömgren photometry
was taken from Sterken (1977). The values were converted to absolute
fluxes using the conversion factors published by Szeifert et al.
(1993). The Johnson UBV data was presented by Fernie (1983).
The conversion factors were taken from Bessell (1979).
![[TABLE]](img47.gif)
Table 3.
Stellar parameters of the observed stars
A mean flux-calibrated IUE spectrum was used for the fit. For
Sco this was created using averages of
four SWP (6065, 8829, 8968, 10342) and three LWR (7611, 7665, 7720)
spectra. For HD 190603 we had one SWP (14587) and one LWR (7299)
spectrum. For HD 169454 five SWP (2985, 6580, 6581, 6582, 23524)
and two LWP (3879, 3880) spectra were used. In our fit we concentrate
on the near-UV wavelength range and the optical photometry.
The systemic velocities were approximated by the average velocities
of the emission lines of the FeIII multiplets 115 and
117. The standard deviation of these velocities is about 5
, presumably due to intrinsic variations. These
lines are expected to be pumped by two HeI transitions
in the far UV (cf. Wolf & Stahl 1985) and therefore should form in
the lowest part of the photosphere. In the following we call these
lines "photospheric emission lines".
For Sco and HD 190603 we adopted
the terminal velocities published by Prinja et
al. (1990) and corrected them for the systemic velocity
. For HD 169454 no high-resolution IUE
spectrum in the short wavelength range is available. So we derived the
terminal velocity from , in which the fastest
components can be detected at in the rest frame
of the star.
For our analysis we neglected the effects of atmospheric extension,
non-LTE and the fact that the atmosphere is not in a hydrostatic
state. Our set of parameters has been derived in a unified way, so the
systematic errors are of the same order for all three stars. For the
analysis below, we expect the absolute values of the stellar
parameters to be less important compared with the advantage of having
an homogeneous derived set of parameters for all stars. Nevertheless,
our values agree well with the values given in the literature. A
summary of all adopted and derived stellar parameters is given in
Table 3.
© European Southern Observatory (ESO) 1997
Online publication: July 3, 1998
helpdesk.link@springer.de  |