SpringerLink
Forum Springer Astron. Astrophys.
Forum Whats New Search Orders


Astron. Astrophys. 319, 235-243 (1997)

Next Section Table of Contents

A survey of CN in circumstellar envelopes *

R. Bachiller 1, A. Fuente 1, V. Bujarrabal 1, F. Colomer 1, C. Loup 2, A. Omont 2 and T. de Jong 3

1 Observatorio Astronómico Nacional (IGN), Apartado 1143, E-28800 Alcalá de Henares, Madrid, Spain
2 Institut d'Astrophysique de Paris (CNRS), 98 bis Bd. Arago, F-75014 Paris, France
3 SRON, Space Research Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands

Received 15 April 1996 / Accepted 22 July 1996

Abstract

We have conducted a survey of CN N =2-1 and N =1-0 line emission in the envelopes of evolved stars. The sample consists of 42 objects, including C-rich and O-rich envelopes, S-stars, detached envelopes, and proto-planetary nebulae. Confident detections have been achieved in 30 objects. Both CN lines are bright in C-rich envelopes, and the 2-1 line has been detected in 5 O-rich objects (previously, CN had been detected in only one O-rich envelope). The excitation temperature [FORMULA], evaluated from the 2-1/1-0 intensity ratio, is [FORMULA] 3-6 K in most carbon stars, and [FORMULA] 10-20 K in O-rich envelopes.

We find that the CN spectra display anomalies in the rotational, fine, and hyperfine line ratios. Anomalies in the rotational excitation appear in W Ori and UU Aur, two stars which are known to present HCN v =0 J =1-0 masers. The excitation of the CN 2-1 line is unusually high in both objects, and UU Aur may present a weak maser effect in this line. Anomalies are also observed in the intensity ratios of the fine and hyperfine components. If such anomalies were due to the envelope thickness, the required line opacities would be excessively high, in particular for low mass-loss rate objects. We thus suggest that the observed anomalies are the result of an anomalous excitation. Pumping through the optical and near-IR bands seems to play a dominant role in the CN excitation.

A comparison with previously published HCN data shows that the CN/HCN ratio of the total numbers of molecules in C-rich stars tends to be larger in the objects with lower mass-loss rate, supporting the idea that CN is mainly formed from the photodissociation of HCN. The average peak abundance of CN is [FORMULA] 1.9 10-5 in C-rich objects, and is about 300 times smaller ([FORMULA] 6.6 10-8) in O-rich envelopes. The CN/HCN peak abundance ratio is [FORMULA] 0.45 in C-rich stars, in agreement with photodissociation chemical models, and [FORMULA] 0.04 in O-rich objects. This last value is about two orders of magnitude smaller than the predictions of standard chemical models, and suggest that CN is destroyed by additional mechanisms than photodissociation in O-rich envelopes.

Key words: stars: circumstellar matter – stars: AGB, post-AGB – stars: abundances – radio lines: stars – molecular processes

* Tables 1 and 2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

Send offprint requests to: R. Bachiller

SIMBAD Objects

Contents

Next Section Table of Contents

© European Southern Observatory (ESO) 1997

Online publication: July 3, 1998
helpdesk.link@springer.de