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Abstract. A simple mean field dynamo model is developed and
applied to two ‘dynamo-active’ components of a close or contact
binary system. Tidal interaction is assumed to reduce differential
rotation to such a degree that the dynamo action is of ‘α2’ type.
A variety of nonaxisymmetric magnetic fields are produced,
steady and unsteady, of both odd, even and mixed parity with
respect to the equatorial plane. The relevance of the solutions
to evidence for large-scale fields in close and contact binary
systems is discussed.
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1. Introduction

Indications of magnetic activity have been detected in a variety
of late type stars in close binary systems, including (detached)
RS CVn systems and contact systems of W UMa class. Although
the solar field is predominantly axisymmetric, there is evidence
even there for some nonaxisymmetric large-scale features (solar
‘sector structure’, and see Jetsu et al. 1996, preprint), and there
is much stronger evidence for nonaxisymmetry in some other
single stars and RS CVn-type binaries, both from the analysis
of long time series of photometric data (eg Jetsu et al. 1993,
1994; Jetsu 1996), and from photometric modelling (eg Brad-
street 1985; Zeilik et al. 1989, 1990a, 1990b; Henry et al. 1995).
Snapshots of this kind of spot structure have been derived by
surface imaging techniques (eg Piskunov, Tuominen and Vilhu
1990; Piskunov, Ryabchikova and Tuominen, preprint). There is
also the possibility of using eclipses to image binaries (Vincent,
Piskunov and Tuominen, 1993; Vincent et al., in preparation).
The conventional view is that magnetic activity in late-type stars
is the result of dynamo action in their deep convective envelopes,
and this has been studied in single stars by a large number of
authors. However, for some time large-scale nonaxisymmetric
structures of the kinds indicated by the above-quoted and other
papers seemed difficult to explain in the context of mean field
dynamo theory. More recently a number of mechanisms have

been identified that can result in the excitation of stable nonax-
isymmetric fields, provided that the differential rotation is not
too strong (Rädler et al 1990; Moss, Brandenburg and Tuomi-
nen 1991; Moss & Brandenburg 1993; Rüdiger & Elstner 1994;
Moss et al 1995). If both stars of a close binary are dynamo-
active, then it is easier to envisage the excitation of large-scale
nonaxisymmetric fields – the geometry of the system is intrin-
sically nonaxisymmetric and tidal interactions can be expected
to reduce severely the differential rotation and, indeed, to lock
the spin and orbital frequencies.

Thus, in this paper we study dynamo action in two corotat-
ing spheres that may be separate, touch or partially overlap. Two
touching or overlapping spheres provide only a poor geometric
approximation to the Roche geometry of contact or over-contact
binary systems, but we feel that the essentially nonaxisymmet-
ric geometry is represented to an adequate first approximation.
We recognize that dynamo action can be expected to be limited
to a thick outer envelope, but for reasons of computational con-
venience and economy we assume the dynamo-active regions
to occupy the entire volumes of the spheres. The two dynamo-
active spheres are embedded in a ‘computational sphere’, at
the surface of which vacuum boundary conditions are applied.
Within this computational sphere, the diffusion coefficient is
assumed everywhere uniform, but the α-coefficient is only non-
zero within the dynamo-active region(s), thus implying thatα is
a function of azimuthal coordinate measured about an axis paral-
lel to the rotation axis (cf Moss et al 1991). We ignore the effects
of any large-scale circulation: this approximation might be es-
pecially inappropriate for common envelope systems. Overall,
the computational philosophy has some similarity to that of the
‘embedded disc’ galaxy codes (Stepinsky & Levy 1988; Elst-
ner, Meinel and Rüdiger 1990; Moss & Tuominen 1990). The
code used is essentially that described in Moss et al (1991).

2. The model

We consider two dynamo-active spheres, radii r1, r2 contained
within a spherical computational volume of normalized radius
unity. For many of the calculations we placed the origin of spher-
ical polar coordinates (r, θ, φ) at the centre of the computational
volume. whose surface was thus tangent to both of the dynamo-
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Fig. 1. Schematic cross-section through line of centres and rotation
axis. The outer circle represents the intersection of the cross-section
with the surface of the computational volume. When O is at the centre
of the volume, this circle is tangent to both the circles radius r1 andr2.

active spheres. The separation of the centres, d, then satisfies
r1 + r2 + d = 2, and the axis of the coordinate system is paral-
lel to the orbital angular velocity vector. Fig. 1 shows a cross-
section through a plane containing the rotation axis, and also a
section through the equatorial plane. More realistically, the ori-
gin should be at the centre of mass of the system, which needs
some assumption such as

R∗ ∝Mp
∗ , (1)

where R∗, M∗ are the radius and mass of a component, in or-
der to determine fully the geometry. (For equal radii, r1 = r2,
the models are identical.) A relation such as this imposes a
geometrical constraint on possible configurations; thus calcula-
tions with r1 /= r2, and origin not at the centre of mass, should
be regarded as perhaps less realistic. However, trials show that
results do not differ generically between these slightly different
configurations. In relation (1), we take p = 0.7 for non-contact,
and p = 0.5 for contact, configurations, corresponding approxi-
mately to the standard relations for detached and contact lower
main sequence systems. An alternative assumption to that de-
scribed below is that α ∝ z = r cos θ, which removes the dis-
tinction between use of the two different origins of coordinates
as discussed above. Test calculations with this assumption give
similar behaviour to those with α ∝ cos θ, for rather larger
values of α.

A conventional α-effect is taken in the form α =
α∗f (B) cos θ inside the dynamo-active regions, where α∗ is a

Table 1. Summary of results for equal stellar radii, Cα = 100. A -
in the 5th column indicates that m = 1 fields were not present. The
column headed ‘type’ distinguishes steady and oscillating solutions.
An entry of two bracketed values indicates the range of variation of an
oscillatory quantity. ± after an entry indicates small oscillations near
the tabulated value.

rb ETOT O/E/W P P1 M type
0.7 7.5 E -1 - 0.07 steady
0.6 4.4 E -1 - 0.13 steady
0.55 3.0 E -1 - 0.23 steady
0.5 1.65± O+E (-0.80,-0.78) 1 (0.48,0.51) osc
0.475 1.2 O -1 -1 1.0 steady
0.45 0.7 O -1 -1 1.0 steady
0.425 0.5 O -1 -1 1.0 steady
0.410 0.4± O 1 1 1.0 osc
0.40 0.3± O 1 1 1.0 osc

constant, and α = 0 outside. Thus, within the computational
sphere, we can write α = α0(r, θ, φ)f (B), where

α0(r, θ, φ) =
∑
m=0

αm(r, θ) cosmφ. (2)

The coefficients αm can readily be determined analytically
when r1 = r2, but in general were evaluated numerically. A
standard α-quenching nonlinearity,

f (B) =
1

1 + B2(r, θ, φ, t)
, (3)

was used to limit the solutions at finite amplitude. The non-
dimensional dynamo parameter isCα = α∗R/η, whereR is the
radius of the computational sphere (Fig 1), and η is the diffu-
sivity, assumed constant throughout the computational sphere.
Rotation is assumed uniform, and so there is no correspond-
ing dynamo number to quantify differential rotation – this is
strictly an ‘α2 dynamo’. On the surface of the computational
volume, vacuum boundary conditions are applied. In general,
α will contain contributions from all azimuthal Fourier modes,
see Eq. (2). Correspondingly, the nonlinearity (3) means that the
dynamo field will in general be of the form

B(r, θ, φ) =
∞∑
m=0

Bm(r, θ) exp(imφ), (4)

ie all Fourier modes will be present in B also.
Thus the system has three important parameters: r1, r2, Cα.

Comparison between solutions with different values of r1, r2 is
complicated by the changing value ofCα for which the dynamo
is first excited, Cαc say. This can be thought of as being, in part
at least, due to the relative volume where α /= 0 decreasing as
the separation increases (ie as r1 and r2 decrease). We did not
attempt to derive systematically Cαc values.

For the case where the binary radii are equal, certain sym-
metries in the solution can be predicted. In this case α contains
only terms proportional to cos 2mφ, m = 0, 1, 2, .... Thus dy-
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Fig. 2. a Behaviour of P (solid), M (long-dashed), P1 (medium-
dashed) and P0 (short-dashed) for the rb = 0.5, Cα = 100 solution.
b Behaviour of e0 (solid), e1 (long-dashed), e2 (medium-dashed) and
e3 (short-dashed) for the same solution as a. c As b for rb = 0.4,
Cα = 100.

Table 2. Summary of results for equal stellar radii, other values ofCα.

Cα rb ETOT O/E/W P P1 M type
300 0.3 (0.22-0.25) O (-.65,-.13) (-.70,-.12) 1 osc
40 0.7 2.24 E -1 - 0.04 steady
40 0.5 0.33 E -0.99 - 0.38 steady
40 0.4 0.003± O 1 1 1 osc

namo solutions fall into two azimuthal symmetry families, with
the field written symbolically as

Beven =
∑
m=0

B2m exp(i2mφ), (5)

and

Bodd =
∑
m=0

B2m+1 exp(i(2m + 1)φ). (6)

This follows directly from the form of nonlinearity (3). For
given parameters either or both or neither of these families may
be excited. We can refer to family (5) as of type E, and to (6) as
of type O. If both are simultaneously excited (O+E), then there
will be no direct modal interactions. However the nonlinearity
(3), being local, will then give an indirect interaction between
odd and even field components, the odd symmetry field being
able to quench the dynamo growth of the even in a spatially
nonuniform manner, and vice versa.
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Fig. 3a and b. rb = 0.4, Cα = 100. a Field vectors in the equatorial plane, projected on to that plane. The line of centres passes horizontally
through the centre of the figure. φ = 0 is to the right and φ increases anticlockwise. The enclosing circle is the projection of the computational
volume. b Field vectors in the plane φ = 0, projected on to that plane. The rotation axis passes vertically through the centre of the figure.

Table 3. Summary of results for detached configurations with unequal stellar radii. A † indicates computations with the origin of coordinates at
the centre of mass.

Cα d r1 r2 ETOT O/E/W P P1 M type
100 1.2 0.3 0.5 (.77,.79) W 1 1 (0.75,0.90) osc
100 1.2 0.35 0.45 0.45 W 1 1 0.93 steady
200 1.2 0.35 0.45 1.29 W 1 1 0.95 steady
100 1.3 0.50 0.20 0.79 W -1 -1 0.85 steady

100 1.05 0.487 0.300 (0.94,0.96) W 1 1 (0.41,0.92) osc†
200 1.05 0.487 0.300 2.26± W 1 1 (0.40,0.92) osc †
40 0.95 0.617 0.200 0.88 W -1 -1 0.17 steady†
100 0.95 0.617 0.200 3.08 W -1 -1 0.18 steady†
100 1.10 0.452 0.353 0.59 W 1 1 0.85 steady†
100 1.092 0.453 0.353 0.59 W 0.87 0.82 0.82 steady†

In the more general case of unequal radii, where all Fourier
components of α are non-zero, the magnetic field will also con-
tain all Fourier components (type W, say). However, if the radii
are comparable, but not equal, the even-m contributions to α
will still dominate. If the nearby solution for strictly equal radii
is of odd or even type with respect to m, then it can be expected
that the solution for unequal radii will be dominated by this so-
lution, with only a relatively small component of the opposite
symmetry type present. IfETOT ,E(0) are respectively the total
magnetic energy and that contained in the axisymmetric part of
the field, then M = 1−E(0)/ETOT , 0 ≤M ≤ 1, is a measure
of the global azimuthal symmetry. The energies, em, in the mth
mode can also be calculated.

The other useful global symmetry parameter is the parity. If
(A), (S), denote fields with radial components that are respec-

tively odd, even with respect to the plane θ = π/2, and E(A),
E(S) are the corresponding parts of the total magnetic energy,
then P = (E(S) − E(A))/(E(S) + E(A)), with −1 ≤ P ≤ 1
(cf Moss et al 1991). Parity parameters Pm can also be defined
for the individual azimuthal Fourier modes.

In the limit r1 = r2 → 1, the spheres are almost super-
imposed, and the overall dynamo-active volume approaches a
sphere. The solutions should then approach the known solu-
tion for a sphere. We computed the marginal value of Cα when
r1 = r2 = 0.98, d = 0.04, to be approximately 7.75, with
P0 = −1. This is consistent with the standard marginal value of
Cαc = 7.64 for the first bifurcation from the trivial solution to
a dipolar axisymmetric field for the spherical α2 dynamo.

We note that the problem could have been tackled by taking
the line of centres as the axis θ = 0 of the polar coordinate
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system, with α ∝ sin θ cosφ within the dynamo-active regions.
A trial calculation with r1 = r2 was found to agree reasonably
well with results obtained with the geometric configuration used
above, but this approach seemed less flexible, and so was not
pursued.

The code used is an adaption of that described in Moss et al
(1991). An explicit NI ×NJ grid in r and θ is used, together
with a modal expansion in φ, including modes 0 ≤ m ≤ Nm.
Experience suggested that NI = 31, NJ = 61, Nm = 5 was
adequate for the parameters used. The dimensionless time, τ , is
measured in units of R2/η.

We note that, despite some perhaps superficial similari-
ties, this work does not describe a dynamo of Herzenberg type
(Herzenberg, 1958). In our case the spin axes are assumed to
be strictly aligned, and the components do not spin relative to
one another. Some related issues connected with the Herzen-
berg dynamo are discussed in Brandenburg, Moss and Soward,
in preparation.

3. Results and discussion

We begin by considering the case of equal radii, r1 = r2 = rb,
say, and vary the separation of the centres. We take a fixed
value, Cα = 100, at which a dynamo is excited over a wide
range of radii, rb. Calculations are usually started from an arbi-
trary configuration containing a mixture of m = 0 and m = 1
components, with P /= ±1. Results are outlined in Table 1.
For rb = 0.3, the dynamo is not excited at Cα = 100. This
sequence of computations exhibits several interesting features.
For 0.7 ≥ rb ≥ 0.55, the solutions are steady, of type E, and
have P = −1. M increases as rb decreases and the relative sep-
aration of the centres increases. For 0.475 ≥ rb ≥ 0.425, the
solutions are steady, of type O, and P = −1. The behaviour for
larger rb (ie smaller separation of centres) is consistent with the
limit d → 0, as discussed in Sect. 2. For rb = 0.5, both O and
E type solutions coexist. Here P1 = 1, so the overall solution is
of mixed parity, P /= ±1, and it is oscillatory. For values of rb a
little smaller than 0.5, the O-type solutions disappear, and solu-
tions are again steady. Between rb = 0.425 and 0.410 there is a
further bifurcation, and the stable solution becomes oscillatory,
with constant parity P = 1. In Fig. 2 we show some details of
the temporal behaviour of the rb = 0.5 and rb = 0.4 solutions,
and Fig. 3a,b gives field vectors projected on to equatorial and
azimuthal planes when rb = 0.4. In Fig. 4a,b for the rb = 0.4
calculations we give contours of radial and absolute field at the
surface of the computational sphere, and in Fig. 4c,d the corre-
sponding quantities at the surface of one of the dynamo-active
component spheres.

In Table 2 we present several other calculations for equal
radii, but with different Cα values. No significant changes in
behaviour are apparent from those with Cα = 100, except that
when Cα = 40, the rb = 0.5 solution is steady and that with
rb = 0.40 is only marginally excited.

Table 2 gives results from computations for detached config-
urations of unequal radii. As anticipated, the solutions are now
of type W, and so, necessarily, M /= 1. Usually the solutions

Table 4. Summary of results for contact configurations with unequal
stellar radii. A † indicates computations with the origin of coordinates
at the centre of mass.

Cα d r1 r2 ETOT O/E/W P P1 M type
25 1.0 0.7 0.3 0.57 W -1 -1 0.41 steady
40 1.0 0.7 0.3 1.32 W -1 -1 0.42 steady
100 1.0 0.7 0.3 4.51 W -1 -1 0.48 steady
200 1.0 0.7 0.3 10.0 W -1 -1 0.48 steady
100 1.0 0.5 0.7 5.35 W -1 -1 0.20 steady

100 0.89 0.576 0.315 2.25 W -1 -1 0.20 steady†
100 0.75 0.71 0.50 4.96 W -1 -1 0.16 steady†

are of ‘pure’ parity, P = ±1, but we did discover some sta-
ble ‘mixed parity’ solutions. Solutions can be either oscillatory
or steady. In some cases, very long-lived transient behaviour is
observed, over as long as 50 or more global diffusion times. In
the cases with (r1, r2, d) = (0.617, 0.200, 0.95) in Table 2, the
fields appear to be settling to aP = +1 configuration when, after
10–15 diffusion times a relatively sudden change toP = −1 oc-
curred, accompanied by a decrease in M from near unity to the
tabulated values. We show details of the evolution of parity and
M with time for this case in Fig. 5a, and of the energies for the
case (r1, r2, d) = (0.4874, 0.30, 1.05), Cα = 200 in Fig. 5b. As
anticipated in Sect. 2, solutions listed in Table 2 with (d1, r1, r2)
values close to those of the O-type solutions in Table 1 do have
the majority of the energy in the oddm field modes. In Fig. 6a,b
we show field contours over the surface of the computational
sphere, and the surface of the primary component, for the solu-
tion shown in Fig. 5b. The last entry of Table 2 is noteworthy.
Although the parameters are only slightly different from those of
the immediately preceding entry, its behaviour is quite different
in that the fields are not then of pure parity, P = 1.

In Table 3 there are results for contact configurations of
unequal radii. These solutions are all of type W and are steady
with P = −1..

4. Concluding remarks

We recognize that the model investigated in this paper is very
idealized, and so the solutions discussed can only be consid-
ered to be illustrative. Nevertheless we believe that we have
captured something of the essence of the physical situation, and
that the solutions presented do have some relevance to the rich-
ness and wide variety of behaviour that can be expected in a
close binary comprising two late-type stars. The solutions are
naturally nonaxisymmetric. However this is more than just the
obvious asymmetry obtained, eg, by viewing two individual, al-
most axisymmetric, stars from a distance. The ‘natural’ parity of
a spherical dynamo, or of two such fields viewed together, is odd
(P = −1). We see from Tables 1 - 3 that many of the solutions
are even with respect to the orbital plane (P = +1). We empha-
size that we have taken the simplest form of nonlinear dynamo,
without inclusion of any of the effects that have previously been
shown to favour the growth of nonaxisymmetric fields, such as
nonuniform distribution of dynamo source terms (Rädler et al
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Fig. 4a–d. rb = 0.4, Cα = 100. a Contours of radial field strength on the surface of the computational sphere. b Contours of absolute field
strength on the surface of the computational sphere. φ runs horizontally from −π to π, θ vertically from 0 (top) to π (bottom). c Contours of
radial field strength on the surface of the primary component. d Contours of absolute field strength on the surface of the primary component. In
c and d, if Θ, Φ are spherical coordinates measured with respect to the spin axis of the primary, then Θ runs from Θ = 0 (top) to Θ = π, and Φ
from 0 to 2π horizontally, where Φ = 0 corresponds to the direction of the centre of the secondary

1990; Moss et al 1991), anisotropy of α (Rüdiger & Elstner
1994) or dynamically driven large-scale motions in meridional
planes, perhaps with a latitudinally dependent angular velocity
(Moss et al 1995). The sensitivity of the solutions to the im-
posed parameters in certain ranges is hinted at by the last entry
of Table 2, where a small change in the parameters alters quite
radically the solution. There are other indications of the pres-
ence of uninvestigated bifurcations as the physical parameters
are altered: the computations are sufficiently time-consuming,

and the model too preliminary, for it to be yet worthwhile to
explore this issue systematically

We can deduce that close late-type binaries can be expected
to exhibit large-scale nonaxisymmetric fields. These may be
of even parity, especially if the components are detached (Ta-
bles 1 and 2), which is not the parity of the stable solutions for
the individual stars. The visible fields then have maxima at the
longitudes corresponding to the intersection of the line of cen-
tres with the stellar surfaces. We believe that these results may
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Fig. 5. a Evolution of P , M , P1, P0 when Cα = 100, (r1, r2, d) = (0.617, 0.20, 0.95), as Fig. 3a). Temporal behaviour of modal energies e0, e1,
e2, e3, for Cα = 200, (r1, r2, d) = (0.4874, 0.30, 1.05) calculation, as Fig. 3b)

Fig. 6a–d. Cα = 200, (r1, r2, d) = (0.4874, 0, 30, 1.05). a Contours of radial field strength over surface of computational sphere. b Contours of
absolute field strength on the surface of the computational sphere. c Contours of radial field strength on the surface of the primary component.
d Contours of absolute field strength on the surface of the primary component. Orientation is as described for Fig. 4
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Fig. 6a–d. continued

have relevance to the preferred longitudes of active regions on
the surfaces of RS CVn systems, as referenced in the Introduc-
tion.
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