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Abstract. We use B and V data of globular cluster variables
to derive a formula for the distance moduli of RRab stars. The
method employs the Fourier decomposition of the V light curve
and the averageB−V colour index. By using our former result
for the V0 absolute magnitude, we also obtain an expression for
the dereddened colour index. With the aid of the new formulae,
the relative distance moduli can be estimated within an error of
< 0.03 mag. Although we also make an absolute calibration,
it is cautioned that this may be more affected by possible sys-
tematic errors originating mostly from the Baade−Wesselink
magnitudes. On the basis of the scatter of the individual dis-
tance moduli computed with and without reddening correction,
it is shown that inhomogeneous reddening plays a role in several
clusters. By using our formulae we derive new expressions for
the Ic and K absolute magnitudes on a sample of stars which
contains mostly field stars with accurate photometry. As a by-
product of this derivation we also give optimum estimations for
the selective absorption coefficient RV . We show that the K
absolute magnitude contains important contribution also from
the Fourier parameters, besides the well known dependence on
the period. The Ic absolute magnitude is superbly correlated
with the Fourier parameters, which implies that this colour is a
very good candidate for the accurate estimation of the absolute
magnitude.
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tions – stars: horizontal-branch – globular clusters: general

1. Introduction

In a previous paper (Kovács and Jurcsik 1996, hereafter KJ), we
have shown that the intensity averaged absolute V magnitude
of the RRab stars can be well approximated by a linear formula
which contains the period and the A1, ϕ31 Fourier parameters
of the V light curve. The methodology of the derivation was
purely empirical which is a great advantage of our approach,
since it eliminates the ambiguities of the semi-empirical (i.e.

Baade−Wesselink) and theoretical (i.e. numerical hydrodynam-
ical, see Simon and Clement 1993) considerations. Once the
absolute magnitude is computed, the true distance modulus can
be obtained through a reddening correction. Although there are
several formulae for the estimation of the interstellar reddening
from the observed colour index, light curve and physical param-
eters (e.g. Blanco 1992 and references therein), here we derive
an expression for the true distance modulus which is automati-
cally reddening free and more accurate than the ones obtained
by any former approach.

The structure of the paper is as follows. In Sect. 2 we de-
scribe our method, followed by the details of the data-sets and
the derivation of the formulae for the distance modulus, the red-
dening and for the V absolute magnitude (Sects. 3 and 4). In
the subsequent section we employ our formulae to mostly field
Ic (Cousins I) and K data, in order to derive new expressions
for the absolute magnitudes in these colours. In closing, Sect. 6
summarizes the main conclusions of the paper.

2. The method

The apparent brightness can be written in the following form

V = V0 + AV + d , (1)

where V0 is the absolute magnitude, d is the distance modulus
and AV is the interstellar absorption in the V band. The latter
can be expressed through the selective extinction EB−V

AV = αEB−V , (2)

with a properly chosen selective absorption coefficient, which
we denote here byα. Similarly to Madore and Freedman (1991),
we use the definition of EB−V (≡ (B − V ) − (B0 − V0)), and
write Eq. (1) in the form

W = W0 + d , (3)

with

W = V − α(B − V ) . (4)

The function W0 depends solely on the physical parameters of
the star. Consequently, for distant clusters, where the d = const.
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assumption is valid with a high accuracy, one can estimate the
function W0 up to an additive constant by applying our stan-
dard assumption about the existence of relations between the
light curve and the physical parameters. Once the dependence
of W0 on the Fourier parameters has been determined with the
aid of cluster variables, one can estimate the relative distance
modulus of any variable (of the same class) simply by comput-
ing W −W0. In principle, α can also be determined through
cluster fitting if there is enough variation in the internal red-
dening within the clusters. Since this is usually not significant
enough for the reliable computation of α, it is better to fix it
to some ’standard’ value (e.g. to 3.1). In extreme cases α may
deviate from its standard value substantially (e.g. M4, see Liu
and Janes 1990 and references therein). In Sects. 4 and 5 we
shall discuss how one can test this possibility and correct for its
effect.

In KJ we used Eq. (1) to derive a formula for the absolute
magnitude. We see that this approach may carry large errors if
differential reddening plays a role. On the other hand, using two
colour observations, we can largely eliminate this effect and get
an expression for W0, which in turn can be used to compute the
distance modulus as already mentioned.

The true colour index B0 − V0 can also be determined.
Eqs. (1) and (2) yield

V − V0 − α(B − V ) = −α(B0 − V0) + d . (5)

Here V0 denotes the magnitude averaged absolute brightness,
which can be obtained in the same way as the intensity averaged
value (see KJ).

An application of these formulae utilizes the available data
on field stars with Ic and K photometry. The absolute mag-
nitudes in these colours can be computed by the use of our
formulae for the distance modulus and for the reddening. These
absolute magnitudes are then fitted to the Fourier parameters of
the V light curves. We shall see from the quality of the fits that
the new calibrations should be fairly accurate.

3. The data

The basis of our analysis is the CCD and photographicB and V
data published for several galactic and Magellanic Cloud (LMC)
globular clusters. This set is basically the same as in KJ, except
that here the very recently published data on M5 (Brocato et al.
1996) are also included. Table 1 lists the clusters, the number of
stars and the sources used for their light curves in the different
colours. We include all RRab stars with reliable and stable V
light curves. The restrictions for the data in the other colours
are less severe, since we use them only to compute the average
brightnesses in those colours. In an application of the distance
modulus formula, we use cluster Ic data. These are also listed
in Table 1. For the determination of the B0 − V0 zero point and
to find the expressions for the Ic and the infrared K absolute
magnitudes, we use B, V , Ic and K observations of mostly
field (Table 2) and some globular cluster stars (Table 1). Data
published in I colour systems other than that of the Cousins,

Table 1. Multicolour data of the globular cluster stars

V B Ic K
Cluster N Ref. N Ref. N Ref. N Ref.
M4 4 1,2,3,4 4 1,2,3,4 3 1,2 3 2
M5 23 5,6,7,8 10 5,8,9 22 6,7,9 8 6,10
M68 5 11 5 11 5 11 −
M92 6 6,12 5 12 3 6 2 6,10
M107 8 13 8 13 − −
NGC 3201 12 14 12 14 − −
Rup. 106 10 15 10 15 − −
NGC 1466 8 16 8 16 − −
NGC 1841 9 17 9 17 − −
Reticulum 8 18 8 18 − −

References: (1) Clementini et al. 1994; (2) Liu & Janes 1990; (3) Cac-
ciari 1979; (4) Sturch 1977; (5) Brocato et al. 1996; (6) Cohen &
Matthews 1992; (7) Reid 1996; (8) Storm et al. 1991; (9) Cohen &
Gordon 1987; (10) Storm et al. 1992; (11) Walker 1994; (12) Carney
et al. 1992; (13) Dickens 1970; (14) Cacciari 1984; (15) Kaluzny et al.
1995; (16) Walker 1992b; (17) Walker 1990; (18) Walker 1992a.

have been transformed to the latter with the aid of standard
methods.

4. Derivation of the formulae: distance modulus, reddening,
absolute magnitude

Our goal is to derive a compatible set of equations which is
able to give an accurate representation of the apparent magni-
tudes and colours of the cluster variables (Table 1). The primary
quantity we deal with is the reddening-free brightnessW (Eq. 4)
which is directly connected with the distance modulus (Eq. 3).
The colour index B0 − V0 will be determined through Eq. (5)
by the use of the absolute magnitude V0, obtained in the same
way as in KJ. It follows from the derivation that these formulae
and the one for W0 are compatible.

The value of the selective absorption coefficient (RV ) is
usually a matter of dispute. As we have already mentioned,
throughout this paper we take the most often quoted value of 3.1.
The only exception is M4, which is obscured by the Scorpius-
Ophiuchus complex of dark nebulae. According to Liu and Janes
(1990) a better value for this cluster is 3.8. In Sect. 5 we show
that, indeed, this is true, although we get a somewhat larger
value. Therefore, if not stated otherwise, we use RV = 4.1 for
the stars of M4, but in any other case we stick to RV = 3.1. In
general, a change in the selective absorption coefficient from α
to RV yields a change in the distance modulus, namely

dRV
= dα + (α−RV )EB−V . (6)

In this way one can always convert the distance modulus to the
correct value which corresponds to the appropriate RV .

As in KJ, we use the sine Fourier decompositions of the
V light curves in searching for the best representation of any
quantity which is assumed to depend solely on the stellar pa-
rameters. In this process we examine all linear combinations of
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Table 2. Multicolour data of the field stars

V B Ic K
Star References
SW And 1,2 1 1 1,3
XX And 4,5,6 4,5,6 − −
AT And 4,7 4,7 − −
WY Ant 4,8,9 9 9 10
X Ari 8,11,12 4,6,12 12 11,12
V Cae 13 13 13 −
SS Cnc 4,6,14 4,6, − −
V499 Cen 8 15 − −
RR Cet 1,16 1 1 1
UU Cet 8,17 17 17 18
S Com 4,6,7 4,6 − −
W Crt 8,9,19,20 9 9 10
DX Del 2,16 2 2 21
SU Dra 1 1 1 1
SW Dra 22 22 23 22
BK Dra 24 24 − −
BT Dra 24 24 − −
RX Eri 1 1 1 1
SX For 20 20 − −
RR Gem 1,7 1 1 1
UW Gru 25 25 − −
TW Her 7,26 26 − 26
SV Hya 8 20 − −
RR Leo 1,4,14 1 1 1
RX Leo 4,6 4,6 − −
SS Leo 8,27 27 27 27
VY Lib 8,20 20 − −
TT Lyn 1,2,5 1 1 1
V445 Oph 2,8,27 2 2 27
AV Peg 1 1 1 1
AR Per 1 1 1 1
RV Phe 8,23,28 23,28 23,28 18
BB Pup 8,9 9 9 10
V440 Sgr 8 23 23 23
VY Ser 8,27 27 27 26,27
W Tuc 17 17 17 18
TU UMa 1,2 1 1 1
UU Vir 1,2,26 1,2,26 1,2 1,26
AT Vir 4,6,20,29 4,6,20 − −

References: (1) Liu & Janes 1989; (2) Barnes et al. 1988; (3) Jones et
al. 1992; (4) Fitch et al. 1966; (5) Penston 1973; (6) Sturch 1966; (7)
Stȩpień 1972; (8) Lub 1977; (9) Skillen et al. 1993a; (10) Skillen et al.
1993b; (11) Jones et al 1987a; (12) Fernley et al. 1989; (13) Hansen
& Petersen 1991; (14) Epstein 1969; (15) Warren 1966; (16) Meylan
et al. 1986; (17) Clementini et al. 1990; (18) Cacciari et al. 1992; (19)
Bookmeyer et al. 1977; (20) Clube et al. 1969; (21) Skillen et al. 1989;
(22) Jones et al. 1987b; (23) Cacciari et al 1987; (24) Piersimoni et
al. 1993; (25) Bernard 1982; (26) Jones et al. 1988; (27) Fernley et al.
1990; (28) Cacciari et al. 1989; (29) Eggen 1994.

the Fourier amplitudes and phases. The maximum number of
parameters is 8, and the optimum parameters are chosen from
a set which includes the first 6 Fourier components and the pe-
riod. In the expressions tested, nonlinear relations seem to play
no role.

In the cluster fitting, the procedure automatically yields also
the distance moduli. We minimize the following expression

D =
Nc∑
j=1

Nj∑
i=1

[W j(i)−W0(P j(i), Aj
1(i), ...)− dj]2 , (7)

whereNc is the number of clusters,Nj is the number of stars in
the j-th cluster, dj is the corresponding distance modulus. For
any fixed set of Fourier parameters the solution can be easily
found by standard linear least squares methods.

As a final introductory remark it is stressed that through-
out this paper we use magnitude averages rather than intensity
averages as some researchers prefer. Although the intensity av-
erages – at least for the luminosity in V – are closer to the static
model values (Bono et al. 1995), for the present purpose the
magnitude averages are simpler to use and give equally good
correlations with the Fourier parameters.

4.1. The distance indicator W0

As listed in Table 1, we have altogether 79 stars in the galactic
and LMC globular clusters with B and V photometry. In the
following we use these stars in the fit of W (Eqs. 3 and 4).

At each step of the fitting process we discard the star which
deviates the ’most substantially’ from the overall trend deter-
mined by the bulk of the sample. The outlying stars always show
up clearly, and their selection is unambiguous. We mention that
the reason for the discrepancy of a given star can be manifold,
e.g. crowding, hidden Blazhko behaviour, photometric errors,
etc. Since it is often not possible to decide which one of these
possible reasons causes the defect of the data, we do not wish
to discuss the problems of the individual stars left out from the
analysis. The same is true for the stars to be omitted in the
various regressions to be discussed in the rest of the paper.

We use α = 3.1 for all clusters, including M4, too. Our
tests have shown that changing α has essentially no effect on
the selection of the outlying stars. At the same time, there is a
slight indication that the above ’standard’ value of α yields the
best overall fitting accuracy.

We find that it is necessary to omit 13 stars (M5 V59; M68
V22; M92 V4; M107 V8, 11; NGC 3201 V14, 22, 34, 73;
Ruprecht 106 V10, 14; NGC 1841 V9, 12) to reach a situa-
tion when no other obviously outlying star can be found. We
refer to the remaining 66 stars as basic data-set.

The parameters and standard deviations of the various fitting
formulae are given in Table 3. In the left part of the table the
unbiased estimations of the standard deviations of the best fit-
ting formulae are listed together with the number of parameters
used. We see that σ levels off when more than 3 parameters are
used. Therefore, in the right part of the table the best 3 parame-
ter fits are compared. It is seen that there are quite a number of
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Table 3. Fitting properties of W0 for the basic data-set

n par. fits 3 par. fits
n σ params. σ

1 0.0368 P , A2, ϕ41 0.0287
2 0.0329 P , A1, ϕ41 0.0298
3 0.0287 P , A3, ϕ41 0.0298
4 0.0286 P , A4, ϕ41 0.0309
5 0.0288 P , A2, ϕ51 0.0313
6 0.0290 P , A2, ϕ31 0.0314
7 0.0292 P , A5, ϕ41 0.0314

Table 4. Correlation coefficients Kij(= Kji) in the error formula
Eq. (9)

i j Kij i j Kij

1 1 0.003455 2 3 0.002583
1 2 −0.003669 2 4 −0.000155
1 3 −0.003355 3 3 0.004528
1 4 −0.000167 3 4 0.000285
2 2 0.005308 4 4 0.000112

compatible formulae but all of them contain the period and some
combinations of an amplitude and a phase. The coexistence of
many formulae of similar accuracy is a result of the interrela-
tions among the Fourier parameters as discussed in Jurcsik and
Kovács (1996). We refer to Kovács (1996) for further details on
the statistical properties of the W0 fit.

Since the lowest order amplitude is relatively more accu-
rately estimated, we prefer the formula for W0 which contains
the amplitude A1. Anticipating the zero point to be determined
in Sect. 4.3, we obtain the following formula

W0 = 0.676− 1.943P + 0.315A1 + 0.068ϕ41 . (8)

We recall that the phase refers to a sine decomposition and it
should be chosen as the closest value to 1.6. Similarly to KJ, the
formal error can be computed from the following expression

σ2
W0

= 0.0992σ2
A1

+ 0.0046σ2
ϕ41

+
4∑

i,j=1

Kijpipj , (9)

where p1 = 1, p2 = P , p3 = A1, p4 = ϕ41, and the correlation
matrix Kij is given in Table 4. We remark that the period is
assumed to be error-free in the above formula.

In Fig. 1 we plot W0 vs. W − dα in order to demonstrate
the quality of the fit by Eq. (8). To illustrate that the individual
cluster relations overlap in this diagram, and therefore, that the
good fit is not a mere consequence of the proper choice of the
distance moduli, we highlight the stars of M5 (open circles).

4.2. V0 and B0 − V0

In KJ we derived a formula for the intensity averaged absolute
magnitude MV . By using basically the same data-set (193 stars
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Fig. 1. Correlation of the ’observed’ and fittedW0 for the basic data-set.
The stars of M5 are shown by open circles. The 45◦ line is drawn for
reference

of the globular clusters, the Sculptor dwarf galaxy and a sample
of Baade−Wesselink stars), we fit the magnitude averages with
the Fourier parameters. As we have already mentioned in Sect.
2, this direct fit of V0 is influenced by any inhomogeneity in
the individual cluster reddenings. We hope that this effect is
minimized by the omission of the outlying stars and by the large
amount of data. Then, the so-obtained formula for V0 is used
in computing B0 − V0 by fitting Eq. (5) to the basic data-set of
this paper. In the computation of V0 we experience an ambiguity
in choosing among the best 3 parameter fits which all contain
the period and some combinations of an amplitude and a phase.
In order to be compatible with the formula of W0, we choose
the one with the parameters P , A1, ϕ41. Finally, we get the
following set of equations (again, the zero point of B0 − V0 is
anticipated from the next subsection)

V0 = 1.630− 1.415P − 0.273A1 + 0.062ϕ41 , (10)

B0 − V0 = 0.308 + 0.163P − 0.187A1 . (11)

It is possible to iterate Eqs. (10), (11) by applying one of them to
the data and compute the other through Eq. (5). Our tests have
shown that the solution converges to a statistically equivalent
set of equations without any appreciable improvement in the fit-
ting accuracy. Therefore, we accept the above solution obtained
through the simple direct fit.

To get an insight into the significance of the above expres-
sion of B0 − V0, in Table 5 we show the dependence of the
fitting accuracy on the number and combination of parameters.
We think that on the basis of the behaviour of the dispersion,
the above choice of B0 − V0 is well justified.

To visualize the goodness of the fits we show the ’observed’
vs. fitted quantities in Fig. 2. In the upper panel, open circles
show the stars of the Sculptor, whereas the same symbols in the
lower panel indicate the variables of M5. We see that the stars
of the Sculptor exhibit a considerable scatter, a part of which
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Fig. 2. Correlation of the ’observed’ and fitted values forV0 andB0−V0.
The stars of the Sculptor and of M5 are shown by open circles (upper
and lower panels, respectively). Dots are for the stars of the basic
data-set. The 45◦ lines are shown for reference

Table 5. Fitting properties of B0 − V0 for the basic data-set

n par. fits 2 par. fits
n σ params. σ

1 0.0108 P , A1 0.0095
2 0.0095 P , A2 0.0096
3 0.0093 P , A3 0.0103
4 0.0093 A1, ϕ21 0.0104
5 0.0093 A1, ϕ51 0.0106
6 0.0093 A1, ϕ61 0.0106
7 0.0094 A1, ϕ31 0.0106

is presumed to originate in the inhomogeneous reddening. The
M5 variables span a substantial fraction of the range ofB0−V0,
similarly to what we have seen in the case of W0.

4.3. The zero points of B0 − V0 and W0

We calibrate B0 − V0 and W0 separately. The calibration of
W0 relies partially on the Baade−Wesselink (BW) luminosities,
whereas that ofB0−V0 utilizes the distribution of the observed
reddenings and is completely empirical, i.e. independent of any
theoretical assumptions.

Fig. 3. Distribution of the reddening for the stars of Tables 1 and 2

We start with the calibration of the colour index. Since the
colour excess EB−V is a non-negative quantity, we require
that the EB−V values calculated by Eq. (11) on a ’reasonably’
large sample of stars should satisfy this property. Of course,
one should take into consideration the fact that our formula for
B0 − V0 is an approximate one and that there is observational
noise, too. Therefore, it is also possible to get ’slightly’ negative
values if the extinction is small.

By using the B, V data of Tables 1, 2 and Eq. (11), we
compute the distribution function of EB−V on a sample of 118
stars (Fig. 3). The cutoff at aroundEB−V = 0 is nicely exhibited.
The zero point is fixed by this cutoff. It is seen that there is some
ambiguity in the accurate definition of this cutoff. However, it is
clear that even for this limited sample the error of the zero point
of B0 − V0 cannot be larger than 0.01 − 0.02 mag. We think
that more accurate calibration of the zero point is only a matter
of time, when the massive photometric surveys will supply us
with a large amount of two color data.

Turning to the calibration of W0, it is cautioned that at the
moment it is not possible to make an accurate calibration of
W0, because of the lack of good distance or absolute luminosity
etalons. The purpose of the present calibration is only to bring
our formulae into agreement ’on the average’ with the results of
the recent BW analyses. In our approach the random errors of
the BW luminosities are cancelled out, but of course we are still
affected by any possible systematic errors (e.g. Walker 1992c).

The simplest way to compute the zero point of W0 is the
direct combination of the zero points of Eqs. (10) and (11) via
Eq. (4). In this way we get a value of 0.675. This approach
is not entirely correct, because Eq. (8) is not an exact linear
combination of Eqs. (10) and (11) but rather a least squares
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Table 6. Distance moduli obtained from the B, V colours

Cluster N d σd
M4 4 11.03 0.03
M5 9 14.06 0.03
M68 4 14.83 0.02
M92 4 14.43 0.03
M107 6 13.65 0.02
NGC 3201 8 13.34 0.03
Rup. 106 8 16.48 0.02
NGC 1466 8 18.39 0.03
NGC 1841 7 18.14 0.03
Reticulum 8 18.20 0.03

solution as described in Sects. 2 and 4.2. However, the difference
is very small, which can be checked very easily.

Denoting the coefficients of Eq. (8) by ci, we calculate the
zero point c0 with the aid of the following equation

c0 = − 1
N

N∑
i=1

c1P (i) + c2A1(i) + c3ϕ41(i)−Ws(i) , (12)

where Ws(i) is the ’synthetic’ value of W0(i), computed from
Eqs. (10) and (11). The index may run through any data-set with
accurate Fourier decompositions. In our case this data-set is a
sample of about 300 stars. Finally, with this method we get a
value of 0.676 for the zero point. This is practically equal to the
value obtained directly from Eqs. (10) and (11).

4.4. Compatibility of the distance moduli

Here we would like to test the consistency of the distance in-
dicator W0. Since W0 was derived by the use of (B, V ) data,
it is interesting to ask whether the so-derived distance moduli
are consistent with the ones obtained through a similar formula
using V and Ic colours.

First, as an application of the (B, V ) distance modulus for-
mulae (Eqs. (3), (4) and (8)), we compute the distance moduli
of the clusters entering in our analysis. We use RV = 3.1 for
all clusters, except for M4, for which RV = 4.1 is applied. The
result is given in Table 6. We remark that due to the compati-
bility of Eq. (8) and Eqs. (10), (11), our results do not change if
we switch between the two sets of equations. Column 4 gives
the standard deviation computed from the individual distance
moduli. The number of stars used in each cluster is given in
the second column. We think that the σd values give a good
estimation of the expectable accuracy of the formulae.

Now we turn to the consistency test. Unfortunately, the clus-
ter (V, I) data alone do not permit to perform this test, because
they are too few and relatively too noisy. Therefore, we com-
bine the cluster and field data with the aid of the (B, V ) distance
indicator W0.

In calculating the distance moduli, we proceed as in Sect.
4.1 but this time we use theX ≡ Ic−β(V −Ic) reddening-free
quantity, where β = 1.5 from Eqs. (15) and (16) withRV = 3.1.

In performing the test, the field B, V , Ic data (Table 2) are
used to compute X0 for these stars. In this procedure we apply
Eq. (8) to compute the distance moduli for the field stars. The
so-obtained X0 values of the field stars are then considered as
’observed’X values of one cluster and added as the fifth cluster
to the other four galactic clusters. Then, the data are fitted in the
same way as in the case of the cluster (B, V ) data. After leaving
out the 6 outlying stars (M5 V19, 27, 32, 59; M68 V22; SS Leo),
we get a sample of 52 stars. The best fits contain P , ϕ41 and
some amplitude. To be compatible with the other formulae, we
choose the fit with the P , A1, ϕ41 parameters. They yield the
following formula

X0 = 0.833− 2.804P + 0.345A1 + 0.156ϕ41 . (13)

The standard deviation of the above fit is 0.034 mag. The dis-
tance modulus is computed in the same way as in the case of
theW0 indicator, i.e. d = X−X0. We remark that all computed
distance moduli remain the same within 0.01 − 0.02 mag by
choosing a sample with fewer or larger number of stars omit-
ted or with another choice of parameters (i.e. using some other
amplitude in the formulae with P and ϕ41).

The distance modulus for M4 should be corrected, because
of the larger selective absorption coefficient applicable to this
cluster. Using the extinction formula of Cardelli et al. (1989)
and the transformation between the Johnson and Cousins I (e.g.
Clementini et al. 1995), we compute the distance modulus with
the aid of the following formulae

d = d1.5 + (1.5− β)EV−Ic , (14)

β = RIc/(RV −RIc ) , (15)

RIc = 0.751RV − 0.485 , (16)

EV−Ic = (RV −RIc )EB−V , (17)

where RIc = AIc/EB−V , RV = 4.1 and the EB−V values
are computed by Eq. (11) from the B, V data. With the above
correction the distance modulus of M4 decreases by 0.11 mag
compared with the one (d1.5) obtained directly from Eq. (13).

As can be seen from Table 7, the agreement between the
(B, V ) and the (V, Ic) distance moduli can be regarded as very
good if we consider all the possible error sources (limited size
of the data sets, relatively poorer quality of the cluster I data,
accuracy of the representation of the Ic system, etc). It is es-
pecially worth mentioning the importance of the accurate zero
point of the V magnitude. Because of the large coefficients of
the colour terms and of the opposite signs of V in the expres-
sions of W and X , an error of ∆V in V causes a difference
of 5.6∆V between the distance moduli derived from W and
X . Although a sizable average zero point error does not seem
to be present in the data-sets used here, it is worth to remem-
ber the importance of the accurate reproduction of the standard
photometric systems when deriving precise distance moduli.

4.5. Inhomogeneous cluster reddenings

It has been known for some time that even globular clusters show
inhomogeneities in the properties of the interstellar matter (e.g.
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Fig. 4. Individual distance moduli computed by Eq. (8) (upper rectan-
gles) and Eq. (10) (lower rectangles). The ratios of the standard devia-
tions of the distance moduli are shown in each panel

Table 7. Distance moduli computed from different colours

Cluster N dB,V N dV,I
M4 4 11.03 3 11.04
M5 9 14.06 18 14.12
M68 4 14.83 4 14.83
M92 4 14.43 3 14.40

Cacciari 1984; Liu and Janes 1990 and references therein). The
best example is M4, where the star-to-star differences inEB−V
could reach 0.07 mag. With the aid of the distance modulus
formulae (Eqs. (3), (4), (8)) here we show that inhomogeneous
reddening plays a role in several clusters. On the one hand we
calculate the individual distance moduli with the above men-
tioned formulae, which yield the true (i.e. reddening-free) dis-
tance moduli. These will then be compared with the reddened
distance moduli computed by the formula for the absolute mag-
nitude (Eq. (10)). Inhomogeneous reddening will be exhibited
as a larger scatter in the individual distance moduli computed
from the V0 absolute magnitudes. A smaller scatter of the W0

distance moduli will indicate that, indeed, the larger scatter of
the V0 moduli is attributed to inhomogeneous reddening. As we
shall see at the end of this subsection, the so computed degree
of inhomogeneity is in a strong correlation with the variation of
the directly computed reddening values.

Fig. 4 shows the individual distance moduli (shifted to an ar-
bitrary zero point) for each globular cluster entering in our anal-

Table 8. Globular cluster reddenings

Cluster N EB−V σE
M4 4 0.34 0.04
M5 9 0.06 0.01
M68 4 0.03 0.01
M92 4 0.01 0.01
M107 6 0.37 0.02
NGC 3201 8 0.19 0.04
Rup. 106 8 0.16 0.01
NGC 1466 8 0.06 0.01
NGC 1841 7 0.15 0.02
Reticulum 8 0.03 0.01

ysis. The upper and lower rows display the W0 and V0 distance
moduli, respectively. The corresponding ratios of the standard
deviations of the distance moduli are also shown. We see that
except for M68 and M92, the dispersions of the distance mod-
uli decrease when using the reddening-free formula of W0. The
large increase in the case of M92 indicates the size of the statisti-
cal error in the estimation of the ratio of the standard deviations
for small data-sets and for low level of inhomogeneity in the
cluster reddening. For the clusters M4, M107 and NGC 3201
a decrease by a factor of 3 in the standard deviations, clearly
shows that inhomogeneous reddening in these clusters are sig-
nificant. For NGC 1466 and NGC 1841 the decrease is 60%,
which again indicates inhomogeneity, although in a less degree
than in the former cases. The other clusters show no or very
little sign of inhomogeneity.

In concluding this subsection, the average reddenings and
their standard deviations for the clusters discussed above are
shown in Table 8. The reddenings are calculated according to
Eq. (11). We see that the data shown in the table confirm our
results obtained by the comparison of the reddened and dered-
dened distance moduli.

5. The Ic and K absolute magnitudes

The purpose of this section is to apply our distance modulus and
reddening formulae to mostly field Ic and K data to derive the
relations between the V light curves and the respective absolute
magnitudes. The larger part of the data-set consists of field stars
which implies good observational accuracy. The method also
enables us to estimate the values of the selective absorption
coefficient.

5.1. The Ic absolute magnitude

In order to apply our distance modulus and reddening formulae
(Eqs. (8) and (11)) to derive the Ic absolute magnitudes (I0), we
need B, V and Ic data. These are listed in Tables 1 and 2. We
fit the data in three steps: (1) field stars only, (2) field + clusters
(without M4), (3) field + clusters (with M4). In all cases we
use RV = 3.1, except for M4, where we set RV = 4.1. We
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Fig. 5. Upper panel: Fitted vs. ’observed’ I0 for the 38 stars of the field
and of M5, M68, M92. Lower panel: as above, but including the stars
of M4 (open circles). The reddening for all stars (including also those
of M4) is computed with RV = 3.1

justify these parameter values in the course of the derivation,
and especially in step (3).

Starting with the field stars only, we have 25 stars altogether.
Although this unedited sample of stars already shows the tight
correlation between the I0 magnitudes and the Fourier param-
eters, the omission of only one star (SS Leo) further improves
the situation. Table 9 contains the more detailed information of
the properties of the different fits for the remaining 24 stars. We
think that the two parameter description seems to be very well
justified. Since there is practically no difference between the
(P , ϕ31) and the (P , ϕ41) combinations, because of the result
of step (2), we prefer the latter combination, which yields

I0 = 1.301− 2.007P + 0.113ϕ41 , (18)

Progressing to step (2), we add M5, M68 and M92 to the field
stars. This way we start with 41 stars. Omitting only SS Leo and
two stars from M5 (V19 and 28), we get the following formula

I0 = 1.299− 1.989P + 0.110ϕ41 , (19)

which is in excellent agreement with Eq. (18). In addition, as it
is seen from Table 10, the above parameter combination is the
best among the two parameter fits. The ’observed’ (Ic − d −
RIcEB−V ) vs. the fitted absolute magnitudes are plotted in the
upper panel of Fig. 5. The quality of the fit is very good, indeed.

Table 9. Fitting properties of I0 for the sample of 24 field stars

n par. fits 2 par. fits
n σ params. σ

1 0.0368 P , ϕ31 0.0094
2 0.0094 P , ϕ41 0.0106
3 0.0093 P , ϕ21 0.0146
4 0.0086 P , ϕ51 0.0163
5 0.0086 P , A5 0.0199
6 0.0082 P , A6 0.0224
7 0.0083 P , A3 0.0240

Fig. 6. Fitting accuracy of I0 vs. selective extinction coefficient RV .
Arrows indicate the ’standard’ values of RV for ’ordinary’ interstellar
matter and for the special case of M4

Turning to the last step of the analysis of the Ic data, we
also include the 3 stars of M4. By using our ’standard’ value of
RV = 3.1 for all stars (including also those of M4), we compute
the new regression shown in the lower part of Fig. 5.

The discordance of the stars of M4 is attributed to the incor-
rect RV value used for this cluster. In the following we show
how the method of relating the Fourier parameters to the ab-
solute magnitude enables us to estimate the optimum value of
RV . We shall see that, indeed, the optimum value ofRV for M4
is around 4.1, close to the values used in the literature (e.g. Liu
and Janes 1990).

In finding the optimum value of RV , we simply scan the
possible range of RV and plot the fitting accuracy of I0. We
apply Eq. (16) to compute the corresponding value of RIc . For
the stars of the field, M5, M68 and M92, we get the result shown
in the upper panel of Fig. 6. We see that the value of 3.1 for the
parameterRV is well justified. In the next step we fixRV to 3.1
for all stars, except for those of M4. By changing RV only for
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Table 10. Fitting properties of I0 for the sample of 38 stars (field +
clusters)

n par. fits 2 par. fits
n σ params. σ

1 0.0421 P , ϕ41 0.0110
2 0.0110 P , ϕ31 0.0125
3 0.0108 P , ϕ51 0.0163
4 0.0099 P , ϕ21 0.0207
5 0.0096 P , ϕ61 0.0229
6 0.0097 P , A5 0.0267
7 0.0098 P , A6 0.0277

Fig. 7. Fitted vs. ’observed’ I0 for the 41 stars of the field and of
M4, M5, M68 and M92. Except for M4, the reddening for all stars is
computed with RV = 3.1. For M4 (open circles) we use RV = 4.1

this cluster, we get the plot shown in the lower panel of Fig. 6.
It is clear that the optimum value of RV for M4 is around 4.1,
in a good agreement with the usually applied value.

Finally, in searching for the best representation of the Ic
absolute magnitude, we proceed by including the 3 stars of M4
with the proper extinction coefficient. Again, the same stars
should be omitted as in step (2). We get 41 stars which yield our
final formula

I0 = 1.303− 1.993P + 0.108ϕ41 , (20)

with a fitting accuracy of 0.011 mag. Fig. 7 illustrates the quality
of the fit.

5.2. The K absolute magnitude

The advantage of the infrared colours is the small effect of the
interstellar reddening and the larger range of RR Lyrae lumi-
nosities in these bands. However, as we shall see, the relatively
larger noise level of the K magnitudes makes these advantages
less valuable as one might think at the first sight.

Table 11. Dependence of the standard deviations on the number of
Fourier parameters (n) for various fits of the K0 magnitudes

n Params. Field Field + Clusters
1 P 0.059 0.053
2 P , ϕ31 0.024 0.030
3 P , ϕ31, ... 0.020 0.027
4 P , ϕ31, ... 0.020 0.027
5 P , ϕ31, ... 0.020 0.028

Fig. 8. Single and two parameter regressions for the K absolute mag-
nitude in the calculated vs. observed planes. The 45◦ lines are shown
for reference

Using the B, V , K data of Tables 1 and 2, we search for
the Fourier expression of the K absolute magnitude. For the
selective absorption coefficient we use the formula of Cardelli
et al. (1989)

RK = 0.162RV − 0.148 , (21)

with RV = 4.1 for the stars of M4 and RV = 3.1 for all the
others.

As in the case of the Ic data, first we analyse only the field
stars. After leaving out V445 Oph and VY Ser, for the remaining
22 stars we obtain the standard deviations shown in the third
column of Table 11. The preference toward the two parameter
fit is clearly demonstrated. This result invalidates the use of the
simple period−luminosity relation which has been applied up
to now (e.g. Longmore et al. 1990).
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In the second step of the analysis we add cluster K data to
the field stars. Discarding the 5 most outlying stars M5 V28, 32;
M92 V1; V445 Oph and VY Ser, for the rest we get the standard
deviations as given in the fourth column of Table 11. Again,
the preference toward the two parameter fit is demonstrated,
although the contrast is less striking, because of the higher noise
level. We see that all samples are essentially consistent with the
assumption that there is basically a two parameter dependence
of the K0 magnitudes. By using this last set of 28 stars, we get

K0 = 0.045− 2.672P + 0.234ϕ31 , (22)

where the phase should be chosen as the closest value to 5.1.
By comparing the standard deviations and the ranges of the
I0 and K0 absolute magnitudes (Tables 10, 11 and Figs. 7, 8)
we see that the I0 magnitudes correlate better with the Fourier
parameters. Therefore, despite of the lower absorption in K,
this result suggests that with a proper reddening correction the
Ic observations are preferred over the K observations, at least
for the purpose of the absolute magnitude determination.

6. Conclusions

It has been demonstrated that multicolour observations of cluster
RR Lyrae stars are extremely useful in calculating reddening-
free quantities with the aid of the Fourier parameters of the V
light curves. The method applies the idea that we have already
used in the determination of the formulae for the iron abundance
(Jurcsik and Kovács 1996) and for the V absolute magnitude
(Kovács and Jurcsik 1996). The basic idea is simply that the
light curve depends somehow on the physical parameters of the
star. Once we have an observed or calculated quantity which
depends solely on the stellar parameters, we can attempt to find
the relation between this quantity and the Fourier parameters of
the light curve. So far, all the relations we studied have proven
to be linear in terms of the period, amplitudes and phases.

The first quantity we dealt with was the reddening-free
brightnessW ≡ V −α(B−V ) with a properly chosen selective
extinction coefficient α. The use of cluster variables enabled us
to determine the functional dependence of W on the Fourier
parameters. Once this function is known, one can determine the
true (i.e. reddening-free) distance modulus simply by subtract-
ing the observed and calculated values of W (Eqs. (3), (4) and
(8)).

Using again cluster variables, we applied our result for theV0

absolute magnitude to derive the relation for the intrinsic colour
index B0 − V0 (Eq. (11)). These formulae are compatible with
the expression of W0.

The distance modulus and the intrinsic colour formulae were
used to derive expressions for the Ic andK absolute magnitudes
(Eqs. (20), (22)). We used data-sets which contained mostly field
stars with accurate photometry. It has been shown that besides
the period, the Fourier parameters also play important role in
the representation of these quantities. The very tight correlation
found for the Ic absolute magnitude suggests the preference of
this colour over the infrared K for absolute magnitude deter-

minations — assuming that we have a fair estimation on the
reddening.

Based on the individual distance moduli of cluster variables,
we have shown that inhomogeneous reddening is important in
several clusters.

We have demonstrated that the method is capable to give
optimum estimations for the selective absorption coefficient
RV . In our sample of stars with B, V and Ic magnitudes, only
the variables of M4 proved to be peculiar in this respect with
RV = 4.1, whereas the ’standard’ RV = 3.1 was shown to be
the optimum for the other stars.

In conclusion, with the aid of the formulae presented in
this paper, it is possible to compute distance moduli, absolute
magnitudes and intrinsic colour indices of RRab stars. For the
application of the formulae the only requirement is the exis-
tence of accurate V light curve and colour index. Although the
absolute calibration might still suffer from possible systematic
errors due to some problems which can occur mostly in the cal-
ibrating Baade−Wesselink stars, the accuracy of the formulae
for the relative quantities is quite good, perhaps the best among
the presently available methods for RR Lyrae stars.
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