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Abstract. Inversions to determine the squared isothermal sound
speed and density within the Sun often use the helium abundance
Y as the second parameter. This requires the explicit use of the
equation of state (EOS), thus potentially leading to systematic
errors in the results if the equations of state of the reference
model and the Sun are not the same. We demonstrate how this
potential error can be suppressed. We also show that it is possible
to invert for the intrinsic difference in the adiabatic exponent Γ1

between two equations of state. When applied to solar data such
inversion rules out the EFF equation of state completely, while
with existing data it is difficult to distinguish between other
equations of state.
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state

1. Introduction

Solar oscillation frequencies can be inverted to determine the
internal structure of the Sun. This is generally done by relat-
ing the frequency differences between a solar model and the
Sun to differences in the structure by linearising the oscillation
equations under the assumption of hydrostatic equilibrium. If,
for example, we express the frequencies in terms of the squared
adiabatic sound speed c2 and the density ρ, the result can be
written

δωi
ωi

=
∫

Ki
c2,ρ

δc2

c2
dr +

∫
Ki

ρ,c2

δρ

ρ
dr +

Fs(ωi)
Ei

. (1)

(e.g. Dziembowski et al. 1990). Here δωi is the difference in the
frequency ωi of the ith mode between the solar data and a refer-
ence model. The kernels Ki

c2,ρ and Ki
ρ,c2 are known functions

of the reference model which relate the changes in frequency to
the changes in c2 and ρ respectively. The term in Fs results from
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the near-surface errors in the model, such as the assumption of
adiabatic oscillations; Ei is the inertia of the mode, normalised
by the photospheric amplitude of the displacement.

The kernels for the (c2, ρ) combination can be easily con-
verted to kernels for others pairs of variables like (Γ1, ρ), (u,Γ1)
with no extra assumptions (cf. Gough 1993); here u ≡ p/ρ is
the squared isothermal sound speed, p being pressure. However,
very often in addition to the oscillation equations it is assumed
that the equation of state is known; this may be used to construct
the kernels for u or ρ and Y . The implicit assumption that the
equations of state in the Sun and reference model are the same
leads to potential systematic errors in the inversion for u or ρ.

2. Formulation of the inverse problem

The conversion of the kernels for (c2, ρ) to those for (u, Y ) uses
δ ln c2 = δ ln Γ1 + δ ln u. Had the equation of state been known,
δΓ1 could have been determined from Γ1 = Γ1(p, ρ, {Xi}),
where {Xi} is the composition. In fact, δΓ1 contains an ad-
ditional term, viz. the intrinsic difference (δΓ1/Γ1)int at fixed
(p, ρ, {Xi}) between the true and the model equations of state.
Characterizing the composition by the abundances by mass Y
and Z of helium and heavy elements and assuming an un-
changed heavy-element abundance Z, we therefore get

δΓ1

Γ1
=

(
∂ ln Γ1

∂Y

)
p,ρ

δY +

(
∂ ln Γ1

∂ ln p

)
ρ,Y

δp

p
+(

∂ ln Γ1

∂ ln ρ

)
p,Y

δρ

ρ
+

(
δΓ1

Γ1

)
int

. (2)

Note that differences in Z, or in the relative composition of the
heavy elements, will also appear in (δΓ1/Γ1)int.

Equation 2 can now be used to rewrite Eq. 1 in terms of
δu/u and δY , by expressing the terms in δρ/ρ and δp/p in terms
of δu/u by means of the equation of hydrostatic support. This
expression contains a contribution from the intrinsic difference
in Γ1 weighted by the kernel for c2 at constant ρ. Thus, the full
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equation is:

δωi
ωi

=
∫

Ki
u,Y

δu

u
dr +

∫
Ki

u,Y δY dr

+
∫

Ki
c2,ρ

(
δΓ1

Γ1

)
int

dr +
Fs(ωi)
Ei

. (3)

In the expression normally used to invert for (u, Y ) the term
in
(
δΓ1/Γ1

)
int

is ignored; this clearly introduces a systematic
error, if the equations of state are in fact different. A similar
argument also holds for density inversions using the pair (ρ, Y ).
Here too the contribution from

(
δΓ1/Γ1

)
int

should be taken into
account. We also note that using Eq. 3, one may directly invert
for
(
δΓ1/Γ1

)
int

.

3. Inversion technique

We have used the Subtractive Optimally Localised Averages
method of Pijpers & Thompson (1992), adapted to inversion
for structure differences (e.g. Basu et al. 1996). The principle
of the inversion technique is to form linear combinations of
Eqs 3 with weights ci(r0) chosen such as to obtain an average
of, for example, δu/u localised near r = r0 while suppressing
the contributions from the remaining terms in Eqs 3, including
the near-surface errors. In addition, the statistical errors in the
combination must be constrained.

To invert for δu/u the coefficients ci are chosen to minimise

∫ (∑
i

ciK
i
u,Y − T

)2

dr + β1

∫ (∑
i

ciw(r)Ki
Y,u

)2

dr

+β2

∫ (∑
i

ciw(r)Ki
c2,ρ

)2

dr + µ
∑
i,j

cicjEij , (4)

with the constraint that the averaging kernel be unimodular, i.e.,

∑
i

ci(r0)
∫ R

0
Ki

u,Y (r)dr = 1 . (5)

Here, T (r0, r) is a target averaging kernel, chosen to be a Gaus-
sian of unit area centred at r0. Eij is the covariance matrix of
errors in the data. The parameters β1 and β2 control the contri-
butions of δY and (δΓ1/Γ1)int, respectively, and µ is a trade-off
parameter which controls the effect of data noise. The function
w(r) is a suitably chosen, increasing function of radius, which
ensures that the contributions from the second and third terms
from the surface layers are suppressed properly.

To reduce the influence of near-surface uncertainties we ap-
ply the additional constraints that∑
i

ci(r0)E−1
i Φλ(ωi) = 0 , λ = 0, . . . ,Λ , (6)

where the Φλ are B-Splines with a suitably scaled argument (cf.
Däppen et al. 1991).

To carry out an inversion for (δΓ1/Γ1)int one minimises in-
stead

∫ (∑
i

ciK
i
c2,ρ − T

)2

dr + β1

∫ (∑
i

ciw(r)Ki
u,Y

)2

dr

+β2

∫ (∑
i

ciw(r)Ki
Y,u

)2

dr + µ
∑
i,j

cicjEij . (7)

We have used four solar models for this work. All models
have been constructed with OPAL opacities (Iglesias, Rogers
& Wilson 1992) at temperatures higher than 104 K and Kurucz
tables (Kurucz 1991) at lower temperatures. The models have
been constructed with different equations of state — Livermore
(OPAL) (Rogers, Swenson & Iglesias, 1996) MHD (e.g. Miha-
las, Däppen & Hummer 1988), EFF (Eggleton, Faulkner & Flan-
nery 1993) and CEFF (cf. Christensen-Dalsgaard & Däppen
1992). The properties of the models, identified by the EOS, are
summarised in Table 1. Model OPAL is Model S of Christensen-
Dalsgaard et al. (1996).

Table 1. Solar models used; dCZ is the depth of the convection zone,
and Tc and ρc are central temperature and density

EOS Z/X dCZ/R Tc ρc

(106 K) (g/cm3)
OPAL 0.0245 0.2885 15.67 154.2
MHD 0.0245 0.2876 15.67 154.5
CEFF 0.0248 0.2863 15.68 155.0
EFF 0.0248 0.2852 15.74 157.2

We use solar oscillation data obtained by the LOWL instru-
ment during the first year of data collection (Tomczyk et al.
1995, Schou and Tomczyk, in preparation). The dataset con-
sists of modes of degrees 0 to 99 in the frequency range 1 to
3.5 mHz. The observed modeset and errors were also used in
tests for solar models, in order to get realistic properties of the
inversion.

4. Results

In Fig. 1 we show inversion results, without and with suppres-
sion of

(
δΓ1/Γ1

)
int

, for u in Model MHD with Model OPAL as
the reference model. The resolution of the inversion is the same
in both cases. Note that when the contribution from

(
δΓ1/Γ1

)
int

is not constrained, the results are not very accurate. The results
improve dramatically, particularly in the core, when the intrin-
sic difference is taken into account. However, the price paid for
increased accuracy is decreased precision, as reflected in the
increased error-bars. Indeed, it is evident that the use of the data
to suppress the possible error in the EOS reduces the amount of
information available for the determination of δu/u and hence
results in larger errors if the resolution is kept approximately
the same. The results for density inversion are shown in Fig. 2.
We note that the errors in the inversion corrected for a possible
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Fig. 1. The inversion for the squared isothermal sound speed (u) dif-
ference between model MHD and model OPAL. The solid line is the
exact difference and the points are the difference obtained by inverting
the frequency differences between the models. a Inversion results when
the intrinsic difference in Γ1 between the OPAL and MHD equations
of state is ignored. b Inversion results when the intrinsic difference is
taken into account. The vertical error-bars are 1σ propagated errors

Fig. 2. The same as Fig. 1, but for the density difference between
models MHD and OPAL

inconsistency in the equation of state are much reduced if accu-
rate data on higher-degree modes are available, as is the case,
e.g., for the frequencies obtained by the SOI/MDI experiment
on SOHO (cf. Kosovichev et al. 1997).

Although it is useful to be able to suppress the effects of er-
rors in the equation of state when inverting for u, it is evidently
of greater interest to obtain a localized measure of these errors,
i.e., to invert for the intrinsic (δΓ1/Γ1)int between the equations
of state of the Sun and the model. To illustrate our ability to
achieve such localization, Fig. 3 shows averaging kernels for
the inversions for (δΓ1/Γ1)int through minimization of expres-
sion 7. Note that for r0 >∼ 0.5R� the averaging kernels are quite
well localized, indicating that reliable inversion is in fact possi-
ble. The averaging kernels are not as small near the surface as
one would hope for; inclusion of higher-degree modes would
substantially improve the behaviour in this region.

Fig. 4 shows the inversion for the intrinsic differences in
Γ1, using the Models MHD, CEFF and EFF as test models and
Model OPAL as reference. For comparison are shown exact

Fig. 3. Averaging kernels for the inversion for the intrinsic (δΓ1/Γ1)int

with the LOWL mode set and the OPAL model as the reference model

Fig. 4. The results of inversion for the intrinsic Γ1 difference between
a EFF, b CEFF and c MHD models and Model OPAL. The solid line
is the exact difference and the points are the difference obtained by
inverting the frequency differences between the models. Note that the
scale in Panel a is much larger than that in Panels b and c

differences resulting from differences in the equation of state,
evaluated at fixed p, ρ, and Y in Model OPAL. The inversion of
the frequencies clearly successfully reproduces even the subtle
intrinsic EOS differences between the MHD and OPAL for-
mulations, although the statistical errors are fairly substantial
compared with these differences, at least beneath the dominant
ionization zones.

Given the success of this test on artificial data, we may con-
sider differences between the solar and the model equations of
state, as obtained from analysis of the observed frequencies.
Fig. 5 shows the resulting intrinsic differences in Γ1 between
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Fig. 5. The intrinsic Γ1 difference between the Sun and the EFF, CEFF,
MHD and OPAL models obtained by inversion of LOWL Year-1 data.
Note the difference in scale between panel a and the other panels

the Sun and the four models of Table 1. It is evident that the EFF
equation of state is inconsistent with the data. With the current
level of errors, it is difficult to distinguish between the other
three equations of state. Our ability to do so would be greatly
improved by analysis of higher-degree data, since we may ex-
pect that the dominant differences in the equations of state are
close to the surface of the Sun.

5. Conclusions

We have shown that inversions for the squared isothermal sound
speed u and the density ρ may suffer from systematic errors
when based on the common implicit assumption that the equa-
tions of state in the Sun and the reference model are the same.
These errors can be removed by suppressing the contribution
from the intrinsic difference in Γ1 to the frequency difference.
However, this is achieved at the price of an increase in the prop-
agated errors.

We also show that we can successfully invert for the intrin-
sic difference in Γ1 between the currently available equations
of state. This differs from the analysis by Elliott (1996) who
investigated the EOS in terms of the total difference between
the solar and the model Γ1. Inversions of solar oscillation fre-
quencies show that the EFF equation of state can be ruled out
by direct inversions. With the current level of data errors, it is
difficult to judge the significance of the differences between the
solar equation of state and the CEFF, MHD and OPAL equa-
tions of state. We hope, however, that as more precise data and
data on high-degree modes become available, this method can
be used as a direct test of the solar equation of state.
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