## 3. The ephemeris for physical observationsFrom a certain level of precision it is necessary to know which side of the body is being observed so an ephemeris for physical observations is indispensable. A convenient form of ephemerides for physical observations, which separates long and short period terms, was proposed by Kristensen (1991). An excerpt of this ephemeris based on the rotational elements by Kristensen (1993) is given in Table 3.
The (solar) phase angle is denoted , the
aspect and E is the "equation of time". The
latter is defined analogous to the familiar concept. It is the
planetocentric right ascension of the bisector between Sun and Earth
where T* is E.T. corrected for light-time. The expression (2)
All quantities in the physical ephemeris depend on the slow orbital motions and may be tabulated and interpolated at large intervals. Due to the here nearly stationary value of interpolation should be in and to second order in time. To illustrate the use of the physical ephemeris let us compute the rotational phase t days from the epoch September 26.336 E.T.= 244 9621.836. Interpolation gives, in units of revolutions, which inserted into (2) gives The rotational phase is practically zero at the adopted epoch. As E = 0 the apparent rotation is very uniform and the observations can be reduced by a constant period 7.78511 hours. It is a very great advantage that we do not need to solve for the rotational period. The aspect at the epoch is = 108 5. Table 1 in Kristensen (1993) gives the aspects of earlier oppositions. Aspects are = 112 7 in 1983 and = 116 9 in 1990 so these oppositions should be directly comparable with the present one. Opposite lightcurves have aspect and occurred in 1989 and 1991 . The 1983 lightcurve (Fig.4 in AN 306(1985)) has sharp minima at 0.24, 0.59 and 0.82 but the origo adopted in this figure has phase +3 11. The same minima should then occur in 1994 at phase 0.249, 0.599 and 0.829, in good accordance with 0.25, 0.59 and 0.83, in the present Fig. 1. The good consistency may be due to the similar values of , respectively 1 85 and 0 94. Important is also that the small (0.01 mag.) peak (the fourth maximum) around 0.20 is confirmed. Fig.2 p.347 in Kristensen & Gammelgaard (1993) gives minima at phase 0.26 and 0.87 in 1990 at . With the correction -7 47 in phase this corresponds to 0.239 and 0.849, or -0.011 and +0.019 rev. relative to the small phase angles above. This may be compared with the bisector angle /2 = 0.018 rev. and may be regarded as a confirmation of the usefulness of the bisector. Phases over 11 years are thus consistent with mean errors of order 0.01 revolutions.
© European Southern Observatory (ESO) 1997 Online publication: June 5, 1998 |