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Abstract. Cosmological inhomogeneities gravitationally de-
flect radiation propagating from distant sources, transforming
the spatial and angular correlation functions of intrinsic source
properties. For a gaussian distribution of deflections (e.g. from
a primordial gaussian density perturbation spectrum or from the
central limit theorem) we calculate the probability distributions
for geodesic deviations. If the intrinsic variable is also gaussian,
e.g. the large scale velocity flow field or cosmic microwave back-
ground temperature anisotropies, then distributions and corre-
lation functions of the observed image sky properties can be
obtained. Specialising to CMB temperature fluctuations we red-
erive simply the influence of independent gravitational lensing
on the anisotropy angular correlation function and calculate the
new effect of lensing correlated with the anisotropies, e.g. aris-
ing from the same primordial gravitational perturbation field.
Characteristic magnitudes and scales are given in terms of the
density power spectrum. The correlated deflection-temperature
effect is shown to be negligible.

Key words: gravitational lensing – cosmic microwave back-
ground – cosmology: theory

1. Introduction

The origin and development of structure in the universe needs
to be probed by means of observations of distant sources. Not
only the direct properties of those sources, however, but also
the characteristics induced in the radiation propagating through
the gravitational inhomogeneities of the structure provide clues
to the nature and formation of structure. Within linear the-
ory, i.e. when the deviations from homogeneity are still per-
turbations, there are simple and intimate relations between the
important cosmological descriptors of the matter, such as the
large scale velocity flow field or the energy density fluctuations,
and of radiation propagation characteristics such as tempera-
ture anisotropies (redshifts) and gravitational lensing deflec-
tions (momentum changes). These interrelationships constrain
theories of structure formation.

This paper concentrates on the statistical effects of the inho-
mogeneities on observations, developing an analytic approach
that requires only that the physical processes behind the observ-
able and lensing quantities be gaussian in nature. This avoids
sensitivity of results to a specific geometry or density pertur-
bation model and is both physically relevant and surprisingly
powerful. Although here we are primarily concerned with tem-
perature anisotropies in the cosmic microwave background radi-
ation (CMB), the method is easily generalised to investigations
of the velocity flow field or density perturbations.

Before primordial CMB anisotropies were first detected by
the Cosmic Background Explorer satellite (COBE; Smoot et al.
1992) there was much discussion in the literature concerning
the effects of inhomogeneities and their gravitational lensing
on the anisotropies (Blandford & Narayan 1992 provide a re-
view with references). More recently Fukushige, Makino, and
Ebisuzaki (1994) investigated this by calculating scattering with
an N-body code, and Tomita (1996) considered the effects of
superhorizon scale inhomogeneities. For the statistical distribu-
tion of the lensing deflections, in particular the correlation of
neighboring lines of sight, crucial to the key property of geodesic
deviation, various assumption have been made, ranging from a
diffusion approximation to nearest neighbor correlations.

No previous work, however, dealt with the case where the
deflections are not superimposed independently on the temper-
ature fluctuations but are physically correlated with them. For
example, consider a hot spot in the CMB. This corresponds to
a region where the primordial gravitational potential deviates
strongly from the mean but that potential also determines the
strength of the lensing caused by the primordial density field
from that region. Thus one can imagine that extremes of the
temperature field are preferentially strongly lensed relative to
the milder deviations, leading to a significant distortion of the
intrinsic temperature correlation function.

This paper investigates the properties of cosmologically im-
portant gaussian fields including the possibility of such a cross
correlation. The joint probability formalism allows for concise
derivations of familiar results, e.g. beam smearing, from gravi-
tational lensing while showing new effects from the cross cor-
relation. By estimating the magnitude of these on anisotropy
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observations we can probe large scale structure in the universe
by placing constraints on the density power spectrum Pk. The
conditional probability formalism also points out ways to test
the underlying gaussian nature of the primordial cosmological
perturbations.

In Sect. 2 we review the mathematical basis and derive prop-
erties of joint and conditional probability distributions for the
variables entering the problem – the relative deflections of the
null geodesics and the intrinsic source sky characteristics. These
are combined in Sect. 3 to form expressions for the observable
correlation functions, especially under the condition of coher-
ence between the source and propagation conditions. Section
4 relates the mathematical results to the underlying physics
in terms of the density fluctuation power spectrum and Sect. 5
presents quantitatively the effects on CMB anisotropy measure-
ments.

2. Probability distributions

In an imperfectly homogeneous universe radiation observed at
some angular position φ on the sky may have been deflected
during propagation to us from a source whose true position is
ψ. By true position we mean that position at which the source
would appear if the inhomogeneity (gravitational lens) were
smoothed out. A general line of sight has

φ = Ψ + θ (1)

for a sky projected deflection angle θ, with θ varying along
different directions. The central question for observations in
a universe with inhomogeneities is how to relate an intrinsic
function of the source position to the observed function of image
position.

In order to investigate this in as model independent a way
as possible, we assume that the gravitational lensing deflection
and the physical source variables of interest individually have d
dimensional gaussian distributions with zero mean (no preferred
direction). Then

p(v) = [π(2σ2/d)]−d/2e−v
2/(2σ2/d), (2)

where the variance σ2 = 〈v2〉. One justification for adopting a
gaussian is that if the variable, e.g. projected deflection θ, is
compounded out of many elements, e.g. isolated spatial deflec-
tions at different distances from the observer (many inhomo-
geneities along the line of sight), then the central limit theo-
rem leads to a gaussian distribution. Another rationale enters if
the underlying physical process has a gaussian nature, gener-
ated by quantum fluctuations for example. One case would be
gaussian density perturbations which create gaussian distribu-
tions in lensing deflection, velocity fluctuations, and tempera-
ture anisotropies in the linear regime. This relation is discussed
further in Sect. 4.

Since absolute shifts in the source position are undetectable
we must compare at least two light rays, which requires know-
ing the joint probability of deflections along lines of sight 1,2,....
More generally one can consider the variables vi to denote dif-
ferent physical processes, such as density or temperature fields.

Using the characteristic function approach (Cramér 1957) the
joint probability of occurence is found to be

p(v1,v2, ...,vn) = (2π/d)−nd/2M−d/2

× exp
{− d

2M

∑
i,j

Mijvi · vj
}
, (3)

where M and Mij are the determinant and cofactors, respec-
tively, of the covariance matrix composed of elements mij =
〈vi ·vj〉. Angle brackets denote integration over the joint prob-
ability distribution.

In the case of two sky variables (n = d = 2), for example
comparing deflections of two rays, (3) simplifies to

p(θ1,θ2) =
[
π2σ2

1σ
2
2(1− b2)

]−1

×e−[(θ2
1/σ

2
1 )−2b(θ1·θ2/σ1σ2)+(θ2

2/σ
2
2 )]/(1−b2), (4)

where the correlation coefficient b = 〈θ1 ·θ2〉/σ1σ2. This distri-
bution is normalized, and integration over one variable recovers
the gaussian distribution for the other variable. As b → 0 (in-
coherence or unrelated variables) the distribution separates into
two independent gaussians while as b → 1 (total coherence) it
approaches a delta function δ(θ2 − θ1).

One can imagine physical situations in which the variances
σ1, σ2 of the two variables θ1, θ2 are not identical even though
they correspond to the same physical process, e.g. gravitational
deflection. For example if the universe were not homogeneous
then lines of sight through different patches of the universe
might have different statistical properties. Even with homogene-
ity, consider sources at different redshifts. Because of the dif-
fering path lengths the cumulative gravitational deflections and
hence variances σ1, σ2 would be unequal, as is evident from the
explicit physical expressions (34) and (36). If we concentrate on
the source being the CMB, however, the variances of deflections
along any lines of sight are equal: 〈θ2

1〉 = 〈θ2
2〉 = σ2

θ.
For other physical situations and gaussian processes, such

as the large scale velocity field, evaluation out to different dis-
tances can be of interest, e.g. windowing different volumes of
the density field or slicing redshift surveys. Then, for exam-
ple, one can find probability distribution functions such as for
the ratio of the variable value in sample 1 to that in sample 2,
k = (θ1/σ1)/(θ2/σ2):

p(k) = 2(1− b2) k−1(k + k−1) [(k + k−1)2 − 4b2]−3/2. (5)

As expected, the differential probability p(k) dk is invariant un-
der transforming k to its reciprocal. One can also calculate angu-
lar distributions, e.g. p(µ), where µ = θ1 ·θ2/θ1θ2. But this is of
more use when dealing with three dimensional vector variables
such as vR, the velocity flow field out to some survey depth R.

Of particular physical interest is the difference between a
quantity evaluated along two different lines of sight, e.g. the
relative deflection or deviationD = θ2 − θ1. Similarly one can
investigate the coherence of the variables, e.g. β = θ1 ·θ2. Both
are important to the physics. From (1) the observed separation
of two rays Φ = φ2 − φ1 is

Φ = ψ +D, (6)



E.V. Linder: Correlated gravitational lensing of the cosmic microwave background 307

where ψ = Ψ2 −Ψ1 is the intrinsic (true) separation and the
separations can represent either the angular distance between
two sources or the distance within a source (e.g. source size).
Thus D is involved in the transformation of field separations
and the quantities that depend on them. The coherence variable
β measures how independent the deflections are. Physically, we
expect that neighboring rays have strongly correlated deflections
while lines of sight far apart have independent deflections.

To find the statistical distribution of the deviation and coher-
ence one changes variables in (4) to, say,D, β, and h = θ2

2−θ2
1,

employing the Jacobian of the transformation:

d4P (D, β, h) = J −1

(
D, β, h

θ1,θ2

)
p(θ1,θ2)

= (πσθ)−2Q−1e−D
2/Qe−2(1−b)β/Q

×(D4 + 4βD2 − h2)−1/2 d2D dβ dh, (7)

with Q = σ2
θ(1 − b2). From this new joint distribution one de-

rives the individual distributions by integrating over the other
variables:

p(D) =
[
2πσ2

θ(1− b)
]−1

e−D
2/2σ2

θ(1−b) , (8)

p(β) =

{
σ−2
θ e−2β/σ2

θ(1+b), β ≥ 0,

σ−2
θ e2β/σ2

θ(1−b), β ≤ 0,
(9)

p(h) =
[
2σ2

θ

√
1− b2

]−1
e−|h|/σ

2
θ

√
1−b2

. (10)

Equations (8–10) illustrate that the distribution of a linear com-
bination of gaussian variables is itself gaussian (Cramér 1957);
note only D is such a linear function. The magnitude, or mod-
ulus, of a gaussian distributed vector quantity is Rayleigh dis-
tributed,

p(D) = 2〈D2〉−1D e−D
2/〈D2〉. (11)

We can find the moments of our chosen variables:

〈D〉 = 0 = 〈D2n+1〉 ; 〈D2〉 = 2σ2
θ(1− b) ;

(12)〈D2n〉 = n! 〈D2〉n,
〈β〉 = bσ2

θ ;
(13)〈βn〉 = 2−(n+1)n!σ2n

θ

[
(1 + b)n+1 + (−)n(1− b)n+1

]
,

and verify that they have the expected behavior in the limits
b = 0 and b = 1. The above use of relative and coherence vari-
ables, Jacobians, and moments is equally applicable to variables
besides the ray deflection.

Note that since by (6) the observed separation on the sky
depends only on the intrinsic separation and D, we can write
correlations of position dependent quantities using only p(D)
and not the full p(θ1,θ2). For example for any function f only
of the relative field positions, e.g. separation (which is all that
can enter in a globally homogeneous universe),∫

d2θ1

∫
d2θ2 f (θ2 − θ1) p(θ1,θ2)

=
∫

d2A

∫
d2D f (D) p(D,A)

=
∫

d2D f (D) p(D), (14)

where, say, A = (θ1 + θ2)/2.
We can immediately see that for the transformation of an

intrinsic sky function C0 of only the source separation ψ into
an observed function C of the image separation Φ,

C(Φ) =
∫

d2D

∫
d2ψC0(ψ) p(D) δ(Φ−ψ −D)

=
∫

d2ψC0(ψ) p(D = Φ−ψ)

= (πS2)−1
∫

d2ψC0(ψ) e−(Φ−ψ)2/S2

= 2S−2
∫ ∞

0
dψ ψ C0(ψ) e−(ψ2+Φ2)/S2

I0(2ψΦ/S2), (15)

where I0 is a modified Bessel function and S2 = 〈D2〉.
This recreates Eq. (24) of Wilson & Silk (1981) for beam

smearing, or scattering due to the observer and hence inde-
pendent of source and path properties. In this case S is just a
constant corresponding to the dispersion of the telescope beam
response. The formalism epitomized by (15) also provides a
compact method for deriving Eq. (19) of Linder (1990a) for the
independent lensing of the microwave background temperature
anisotropy correlation function. Here the path properties do en-
ter but are uncorrelated with the intrinsic source characteristics
observed. Then S will be a function of path length and field
separation Φ, due to the different physical conditions along dif-
ferent lines of sight.

The peak value of the correlation function, at Φ = 0, will be
diluted by a factor 1 + S2/(2Θ2), where Θ is the characteristic
scale, or coherence angle, of the observed quantity (cf. Eq. 18).
Any oscillations in the angular behavior C0(ψ) will be damped
by the coarse graining of the integral. Observers seek to have
beam sizes much smaller than the anisotropy scale of interest,
S � Θ, in order to avoid this smearing. In the independent
lensing case the zero lag correlation is unaffected since at Φ = 0
the lines of sight are identical, forcing S = 0 (b = 1). Smearing
does enter at larger angles though (cf. Linder 1990a, Figs. 2 and
3), its importance going as S2/Θ2 ∼ (σθ/Θ)2(1− b).

However, (15) only holds if the lensing process is indepen-
dent of the observed process, i.e. detected characteristic, so that
the separation into C0(ψ) p(D) is possible. Section 3 provides
more detailed discussion of this point and treats the correlated
case, correcting (15) to (24), (25). Meanwhile let us continue
examining the necessary variables.

The other gaussian variable to enter our correlated mi-
crowave background calculation is the fractional temperature
anisotropy ti = ∆T (φi)/T . This is a scalar variable (d = 1) on
the sky. Hence its probability function is

p(t1, t2) = (2πσ2
t

√
1−B2)−1e−(t2

1−2Bt1t2+t2
2)/2σ2

t(1−B2), (16)
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where the variance σ2
t = 〈t2〉 and the correlation parameter

B = 〈t1t2〉/σ2
t . In a more explicit notation,

Bσ2
t =

〈
∆T

T
(φ1)

∆T

T
(φ2)

〉
Φ=|φ1−φ2|

= C(Φ), (17)

the familiar angular anisotropy correlation function. In this no-
tation,

σ2
t = 〈t2〉 = C(0)

B = 〈t1t2〉/σ2
t = C(Φ)/C(0)

Θ≡ [−C ′′(0)/C(0)]−1/2 = (−d2B(0)/dΦ2)−1/2, (18)

relating the correlation function C and the coherence angle or
curvature Θ to the probability function characteristics σt and
B. Because the temperature is a random process evaluated at
the same last scattering surface regardless of line of sight, the
variance σ2

t is not dependent on direction (cf. Eq. 31).
While B or C(Φ) gives the temperature anisotropy corre-

lations averaged over the sky, i.e. the rms value, one can also
calculate the entire probability distribution of the correlations
from (16). For the coherence variable c = t1t2 this is

p (c) =
(
πσ2

t

√
1−B2

)−1
K0

[|c|/σ2
t

(
1−B2

)]
×ecB/σ2

t(1−B2), (19)

where K0 is a modified Bessel function. This is important for
computing the cosmic variance or intrinsic error due to the fact
that we observe only a single universe, i.e. one realization of the
probability distribution. While the mean 〈c〉 = σ2

tB = C, the
variance is

σ2
c = 〈c2〉 − 〈c〉2 = σ4

t (1 + B2). (20)

Note that the distribution of c is not gaussian.
Observations of the CMB sky temperature can be related

to C according to the geometry of the fields, i.e. the number
of telescope beams and the angles between them. This can be
made explicit by defining the differential variable r = t2 − t1
with gaussian distribution

p(r) = [4πσ2
t (1−B)]−1/2e−r

2/4σ2
t(1−B). (21)

A two-beam experiment with throw Φ measures the variance

〈r2〉 = 2σ2
t (1−BΦ) = 2 [C(0)− C(Φ)], (22)

while a three-beam one symmetric about the center field mea-
sures the variance

〈R2〉 = 〈(ra − rb)
2〉 = 2〈r2〉(1− bab)

= 2σ2
t (3− 4BΦ + B2Φ)

= 6C(0)− 8C(Φ) + 2C(2Φ), (23)

where indices a, b represent the two pairs of fields. Note the
similarity of form between (22) and (23): σ2

t = 〈t2〉 → 〈r2〉,
Bσ2

t = 〈t1t2〉 → 〈rarb〉 = bab〈r2〉.

Fig. 1. The geometry of the intrinsic field separation vector ψ, the de-
flection vectors θ for the two lines of sight, and the observed separation
vector Φ is shown in the plane of the sky

Rather than obtaining only the variance one could, if desired,
compute other quantities such as the conditional probability
of obtaining a certain value in one set of fields given that a
fixed value was observed in other fields. This could be useful in
that discrepancies between observations and probability theory
could be a possible probe of nongaussianness in the temperature
fluctuation distribution since only gaussian processes are fully
determined by the variance.

In summary, for the physical situation of gravitational in-
homogeneity deflection of microwave background radiation we
are interested in the mathematical correlations between two two
dimensional gaussian variables – one (the sky deflection θ) a
vector and one (the temperature fluctuations t) a scalar. We will
see that it is in fact convenient to decompose the vector deflec-
tion into arbitrarily oriented but orthogonal components, thus
giving a total of three variables per field, all magnitudes.

3. Cross correlations

The expression for the observed CMB temperature anisotropy
correlation function will involve both the intrinsic temperature
correlations and the conditional probability distribution of de-
flections given that the intrinsic fields have certain temperature
fluctuations, i.e. values of the gravitational potential field.

Mathematically, the intrinsic correlation function is defined
by the integral of the field temperatures weighted by the joint
probability of obtaining those particular values in each field,

C0(ψ) =
∫

dt1

∫
dt2 p(t1, t2) t1t2, (24)

whereψ is the field separation. To include the gravitational de-
flections one simply maps the intrinsic sky coordinates onto the
observed ones because quasistatic gravitational lensing induces
no redshift, i.e. the photon energy and hence temperature is un-
affected. The geometry of this mapping is illustrated in Fig. 1.

Now to calculate the observed correlation function one em-
ploys Bayes’ theorem and simply adds up all the ways in which
the fixed observed field separation Φ can be generated from
the various intrinsic field separations ψ. That is, one sums over
all possible quadrilaterals with one fixed side, weighted by the
probability for achieving that shape, i.e. obtaining deflections
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of the necessary magnitudes and directions, given the physical
conditions represented by t1, t2.

So the observed correlation function becomes

C(Φ) =
∫

d2D

∫
d2ψ

∫
dt1

×
∫

dt2 p(t1, t2) t1t2 p(D|t1, t2) δ(2)(Φ−ψ −D), (25)

whereD = θ2 − θ1 is the relative deflection mapping ψ → Φ,
the delta function enforces closure of the quadrilateral, and
p(D|t1, t2) is the conditional probability. This is a direct trans-
lation of the above words into an equation. For example the
phrase “given the physical conditions” indicates that the proba-
bility function of all the variables does not range over the whole
parameter space but is constrained by some prior knowledge or
condition; hence one uses the conditional probability distribu-
tion to reflect this. Now conditional probability is calculated by
the full probability divided by the probability to achieve the set
condition. Hence we can convert the product of the tempera-
ture probability function p(t1, t2) and the conditional deflection
probability function given those temperature values p(D|t1, t2)
to a joint probability over all the variables p(D, t1, t2).

However, the expression is still not that useful for com-
parison with observations as it requires an integration over the
ensemble of probability realizations, yet we have only a single
universe to work with. The solution is to employ the ergodic hy-
pothesis which states that we can substitute an integration over
the whole sky for an ensemble average. Thus we can replace
integration over all the values which the random process could
take on at a location by integration over all evaluation locations.

The final form of the observed correlation function is then

C(Φ) =
∫

d2ψ

∫
dt1

∫
dt2 t1t2 p(D=Φ−ψ, t1, t2)

=
∫

d2ψ

∫
d2ψ1 t(ψ1) t(ψ1 +ψ) p(D=Φ−ψ, t1, t2), (26)

enforcing ψ2 = ψ − ψ1 in the second line. Only in the case
where the deflection process is independent of the temperature
fluctuations does the joint probability separate into a product
of p(D) p(t1, t2), necessary to obtain the explicit appearance of
the intrinsic correlation function C0(ψ) in (15).

To obtain the joint probability function between the gaus-
sian variables of the ray deflections and the sky temperatures,
it is convenient to decompose D into orthogonal components.
This both puts all variables on an equal dimensional footing and
makes the correlation 〈DxDy〉 = 0. By using the relative vari-
able D = θ2 − θ1 we no longer explicitly need the deflection
correlation parameter β = θ1 · θ2. In Sect. 4 we find that only
the component of D along the field separation has a nonvan-
ishing correlation with the field temperatures, so we choose our
decomposition parallel and perpendicular to this axis.

Now the joint probability function for the variables
D‖, D⊥, t1, t2 follows from (3) via the covariance matrix,

M(D‖, D⊥, t1, t2) =


s2 0 −bsσ bsσ
0 s2 0 0

−bsσ 0 σ2 Bσ2

bsσ 0 Bσ2 σ2

 . (27)

One can read off from the matrix that s2 is the variance of
each component of the deflection D, σ2 is now the variance of
the temperature fluctuations, B is the temperature correlation
parameter, and b is now the cross correlation parameter between
the gravitational deflection and the temperature fluctuation.

The joint probability distribution is then

p(D‖, D⊥, t1, t2) = (2πsσ)−2(1 + B)−1/2(1−B − 2b2)−1/2

× exp{−E/[2s2σ2(1 + B)(1−B − 2b2)]},
(28)

E = s2(1− b2) (t21 + t22)

− 2s2(B + b2) t1t2 − 2bsσ(1 + B)D‖(t2 − t1)

+ σ2(1−B2)D2
‖ + σ2(1 + B)(1−B − 2b2)D2

⊥.

Carrying out the integrations specified in (26) yields the ob-
served CMB temperature anisotropy correlation function

C(Φ) = (2πs2)−1
∫

d2ψC0(ψ) e−|Φ−ψ|2/2s2

+(2πs2)−1
∫

d2ψ b2 C0(0)

×
[
1− {(Φ−ψ) · ψ̂}2/s2

]
e−|Φ−ψ|2/2s2

≡Cind + Ccor. (29)

The first term is proportional to B = C0(ψ)/σ2 and is
the contribution to the observed temperature correlations when
the gravitational lensing is independent of the temperature
anisotropies, i.e. there is no cross correlation. This is precisely
the old result derived in Linder (1990a) and mentioned in (15).
The second term, involving b, represents the new effect of in-
cluding correlations between the gravitational deflection field
and the temperature fluctuation field, for example due to both
originating from the same primordial gravitational potential per-
turbation.

The two crucial ingredients are thus the correlations B [or
C0(ψ)] and b. The former is a scalar function of field separa-
tion, i.e. independent of orientation, and from its definition one
expects the latter to vary with angle as Φ̂ · ψ̂; both are verified
in the next section. Then the angular part of the integrals can be
carried out without knowing their explicit form:

C(Φ) = s−2e−Φ2/2s2
∫ ∞

0
dψ ψ [C0(ψ) I0(Φψ/s2)

+ C0(0)β2(ψ,Φ)Y ] e−ψ
2/2s2

(30)
Y = [(Φ−1 + 2Φs−2)ψ

+ (2Φ + 4s2Φ−1)ψ−1 + 6s4Φψ−3]I1(Φψ/s2)

− [s−2ψ2 + (1 + Φ2s−2) + 3s2ψ−2] I0(Φψ/s2),
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where Iν are modified Bessel functions and β = b/(Φ̂ · ψ̂).
The prescriptions for the variable variances and correlation

parameters are given by the physics underlying the random pro-
cesses and can be written in terms of the gravitational potential
perturbations, or more conventionally the primordial density
fluctuation power spectrum, as in the next section.

4. Density fluctuation spectrum

The mathematical basis of the statistical moment and correla-
tion analysis relied on the gaussian nature of the observational
characteristics. This implied that all the physics resided in the
variance and cross correlation of the characteristic variables.
Now we investigate those physical processes to obtain expres-
sions for these quantities in terms of the underlying mechanism
– fluctuations in the cosmological density field – expressed in
terms of the density power spectrum.

First consider the source property of the cosmic microwave
radiation background temperature anisotropies. The tempera-
ture fluctuations, or shifts in the photon energies, are induced
by variations in the gravitational potential at the last scattering
surface, t = φ/3, (variations along the photon path contribute
negligibly due to their quasistatic nature). In turn, the potential
can be related to the density perturbations via the Poisson equa-
tion, reading φk = (3/2)H2

0 k
−2δk in Fourier space. Thus the

variance of the temperature fluctuations can be written in terms
of the density power spectrum Pk = |δk|2 as

σ2 = 〈t2〉 = C0(0) = (8π2)−1H4
0

∫ ∞

0
dk k−2Pk. (31)

The correlation parameter is

B = 〈t1t2〉/〈t2〉
=
∫ ∞

0
dk k−2 sin kLΦ

kLΦ
Pk

/∫ ∞

0
dk k−2Pk, (32)

where L = 2H−1
0 [1− (1 + z)−1/2] is the comoving distance to

the last scattering surface at redshift z. (The small angle approx-
imation Φ � 1 is used throughout.) From (18) the coherence
angle is then

Θ2
t = 3L−2

∫ ∞

0
dk k−2Pk

/∫ ∞

0
dk Pk, (33)

or Θt ≈ 1/(kL).
For the ray deflection variables, the physical basis is gravi-

tational lensing due to the density fluctuations along the line of
sight. Following Linder (1990b) the geodesic equation gives

θ = 2L−1
∫ L

0
dx

∫ x

0
dx′∇⊥φ, (34)

i.e. the deflection is caused by gradients in the gravitational po-
tential. The equation of geodesic deviation governs the relative
deflection, or deviation, of neighboring rays:

D = θ2 − θ1 = 2L−1
∫ L

0
dx

∫ x

0
dx′ x′ (Φ ·∇⊥)∇⊥φ. (35)

Converting the gravitational potential to the density power
spectrum as before, by φ = (2π)−3/2

∫
d3k φke

ik·x =
(3/2)(2π)−3/2H2

0

∫
d3k k−2δke

ik·x, one then carries out the
derivatives and integrations in (34) and (35). To calculate a vari-
ance one does the angle and ensemble averages as represented
by the angle brackets to obtain for the variance of a single ray
deflection

σ2
θ = 〈θ2〉 = (3/2π)H4

0L

∫ ∞

0
dk k−1Pk, (36)

and for the variance of the ray bundle deviation

S2 = 〈D2〉 = 2s2 = 2σ2
θ (1− bθ), (37)

in agreement with (12). The deflection correlation parameter
comes from (35)-(37):

bθσ
2
θ =

∫ ∞

0
dk k−1Pk

∫
d2Ω f (Ω,Ω′, kL)

= (3/2π)H4
0L

∫ ∞

0
dk k−1

×[1− (kLΦ)2/40 + O (kLΦ)4
]
Pk, (38)

where the angular variables Ω,Ω′ of k relative to the two lines
of sight are related by a rotation of the axes by angle Φ. For
example the direction cosine of the wave vector with respect to
the second line of sight is µ′ = µ cos Φ +

√
1− µ2 sin Φ cosβ

with µ the cosine with respect to the first line of sight and β the
azimuthal angle in the first frame.

Unfortunately the general evaluation of (38) is not analyti-
cally amenable but the second line of the equation shows the
behavior for angles Φ � (kL)−1. This is sufficient to find
the coherence angle and other interesting physical parame-
ters like the gravitational lensing ray crossing variable D 2 =
limΦ→0〈D2〉/Φ2 = (3/40π)H4

0L
3
∫
dk k Pk. When D 2 > 1

then the Jacobian of the sky-image map goes singular, rays cross,
and the image appears grossly distorted or multiple. The coher-
ence angle of the lensing deflections is defined analogously to
(33),

Θ2
θ = 20L−2

∫ ∞

0
dk k−1Pk

/∫ ∞

0
dk kPk, (39)

or Θθ ≈ 1/(kL).
For the cross correlation parameter b one takes t = φ/3 and

(35) for D, both involving Fourier transforms of φk and hence
δk, and carries out the same ensemble average calculational
process. This gives

bsσ = 〈D‖t〉 = −(3/4π2)H4
0 Φα

∫ ∞

0
dk k−2Pk

×[1− (1/2)k2L2ψ2 + O (kLψ)4], (40)

with α = Φ̂ · ψ̂ and again the general behavior unamenable. In
the limit of small field separation s ∼ Φ (see Eqs. 37, 38) so

b ≈ −(120/π)1/2αL−3/2

[∫ ∞

0
dk k−2Pk

/∫ ∞

0
dk kPk

]1/2

.

(41)
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For the larger angle behavior one can turn to the more physical
intuitive (though not more calculationally tractable) expression

b2 =
[〈D2t2〉 − 〈D2〉〈t2〉] /(2s2σ2) = 〈D2t2〉/〈D2〉〈t2〉 − 1,

(42)

which follows from the joint probability function. This shows
that indeed b vanishes as the deflections and temperature fluc-
tuations become uncorrelated.

To obtain specific quantitative results for the observed mi-
crowave background temperature anisotropy correlation func-
tion requires becoming more model dependent, choosing a
particular density power spectrum. We illustrate the orders
of magnitude for the variables and the behavior of the re-
sulting correlation function by adopting a cold dark matter
spectrum normalized to the detected microwave background
quadrupole anisotropy, Pk = 1.8× 10−9(a2/2.2× 10−5)2H−4

0
k/[1 + l1k + l2k3/2 + l3k2]2, where l1, l2, l3 are length constants
(Davis et al. 1985). The results are σ = 1.1 × 10−5, Θt = 14′,
σθ = 3′, Θθ = 5′, and b = −2 × 10−4. This value for b is at
Φ = 0 but its maximum at finite Φ is only a few times larger.
In terms of approximating the coherence angles by (kL)−1, the
characteristic wavenumber is k ≈ (15 h−1 Mpc)−1.

5. Conclusion

We have investigated the behavior of the observed CMB temper-
ature anisotropy correlation function in a universe with density
inhomogeneities causing a gaussian light deflection field, both
correlated with and independent of the perturbations giving rise
to the temperature fluctuations. The ratio of the correlated effect
to the independent one is of order the cross correlation param-
eter squared, b2. While one might expect that the deflection
and temperature be strongly coupled, b ≈ 1 (cf. Eq. 42), this is
found not to be true here. In the case of gravitational lensing of
photons from the last scattering surface the correlation influ-

ence on CMB anisotropies is negligible because one loses the
path length “resonance” of the deflections and temperature fluc-
tuations together tracing the gravitational potential field along
the entire line of sight. Such a dependence would increase the
correlation parameter by a factor of ≈ kL ≈ 102.5 − 103.5,
making the effect significant. Due to the quasistatic nature of
the potential along the path, however, this does not give rise to
observable temperature fluctuations. Exceptions occur only in
localized events such as cluster formation (Rees & Sciama 1968)
or hot cluster cores (Sunyaev & Zel’dovich 1970), which do not
offer the opportunity for path resonance or gaussian statistics.

Although the correlation of the two density perturbation de-
rived variables considered here can be neglected, the formal-
ism of calculating probability distributions and covariances of
gaussian fluctuations is powerful. Insights garnered here into the
methods and relations may prove useful in other cosmological
applications such as analyzing large scale velocity flows.
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