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Abstract. We present a new, fast and easy to use NLTE line
formation code for “unified atmospheres” with spherical exten-
sion and stellar winds, developed for the (routine) spectroscopic
analysis of luminous blue stars, covering the spectral range from
“A” to “O” and including central stars of planetary nebulae.

The major features of our code are: Data driven input of
atomic models; consistent photospheric stratification including
continuum radiative acceleration and photospheric extension;
“β-velocity law” for the wind; comoving frame or Sobolev plus
continuum line transfer; fast solution algorithm for calculating
line profiles, allowing for a consistent treatment of incoherent
electron scattering.

We describe the code and perform thorough tests for models
with H/He opacity, especially with respect to a comparison with
plane-parallel, hydrostatic models in cases of thin winds. Our
conclusions are:

Due in particular to our numerical treatment of the radia-
tive transfer in the ionization and recombination integrals, the
convergence rate of the solution algorithm is fast. The flux con-
servation is good, (maximum flux errors of order 2 to 3%),
unless the atmospheric conditions are extreme, either with re-
spect to mass-loss or to a large extension of the photosphere.
(In these cases, our treatment of the temperature structure has to
be improved). A comparison with plane-parallel results shows
perfect agreement with the thin wind case. However, this com-
parison also reveals two interesting effects: First, the strength
of the Hei lines in hot O-stars is very sensitive to the treatment
of electron scattering in the EUV. This might affect the effective
temperature scale of early O spectral types. Second, the effects
of photospheric extension become decisive for the gravity de-
termination of stars close to the Eddington limit.

Finally, we demonstrate the differences in using the Sobolev
vs. the comoving line transfer in the rate equations. We conclude
that, in cases of moderate wind densities, comoving frame line
transfer is inevitable for accurate quantitative work.
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1. Introduction

Although it has in principle been possible for more than a decade
and was promised in a variety of papers, the quantitative spec-
troscopy of large samples of “normal” hot stars accounting for
radiatively accelerated outflows is still waiting to be undertaken,
and has been performed only for a small number of mostly ex-
treme and therefore untypical objects 1.

This problem and the corresponding lack of information
related to the physical conditions in the upper HRD is a conse-
quence of the different available atmospheric and line formation
codes:

On the one hand, there is a class of code which has obtained
such a high degree of sophistication that only a few people can
use them. Furthermore, the computational time required to run a
specific model becomes too large to cover a significant subspace
of the total parameter space (which is at least of dimension three
for a given He-content/metallicity) under consideration.

Alternative codes which are based on simpler physics (and
hence have smaller turn-around times) suffer inevitably from
some approximations which are insufficient in certain parame-
ter ranges. In our opinion, the most severe restriction of these
codes is the missing applicability to stars with thin or moder-
ate winds, i.e., when the optical lines are still in absorption but
already affected by the outflow. This failure typically arises be-
cause of an inappropriate formulation of the photospheric struc-
ture equations and/or the use of the Sobolev approximation for
calculating radiative bound-bound rates.

1 Here and in the following, we refrain from discussing WR-type
stars, where the situation with respect to routine analysis methods is
better (e.g., Schmutz et al. 1989; Hamann et al. 1991; Crowther et al.
1995a, 1995b) and from the analysis of LBVs, where the situation has
considerably improved due to the work by de Koter et al. (1996).
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In view of these difficulties, and in order to address the
open questions related to stars with expanding atmospheres (see
below), some years ago the authors of the present paper decided
to develop a new NLTE line transfer code which should fulfill
the following requirements:

– consistent atmospheric structure, especially in the sub-
sonic/photospheric region.

– applicability over the entire upper HRD, beginning with
stars of spectral type “A”

– reproduction of results from plane-parallel and hydrostatic
models in cases of very thin winds

– “data driven” input of atomic models, following the philos-
ophy of standard hydrostatic NLTE-codes (e.g., DETAIL,
see below)

– easy to use, robust, fast and portable

The zero-version of this code was finished last year (Santolaya-
Rey 1995), however, it did not completely match the above
requirements. Meanwhile, we have worked on some additional
improvements, mostly related to the photospheric structure and
the incorporation of the comoving frame line transfer. Together
with some of our collaborators, we have tested and applied the
code for a variety of objects in the defined spectral range, from
A-type Supergiants to O3-stars and central stars of planetary
nebulae (CSPN). Since we are now convinced that it works
robustly and reliably (at least with H/He opacity only), we want
to describe its features in a first, more technical paper, before we
present the results obtained with this code in some forthcoming
papers.2

The underlying assumptions of a new program package al-
ways depend on the kind of questions one is seeking to address.
Since we do not present any application to real stars in this pa-
per, we will at least mention some of these questions which our
working group is especially interested in to illustrate the chosen
philosophy.

The mass and helium problem for O-stars. A careful analysis of
a large sample of O-stars by Herrero et al. (1992) indicated that
the spectroscopically derived masses of these stars are system-
atically lower than the masses predicted from standard stellar
evolution. Moreover, the derived He abundance was found to
be much larger than the model predictions. Both problems may
vanish if one allows for an evolution with rotationally induced
mixing (Langer & Maeder 1995). Nevertheless, a careful re-
analysis for stars of low luminosity class remains to be done,
since Herrero et al. performed their analysis on the basis of
plane-parallel NLTE models, thus neglecting stellar wind ef-
fects. The inclusion of these effects might change the picture
due to a different pressure stratification (the so-called “unified
model atmosphere correction”, cf. Gabler et al. 1989; Puls et
al. 1996) and additional wind emission, both of which increase
the inferred masses to higher values. The latest investigations
by Lanz et al. (1996) confirm this expectation, and also the

2 Actually, some of the results obtained by McCarthy et al. (1995)
on the extreme A-Supergiant B-324 in M 33 are based on a preliminary
version of the code described here.

consistent FUV, UV and optical analysis of the extreme O3 If∗

star HD 93129A by Taresch et al. (1996) resulted in a mass in
agreement with standard evolution. On the other hand, an anal-
ysis of HDE 226868, the optical counterpart of Cygnus X-1,
using unified models (Herrero et al. 1995) indicated that the
wind effects are not large enough to compensate for the whole
mass discrepancy, and that they do not significantly affect the he-
lium abundances. Thus, both open questions have to be clarified
by extending the Herrero et al. sample to stars with significant
mass-loss (which were deliberately left out) and the use of ade-
quate analysis methods. In addition, the presence of the helium
problem has to be corroborated by consistently analyzing the
CNO abundances of these stars.

The “β-problem”. As a by-product of the mass-loss determi-
nation performed by Puls et al. (1996), it turned out that O-stars
with dense winds seem to have velocity fields which deviate
from the predictions of standard radiation driven wind theory.
If we characterize the typical velocity field in terms of the usual
β-parameterization (e.g., Eq. 1), then we find from theory in all
cases which are not very extreme a value of β ≈ 0.8 (Pauldrach,
Puls & Kudritzki 1986). However, the analysis of Hα, which re-
acts very sensitively to the wind density and thus to the velocity
law when in emission, revealed values of β >∼ 1.0 for the winds
of supergiants. The same seems to be true for a number of CSPN
(Méndez, priv.com.) This fact poses a significant problem both
for the theory and for the analysis methods to be applied. For
the former, the observed velocity structure remains to be ex-
plained (e.g., influence of multi-line effects?). For the latter, we
have at least to account for the possibility that different β’s are
present, since otherwise the spectroscopic results could lead to
erroneous conclusions, as was demonstrated, e.g., by Schaerer
& Schmutz (1994).

Calibration of the wind-momentum luminosity relation for AB
supergiants. The so-called wind-momentum luminosity rela-
tion (WLR) of hot stars (see Kudritzki et al. 1995 and Puls et al.
1996 for a theoretical explanation) will most probably provide
a new tool to determine an independent extragalactic distance
scale by exploiting the dependence of radiatively driven winds
on luminosity. While the calibration of this relation for O-type
supergiants is almost finished (see Puls et al.), the continuation
to spectral types B and A has suffered from the lack of a versa-
tile and fast tool to perform the required NLTE diagnostics. By
means of the code described here, however, our group has now
made significant progress on AB supergiants and will present
the results in a forthcoming paper.

Besides these central topics of immediate interest, a number
of other, related points have to be clarified in the near future.
We briefly mention the ongoing project of testing the theory of
radiatively driven winds in the same spirit as outlined by Puls
et al., however concentrating on the spectral ranges AB and on
CSPN. This work, of course, will be done in parallel with the
establishment of the corresponding WLRs.
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The analysis of processes related to the effects of rotation
and the presence of macro-structures (e.g., Massa et al. 1995,
Prinja et al. 1995) in the winds of hot stars by means of de-
tailed line diagnostics has made significant progress in the last
years. Although we still assume that these effects are of only
secondary influence on the gross behaviour and on the analy-
sis of expanding atmospheres, there is no doubt that they are
present and that they may contaminate the spectra and our con-
clusions. (See, e.g., Petrenz & Puls (1996) for the influence
of rotation on the Hα mass-loss rates in the framework of the
kinematic model provided by Bjorkman & Cassinelli (1993).)
Because of the dominant NLTE conditions in the atmospheric
regions under question, reliable predictions of the dependence
of the occupation numbers on external parameters are urgently
required. By means of (relatively) simple and fast calculations
as discussed here, we can obtain much more insight concerning
the dominating population processes of the participating levels
and develop realistic line formation models.

With these problems to be solved in mind, the atmospheric
model underlying our assumptions is as simple as possible,
however accounts also for all (stationary) processes required
to establish a consistent photospheric structure including spher-
ical extension and continuum radiative acceleration. A thorough
description (inclusive our atomic model) is given in Sect. 2 and
Appendices A, B and C.

One of our most important objectives was to develop a
fast code. Thus, the formulation of the bound-free rates (which
mainly control the convergence behaviour) is decisive and pre-
sented in Appendix D. Also, we have reformulated the usu-
ally very time-consuming calculation of the formal integral in
Sect. 2.4 and Appendix E.

In Sect. 3, we describe thorough tests of the code (conver-
gence behaviour, flux conservation) and compare results from
it to well-established plane-parallel results, both for the atmo-
spheric structure (3.1) and strategic line profiles (3.4). The use of
comoving frame transfer is most important for preciseness and
the reproduction of profiles from plane-parallel models in cases
of very thin winds. A comparison to alternative Sobolev transfer
results is given in Sect. 3.5. Sect. 4 gives the conclusions, some
caveats and future perspectives.

2. The stellar atmosphere code

2.1. Atomic data

In order to keep the treatment of atomic data in a rather flex-
ible way, we are following the philosophy of the NLTE line
formation code (hydrostatic, plane-parallel geometry) DETAIL
(Butler & Giddings 1985): the atomic data file to be used as
input contains all the information about the nature of the data
included and how they must be treated. The line formation code
is then blind to the atomic data, and these can be changed, if
necessary, by a simple manipulation of the atomic data file and
not of the program itself.

So far, we have used only hydrogen and helium, in the spirit
of our principal objective of determining stellar and wind pa-

rameters. The inclusion of these two elements only does not,
of course, allow the treatment of the metallic UV line blocking
(e.g., Schaerer & Schmutz 1994; Pauldrach et al. 1994; Herrero
1994). However, by means of the completely data-driven nature
of our program it is straightforward to include the missing opac-
ities with almost no effort (as well as other elements important
for diagnostic purposes, e.g., silicon for the determination of
temperatures in B-stars). Obviously, this will constitute a natu-
ral progress of our work. For details of our atomic models and the
applied broadening theory we refer the reader to Appendix A.

2.2. Atmospheric structure

Our atmospheric description refers to the well-established stan-
dard model, i.e., a stationary, smooth and spherically symmetric
atmosphere neglecting any magnetic fields. For a detailed dis-
cussion of these approximations, see, e.g., Schaerer & Schmutz
(1994) and Puls et al. (1996).

In order to set up the atmospheric stratification, we have
developed a concept which allows us to treat the following con-
straints:

– The outer expanding atmosphere (wind) is specified by the
stellar mass-loss rate Ṁ , the terminal velocity v∞ and a
prescribed velocity parameter β, such that the velocity law
follows the form

v(r) = v∞(1− br0

r
)β

b = 1− (v0/v∞)
1
β (1)

with v0 the velocity at radius r0 (usually the minimum ve-
locity at r0 = R∗, but see below).

– The inner atmosphere (photosphere) is in (pseudo-) hydro-
static equilibrium with a velocity law following from the
equation of continuity.

– Both parts of the atmosphere are connected at a “transition
point” in the sonic region.

– The temperature structure and the continuum radiative ac-
celeration are approximated (since we want to avoid any
time-consuming iteration process to establish perfect radia-
tive equilibrium), but nevertheless attain a high degree of
precision (see below).

– The spherical extension of the photosphere is accounted for.

The advantages of this concept (e.g., compared to the simplified
approaches by Hamann & Schmutz 1987 or Hillier 1989) are
firstly that we are able to choose any value of β without run-
ning into methodical problems (such as a transition point lying
well above the sonic region or the impossibility of calculating
deep into the photosphere). Secondly, due to the almost “exact”
treatment of the deeper photosphere (with a radially dependent
scale height and not a constant value), a smooth transition to
the results of the standard treatment by means of hydrostatic
plane-parallel models is enabled in the case of thin winds. Most
important, however, is that this method allows us to calculate
wind lines and photospheric lines in parallel with the same de-
gree of precision, independent of the strength of the wind.
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Our concept is based on the fact that the Rosseland opacity
χR (for not too small optical depths, say τR >∼ 0.1), can be pa-
rameterized extremely well by a Kramer’s like opacity formula,
which for our purposes can be written as

χR(r) ≈ sE(r)ρ(r)
(
1 + kcρ(r)T (r)−x

)
(2)

where ρ is the density, T is the electron temperature, sE is the
Thomson scattering opacity per unit mass, and kc and x are
fit-parameters which are found from a least squares fit to the
Rosseland opacities as function of depth. Note that for small
densities this expression reaches the correct asymptotic value
of pure electron scattering, independent of the actual fit param-
eters. Our whole procedure consists now of the iteration of the
dependence of the hydrodynamical structure on (kc, x) (see be-
low), the calculation of new Rosseland opacities based on this
stratification, new parameterization, new structure and so on.
This process converges typically after six to seven iterations, to
the required precision of at least 10−5.

In order to set up the hydrodynamical structure of the at-
mosphere, we proceed as follows. First, we specify the outer
wind according to Eq. 1 and the equation of continuity, where
the transition point is prespecified at v0 = v(r0) = 0.1a(r0) (a
the isothermal sound speed, which varies with electron tempera-
ture T and mean atomic weight (µ(r)mH) as a2(r) = c1(r)T (r),
c1(r) = kB/(µ(r)mH); kB is the Boltzmann constant). This
turned out to be a reasonable value for all cases considered,
which on the one hand results in a smooth transition between
wind and photosphere and on the other hand is small enough to
justify the neglect of the advection term and the line acceleration
in the equation of motion.

With the additional approximation of replacing the flux
mean opacity by the Rosseland opacity, we then have

dp
dm

= g(r)− grad(r) = g∗
(R∗
r

)2
− 4π
cρ(r)

χR(r)H∗
(R∗
r

)2
,(3)

where dm = −ρ(r)dr is the increment in column density, p =
a2(r)ρ(r) the pressure, and g∗ andH∗ = σBT

4
eff/(4π) the gravity

and Eddington flux at R∗, which will be defined below. With
respect to our parameterization of χR, we thus find the first two
differential equations governing the photospheric structure by

dp
dm

= g∗
(R∗
r

)2
− σB

c
T 4

eff

(R∗
r

)2
sE(r)

(
1 +

kc

c1
pT−x−1

)
(4)

dr
dm

= −c1T

p
. (5)

The boundary conditions for p, T and r = r0 follow directly
from the above specified wind conditions at the transition point,
and the column density m0 can be calculated analytically as a
function of β and b (cf. also Puls et al. 1996, Appendix A)

m0 =
Ṁ

4πr0v∞
h1(b, β) (6)

h1 =


− 1

b ln(1 − b), β = 1

1
b

1
1− β

[
1 −

(
v0
v∞

) 1− β
β

]
, β /= 1

Finally, we have to specify the temperature stratification. Here,
we apply the concept of “NLTE Hopf functions” defined in
analogy to the usual Hopf function for the grey case (Mihalas
1978, Sects. 3.3 to 3.4 and references therein), however using
the “exact” run of T (τR) from a converged NLTE-model

qN(τR) =
4
3

(T (τR)
Teff

)4
− τR (7)

in order to simulate the NLTE effects under the constraint of
radiative equilibrium as close as possible. We use our Munich
database of hydrostatic plane-parallel NLTE model atmospheres
to derive parameterized qN(τR)-functions, where the principal
functional dependence is consistent with the run of the Hopf
function for the grey case. Details and examples are given in
Appendix B.

We stress that this method and its successful application (see
below) relies completely on the fact that the primary depth scale
which controls the temperature run is the τR scale.

Since the derived qN-function is taken from a plane-parallel
model, we have to consider the additional effects of sphericity,
if present in the photosphere, which have been neglected so far.
As shown in appendix C, this can be done – at least to a good
approximation – by writing

T 4(r) = T 4
eff

3
4

(
τ ′R + q′N(τ ′R)

)
, (8)

where τ ′R is the spherical generalization of τR and q′N(τ ′R) is
defined by

q′N(τ ′R) :=
τ ′R
τR

qN(τR)

dτ ′R = χR(r)
(R∗
r

)2
dr. (9)

In our model, Eq. 9 is also used to define the stellar radius R∗
via

τ ′R(r = R∗) =
2
3
, (10)

which together with the definition of r0 = r(v0) specifies all
required length scales. Note that in the case of no photospheric
extension, Eq. 8 is consistent with the plane-parallel definition.
For extended photospheres, however (and assuming the typical
situation r0 > R∗), the temperature gradient dT/dτR is smaller
for small τR and larger for large τR, compared to the plane-
parallel case.

Neglecting now the depth dependence of the (spherically
modified) q-function, it follows that

dT 4

dτ ′R
≈ 3

4
T 4

eff , (11)

and the mass variation of τ ′R is given by

dτ ′R
dm

=
χR

ρ

(R∗
r

)2
. (12)
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Thus, the differential equation controlling the temperature reads

dT
dm

=
3

16

(R∗
r

)2(Teff

T

)3
TeffsE(r)

(
1 +

kc

c1
pT−x−1

)
. (13)

Eq. (13) is finally solved in parallel with Eqs. 4, 5 by the
Runge-Kutta method to yield the photospheric stratification of
p(m), ρ(m) and r(m) for m > m0. Note, however, that after
each iteration step the temperature structure itself (in contrast
to its use in Eqs. 4, 5 and 13 via assumption Eq. 11) and thus
the Rosseland opacity parameters (kc, x) are calculated from the
updated Rosseland depth scale and account for the full depth de-
pendence. For m < m0, the atmospheric structure is obtained
from the “wind equation” (1) and Eqs. 8 and 9, together with
Eq. 16 (see below). Thus, after converging the whole procedure
(i.e., when the Rosseland opacity parameters have stabilized),
the complete atmospheric structure is specified. The only ob-
vious inconsistency appears from the fact that our τR-scale is
based on LTE opacities (since we are just in the starting phase
of our calculations and no NLTE values are available), whereas
the applied NLTE Hopf function is actually calculated from
NLTE Rosseland depths. For a discussion of this problem, see
Appendix B and Sect. 3.1.

2.3. Solution of the rate equations

Since the solution of the NLTE rate equations is straighforward
and documented in standard textbooks (e.g., Mihalas 1978), we
will itemize here only the essential features of our code. For the
different possible transitions accounted for in the rate equations,
cf. Sect. 2.1.

Continuum transport.

– Feautrier scheme in p-z geometry to calculate Eddington
factors, iterated with spherical moments equations.

– Boundary conditions: diffusion approximation (lower) and
3rd order (upper boundary)(cf. Auer 1976).

– Local approximate Lambda operator (ALO); in our code,
we calculate the ALO consistently with the moments equa-
tions (solving for the diagonal of the inverse of a tridiagonal
matrix, see Appendix A in Rybicki & Hummer 1991).

Line transfer.

1. Either Sobolev approximation with continuum (Hummer &
Rybicki 1985; Puls & Hummer 1988)

– in cases of stronger continuum than line opacity,
χc/(χl∆νDop) > 1, the so-called “U-function” is cal-
culated from the extended tables developed by Taresch
& Puls (Taresch 1991, see also Taresch et al. 1996).

– Local ALO: 1−P (r) with local (Sobolev) escape prob-
ability P (r) (cf. Puls 1991).

2. or comoving frame transport (e.g., Mihalas, Kunasz & Hum-
mer 1975).

– As is common, also our approach considers only
Doppler broadening when calculating the (line) scat-
tering integrals required for the bound-bound rates. As

long as the final formal integral (see below) accounts
correctly for the actual broadening (e.g., Stark broad-
ening), this has a negligible effect on the resulting line
profiles (cf. Hamann 1981 and Lamers et al. 1987).

– Local ALO from Puls (1991)

Coupling of rate equations with radiation transfer. Accelerated
Lambda iteration (ALI) with local ALOs from above. For line
transfer in the Sobolev approximation, this is equivalent to the
reduced rate equation formulation first presented by Klein &
Castor 1978 (see also Gabler et al. 1989 and Puls 1991). Our
formulation of the photoionization and recombination integrals
in the framework of ALI – which differs in a number of aspects
from the usual approach – is discussed in Appendix D.

2.4. “Formal Integral”

In order to calculate the emergent profiles, one finally has to
solve the formal integral with opacities and emissivities from
the converged model. Our solution algorithm has the following
features

– Solution on a radial micro-grid
– Separation between line and continuum transport
– Stark broadening
– Consistent treatment of (non-coherent) electron scattering,

if required

In the following, we will comment on these different topics.

2.4.1. Solution on a radial micro-grid and separation of line and
continuum transfer

The solution of the formal integral (in the observer’s) frame is
complicated by the different scales which have to be treated cor-
rectly. On the one hand, we have the line processes which act
only inside the resonance zones, i.e., on a radial (and frequen-
tial) “micro-grid” (cf. Rybicki & Hummer 1978). On the other
hand, we have the continuum processes which act on length
scales that comprise the complete atmosphere. In order to ac-
count for both scales and obtain effective solution algorithms, a
number of different approaches have been suggested. Examples
are iterative (shooting) methods aiming at improving the radial
resolution of the resonance zones (e.g., Hamann 1981), predic-
tor methods aiming at defining the appropriate integration width
dz in advance (Puls & Pauldrach 1990), etc..

We have decided to treat the different processes on a radial
micro-grid with a typical resolution corresponding to a certain
fraction of the thermal Doppler width (say, vDop/5) or even
smaller in the quasi-hydrostatic part of the atmosphere. This
approach, when combined with the separation of line and con-
tinuum transfer, has the unbeatable advantage that the formal
integral inside the resonance zones can be calculated directly
without any additional operations, i.e., essentially by summing
up the required quantities. Since we separate line and contin-
uum transfer, outside the resonance zones (which is then the
largest part of the atmosphere) almost nothing has to be done,
as is shown in Appendix E.
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2.4.2. Stark broadening

The calculation of the Stark profiles involves an extensive use
of perturbation techniques in the framework of quantum me-
chanics. A number of authors have performed such calculations
for different ions, and we refer the reader to Appendix A for
the specific theories we apply in our code. Clearly, Stark and
Doppler broadening are present simultaneously in the plasma,
and both effects have to be taken into account when calculat-
ing the total line profile (the effect of collisional broadening is
of minor importance because of the large Stark wings, and can
be neglected). Because of their independence, the global profile
turns out to be the convolution of the gaussian and Stark profiles,
which has been implemented in the corresponding tables.

Typically, Stark broadening for hydrogen and Heii becomes
dominant for logne > 12. However, to be on the safe side, we
switch it on for logne > 10.5, whereas for lower densities we
account only for Doppler broadening.

2.4.3. Electron scattering

The consistent treatment of electron scattering in the process of
line formation leads to the following two effects:

1. Line photons which are emitted in the atmosphere are red-
shifted by the accumulated effects of electron scattering in
the expanding wind. Consequently, the resulting line pro-
files exhibit an extended red wing, which, e.g. are observed
in the emission lines of WR stars (for a detailed discussion
of this process, see Auer & van Blerkom 1972). The compar-
ison of calculated and observed scattering wings (if present,
which requires a substantial e−−optical depth and thus a
high mass-loss rate) gives valuable information on wind in-
homogeneities (cf. Hillier 1991). This process occurs in-
dependently of the assumed frequential redistribution, i.e.,
also in cases of coherent scattering.

2. Due to the significant difference between the thermal veloc-
ities of electrons and ions (∼ factor 50 for protons), (line)
photons scattered by electrons can be significantly redis-
tributed (by some hundred Å) in frequency. In contrast to
the above case which leads to a profile asymmetry (because
of the monotonic expansion), this process yields extended
wings on both sides of the profile. Rybicki & Hummer
(1994) have presented a very elegant method to account for
this redistribution (which we apply in our code) and discuss
the consequences for the emergent fluxes, which are also
present at continuum edges. To operate efficiently, however,
non-coherent scattering requires a substantial photon injec-
tion rate below an e−−scattering sphere with considerable
optical depth. This effect is most probably observed in the
wings of Hα in AB-type supergiants (cf. Kaufer et al. 1996;
McCarthy et al. 1995) with low terminal velocity.

In our formal solution package, we have implemented now the
consistent treatment of non-coherent e−−scattering in a way
analogous to Hillier (1984, see also Hillier 1991). For a given
line source function (from our NLTE code), we recalculate a new

continuum source function by iteratively updating the (now fre-
quency dependent) Thomson emissivity in the comoving frame

j(ν) = neσeE(ν). (14)

The e−−scattering integral

E(ν) =
∫ ∞

0
R(ν, ν′)J(ν′)dν′ (15)

(all quantities in the CMF) and the redistribution function
R(ν, ν′) itself (with dipole phase function), however, are calcu-
lated as described by Rybicki & Hummer. The converged con-
tinuum source function (with e−−emissivity j) is then interpo-
lated on the appropriate “interaction” frequencies appearing in
the formal integral, which is finally computed (cf. Appendix E).

One caveat pointed out to us by W. Schmutz has to be men-
tioned concerning the above approach. Since we are modify-
ing the electron-scattering contribution while keeping the “true”
continuum processes and especially the occupation numbers re-
sponsible for the line formation fixed, it is in principle possible
that the new continuum radiation field may influence the oc-
cupation numbers and hence the whole line. This effect is not
accounted for in our present simulations and has to be carefully
checked in future calculations by including the effects of non-
coherent e−−scattering in the NLTE code in those cases, when
the continuum radiation field is strongly modified.

3. Test of the code

3.1. Atmospheric structure: some results and comparison to
plane-parallel models

In the following subsection, we discuss some basic features of
our atmospheric models (with special regard to sphericity effects
in the photosphere) and compare them to plane-parallel results.

For this purpose and in order to demonstrate the capability
of our approach, we have chosen two stellar models at opposite
sides of the spectral range we want to address with these kind of
calculations, namely a typical O5 dwarf and an A0 supergiant.
For details and model names, cf. Table 1.

Figs. 1 and 2 compare the run of temperature and electron
density of our O-star model with corresponding plane-parallel
results. As is obvious, the agreement in the photospheric re-
gion is perfect. Note that the temperature structure has been
adapted by means of the NLTE Hopf function in such a way
as to ensure agreement only until the temperature minimum is
reached. The rise to its final value at small τ – which has its
origin in the overpopulation of the hydrogen ground state in
those regions (Auer & Mihalas 1972, Kudritzki 1979) – has
been neglected, however. The reason for this procedure is two-
fold. At first, the run of the outer temperature is strongly de-
pendent on the specific elements accounted for in the NLTE
models (e.g., Werner 1992 and Dreizler & Werner 1992) and
in any case is additionally modified by wind-blanketing (Ab-
bott & Hummer 1985; Schaerer & Schmutz 1994), adiabatic
cooling (Drew 1989, Gabler 1991) and non-thermal processes
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Table 1. Stellar and wind parameters of discussed models. Teff in K, R∗ in R�, Ṁ in M�/yr, v∞ in km/s, Y = NHe/NH,pressure scale height
H in percent of R∗ and maximum error in flux conservation in percent.

model Teff log g Y R∗ log Ṁ v∞ β Γe H r0/R∗ ∆F/F

OP1 50000 4.0 0.1 0.40
OW1 18.6 -10.0 1750. .75 0.09 1.011 1.53
OP2 40000 4.0 0.1 0.17
OW2 10. -10.0 2000. 1. 0.1 1.01 3.67
OW3 -6.0 1.003 4.66
BP1 25000 3.0 0.1 0.23
BW1 30. -10.0 1300. 1.25 0.2 1.022 1.90
BW2 2.7 -6.30 0.46 0.6 1.023 2.70
BW3 2.7 -5.53 1.013 4.40
AP1 9500 1.5 0.1 0.14
AW1 100. -10.0 200. 1. 0.6 1.066 1.67
AW2 -6.0 1.018 2.36
AW3 -5.0 1.0002 6.10
AW4 -4.6 0.952 10.0
AW5 -4.3 0.827 11.2
AW6 9500 1.25 0.1 100. -10.0 200. 1. 0.25 1.3 1.14 3.9
AP7 9500 0.9 0.1 0.55
AW7 100. -10.0 200. 1. 4.7 1.81 10.5
AW8 2.5 1.82 10.0

(Owocki et al. 1988, Feldmeier 1995). Hence, as long as no final
conclusion has been reached, the outer temperature stratifica-
tion remains somewhat uncertain. On the other hand and for-
tunately, however, this uncertainty has almost no influence on
the resulting fluxes and line profiles, since it affects only layers
at small τR <∼ 0.01, where the occupation numbers for the line
transitions in question depend on the radiation field mostly and
are almost independent on the local temperature. Thus, for our
present purpose we have decided to simply neglect the problem
and restrict the temperature stratification to a mimimum value
of

Tmin = 0.75Teff , (16)

which is typical for plane-parallel NLTE H/He models of almost
any spectral type between O and A. The flux conservation that
is finally achieved by our procedure will be discussed in detail
below.

As is also obvious from Fig. 2, sphericity plays no role for
this model, since the pressure scale height

H ≈ a2(Teff )
g(1− Γe)

(17)

(where Γe is the ratio of Thomson acceleration to gravity) and
consequently the length ∆r, from the continuum to the line
forming region,

∆r

R∗
≈ H

R∗
ln
mcont

mline
≈ H

R∗
ln(100) (18)

is too small (cf. Table 1) to lead to a significant influence. Con-
sequently, the presence of a (moderate) wind affects only the

Fig. 1. Comparison of temperatures: O-star model with thin wind
(OW2, fully drawn) and corresponding plane-parallel model (OP2, dot-
ted).

optical depth scale and shifts the transition point to higher τR

(see also the velocity stratification displayed in Fig. 3), whereas
the difference in radius between R∗ and r0 remains small.

This situation changes drastically if we either increase the
mass-loss rate in such a way that the optical depth in the wind
becomes larger or if the stellar model is put close to the Edding-
ton limit. For the example of an A0 supergiant, both effects are
demonstrated in Fig. 4 and Fig. 5, respectively.

In Fig. 4 we have plotted the run of the stellar radius (in
units of R∗ as function of τR for different Ṁ , ranging from
very thin (AW1) to very thick (AW5) winds. As the wind
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Fig. 2. Comparison of electron densities: O-star model with thin (OW2,
fully drawn) and moderate wind (OW3, dashed); dotted: corresponding
plane-parallel model (OP2).

Fig. 3. Velocity fields: O-star model with thin (OW2, fully drawn) and
moderate wind (OW3, dashed).

density increases, the location of the stellar radius defined by
R∗ = r(τ ′R = 2/3) is shifted more and more into the wind, and
the ratio of r0/R∗ becomes smaller and smaller. In this figure,
we have denoted the location of the nominal radius, R∗, by
squares. For increasing Ṁ , this location lies at increasing τR,
since due to the spherical dilution included in Eq. 9, the ratio
of τR/τ

′
R is always larger than unity for r ≥ R∗ and increases

with wind density. Note that for very strong winds the lower
atmosphere is located at much smaller radii than the nominal
radius, a situation familiar from WR-winds. For these models
then, the radial difference between line and continuum forming
regions is enormous, but originates from the presence of a wind
and not from an extended photosphere.

In contrast, Fig. 5 shows just this extension when the gravity
is varied in such a way that Γe increases from 0.14 (AW1) to
0.25 (AW6) to 0.55 (AW7, AW8) and the wind remains thin
(which is, of course, only an artificial assumption). Whereas

Fig. 4. The mass loss effect: A-star models with thin (AW1,
fully drawn), moderate (AW2, dotted), strong (AW3, dashed, AW4,
dashed-dotted) and very strong wind (AW5, dashed-triple dotted). The
location where the nominal radius R∗ = r(τ ′R = 2/3) is reached for
each model is indicated by squares.

Fig. 5. The scale height effect: A-star models with thin winds
and Γe = 0.14(AW1, fully drawn), Γe = 0.25(AW6, dotted) and
Γe = 0.55(AW7, dashed). Note the significant expansion of both the
lower and the upper photosphere in AW7.

for AW6 the plane-parallel approximation remains valid (∆r
(line vs. continuum) ≈ .06R∗), for our model closest to the
Eddington limit (AW7) this difference becomes significant (on
the order of 20 %) and will affect both the pressure and the
temperature stratification, thus leading to a failure of the plane-
parallel assumption. (The obvious change in the slope of r/R∗
vs. τR at τR ≈ 1 is due to the onset of the bound-free radiative
acceleration.)

Before we further discuss this problem, we want to consider
another point related to the velocity- and density stratification,
namely the influence of different exponents β. From Fig. 3 (O-
star winds with a stellar model of Γe = 0.17) and Fig. 6 (fully
drawn curve: A-star wind, Γe = 0.14) we find that the adoption
of the typical valueβ = 1 usually leads to a smooth transition be-
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Fig. 6. Behaviour at the transition point between photosphere and wind:
A-star models with a thin wind that are far from (AW1, fully drawn,
β = 1) and close to the Eddington-limit (AW7, dotted, β = 1 and AW8,
dashed, β = 2.5).

tween wind and photosphere. In those cases, however, where the
stellar model lies close to the Eddington limit, this value leads to
a significant discontinuity in the velocity gradient (model AW7,
dotted). The simple reason for this behaviour is that the gradient
of the β = 1 velocity field is much too steep to match the (outer)
photospheric gradient resulting from dp/dm = geff ≈ 0, which
occurs for stars close to the Eddington limit due to the rather
large bound-free acceleration. In those cases, a smooth transi-
tion can be obtained only if the velocity exponent provides a
much shallower gradient, e.g. in our model AW8 with β = 2.5.

Although a bit speculative at present, the requirement of a
smooth transition may be the reason that supergiants both of
spectral type O (cf. Puls et al. 1996) as well as B-Hypergiants
(e.g., P Cygni: Barlow & Cohen 1977, Waters & Wesselius 1986,
Pauldrach & Puls 1990) and A-Hypergiants (Stahl et al. 1991)
actually show a shallow velocity field with β up to 4 in the most
extreme cases.

In Fig. 7 and 8 we now investigate the influence of an ex-
tended photosphere. Again, for our A star model far from the
Eddington limit both the temperature stratification and the pres-
sure agree completely with the plane-parallel predictions. For
our most extreme object, however, the situation is completely
different. Here, for τR <∼ 1 the temperature is smaller and for
τR >∼ 1 larger than in the plane-parallel case, and, most im-
portantly, the gradient is very much steeper. This (well-known)
result (e.g., Mihalas & Hummer 1974, Gruschinske & Kudritzki
1979) is based on the different τ -scale on which the radiative
equilibrium is established, namely on the additional (R∗/r)2

dilution. This strong variation of r with τR is also responsi-
ble for the different pressure stratification, mostly via the radial
dependence of the gravitational acceleration. Thus, the spheri-
cal model has a radially dependent pressure gradient through-
out the atmosphere, where the pressure is smaller for small τR

and larger elsewhere. Hence, the predictions of a plane-parallel
model (which yields a more or less parallel-shift of log p vs.

Fig. 7. Temperature stratification – the sphericity effect: A-star model
with a thin wind far from the Eddington limit (AW1, upper fully
drawn curve) compared to the analogous plane-parallel model (AP1,
dotted). Lower fully drawn curve: AW7 (thin wind, close to the Ed-
dington-limit) compared to plane-parallel version (AP 7, dashed). For
convenience, both lower curves have been shifted by -5000 K.

Fig. 8. Pressure stratification – influence of sphericity on gravity and
temperature: As Fig. 7, but now for the pressure. (No shift applied)

logm if the gravity is changed, cf. AP1 and AP7 in Fig. 8) can
be substantially altered due to sphericity effects for models close
to the Eddington-limit.

In summary, with the described treatment we have a versatile
tool at hand which allows us to set up the complete atmospheric
structure of massive stars at almost no cost, if we aim at pre-
scribing the wind parameters (Ṁ, v∞, β). In our opinion, the
only remaining weak point may arise when the NLTE τR-scale
differs significantly from the LTE scale adopted here. In those
cases, which may be present, e.g., in cooler A stars close to
the Eddington limit (when hydrogen recombines significantly
just in the transition zone), we have to improve our model by
introducing an additional iteration cycle to update the structure.
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Fig. 9. Convergence properties of CMF-models AW1 (fully drawn),
AW8 (dotted), BW1 (dashed), OW2 (dashed-dotted) and OW1
(dashed/triple dotted). Note, that the maximum relative corrections are
plotted from the begin of the CMF treatment on, i.e., after the first 20
starting iterations.

3.2. Convergence properties

In Fig. 9, we have plotted the convergence properties of our
(thin wind) models discussed in the next section. In particular,
we display the maximum correction (with respect to all levels
n and all radii r ) Max(∆n/n) obtained as a function of itera-
tion number for our CMF-models OW1/OW2/BW1/AW1/AW8.
For convenience, we show these corrections only from the be-
ginning of the CMF-cycle on, which in our treatment starts at
iteration number 20. (In order to ensure a fast approach into
the convergence radius, we apply 10 pure continuum and 10
Sobolev-transfer iterations before starting with the CMF line
treatment.)

In most cases, we achieve a fast convergence rate (mainly
controlled by the interplay of the effective ground-state contin-
uum and the corresponding resonance (or pseudo resonance)
lines) with 15 to 20 iterations necessary per decade of correc-
tions. We regard our models as converged if the maximum cor-
rection lies below 2 per mille, which is sufficient as long as the
ALI works reliably.

With this requirement, we need (in total) a typical num-
ber of 40 to 60 iterations to converge a model, where the only
exceptions occur in cases when the ground-state continuum is
extremely thick and the model lies close to the Eddington limit
(cf. model AW8 in Fig. 9). In those cases, we may find a stag-
nation of the convergence process (e.g., at iteration number
30 for AW8). In order to re-accelerate the iteration in those
cases, we perform an Aitkins-extrapolation of the problematic
(ground-state) occupation numbers, exploiting the fact that the
effective eigenvalue controlling the convergence can be derived
from three consecutive iterations (e.g., Puls & Herrero 1988,
Eq. 21). With this extrapolation (resulting in a “spike” of the
maximum correction), we then drive the iteration back into a
faster convergence rate.

Fig. 10. Error in flux conservation as function of τR for the models of
Table 1. For convenience, the locus of perfect flux conservation is indi-
cated by a fully drawn line. Note the different scalings of the y-axises.
Lower panel: (very) thin winds, model OW1(dotted), OW2(dashed),
BW1(dashed-dotted), AW1(dashed-triple dotted), AW6(long-dashed).
Middle panel: moderate winds, model OW3(dotted), BW2(dashed),
AW2(dashed-dotted). Upper panel: dense winds or very extended pho-
tosphere, model BW3(dotted), AW3(dashed), AW4(dashed-dotted),
AW5(dashed-triple dotted), AW8(long-dashed).

3.3. Flux conservation

In Fig. 10, we have plotted the relative errors in flux conser-
vation for our wind models from Table 1 as a function of τR

(see also the last column of Table 1, which gives the maximum
flux error). The lower panel displays the case for thin winds,
the middle one for moderate winds and the upper one for strong
winds and the model with the very extended photosphere, AW8.
Except for the latter case, all other models conserve the flux at a
2% level or better for large τR >∼ 10. The maximum errors occur
(as to be expected) near τR ≈ 1 and remain constant afterwards
for the majority of the cases. As is obvious, for all models with
not too dense a wind this maximum error lies below 4%, with
typical values between 2. . . 3%.

As is also obvious, the flux conservation in cases with a
large Ṁ and/or extended photosphere is far from perfect. There
are two reason for this problem. First, our procedure of trans-
lating a plane-parallel temperature stratification into a spherical
one (which is decisive in the discussed context) is not exact but
only approximate (cf. Appendix C). Second and already out-
lined above, our temperature stratification is only calculated on
the basis of a LTE τR scale and should be updated if pronounced
NLTE effects contaminate the scale. E.g., the typical depopula-
tion of some important ground states will reduce the background
opacity and should not be neglected. Furthermore, this depop-
ulation is different in atmospheres with and without mass-loss
(e.g., Gabler et al. 1989) and can lead to additional differences
even if the Rossland scale is updated, since our NLTE Hopf-
function is derived from plane-parallel models.
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Fig. 11. Comparison of line profiles: strategic hydrogen (incl. blue-
wards Heii blend) and Heii lines of CMF-model OW1 (fully drawn)
vs. plane-parallel results (OP1, dotted). Here and in the following, the
number in the upper left corner gives the equivalent width of our pro-
files in Å, defined as positive for net emission.

In conclusion, our treatment of defining the temperature
stratification leads to satisfying results under not too extreme
atmospheric conditions. For the remaining models with a larger
discrepancy (with corresponding maximum errors in tempera-
ture of order 2.5%), we will not forget the problem and will
work on an improved version of the code. However, we point
out that the important “photospheric” profiles of those models –
in comparison to plane-parallel ones – are much more affected
by mass-loss and/or sphericity effects than by the uncertain tem-
perature calibration, so that we consider this problem to be at
present of only minor importance.

3.4. Profiles of thin wind models vs. plane-parallel results

One of the major requirements for a reliable (expanding) atmo-
sphere code is that it reproduces the results of plane-parallel
calculations in the case of (very) thin winds and non-extended
atmospheres. If this requirement is not fulfilled, one would in-
troduce a systematic and maybe important off-set, especially

Fig. 12. As Fig. 11, but for model OW2 vs. OP2.

when one analyzes atmospheres with small but non-negligible
winds, and compares the results with those from conventional
plane-parallel models. An important topic, e.g., which closely
relates to this problem is the comparison of actual and predicted
mass-loss rates of stars with thin winds, where one has to be sure
that the refilling of a photospheric profile is due to the wind and
not due to an inconsistency in the line formation process in the
different codes under consideration.

To our knowledge, however, the fulfillment of this impor-
tant requirement has rarely been demonstrated by the differ-
ent wind codes on the market, at least not for a wide range of
physical conditions. With the following plots (Figs. 11 to 16,
Teff ranging from 50,000 to 9,500 K), we want to show that
our code has the desired ability. The agreement of our H/He-
profiles with the corresponding plane-parallel ones is striking.
If present at all, differences are found only in the very line cores
and are definitely due to different grid sizes and angular integra-
tion methods. In these figures, we have deliberately plotted the
purely theoretical profiles without any rotational convolution to
emphasize the agreement not only of the major component but
also of the minor one, i.e., of the Heii blend in the hydrogen
Balmer lines and in Hei 4026 (where the blend dominates in O-
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Fig. 13. Comparison of line profiles: Hei lines of CMF-model OW2
(fully drawn) vs. plane-parallel results (OP2, dotted). Note, that Hei
4026 is dominated by Heii 4026 (4 → 13). The features bluewards
from the central ones are the forbidden components of each Hei line.

and early B-type spectra) and of the forbidden components of
all Hei lines.

However, we have also encountered some problems, which
are discussed in the next two subsections.

3.4.1. Hei lines in hot O-stars

After having calculated a relatively large grid of models and
profiles (from which we have shown only some representative
examples), a comparison with the corresponding plane-parallel
profiles resulted in the following dilemma: While the hydrogen
Balmer and Heii lines turned out to be in satisfactory agreement
throughout the complete model grid, for models with Teff >
40,000 K the Hei lines began to deviate from the plane-parallel
solution. The difference grew with temperature, and our pro-
files were always weaker. Fig. 17 (OW1, Teff = 50,000 K) is a
typical example for the problem. We performed our following
investigations by means of this model .

At first, we realized that in the corresponding plane-parallel
model (OP1) the Heii Lyman lines were in detailed balance
almost throughout the complete atmosphere. In our calcula-
tion, however, they (i.e., actually the transitions 1 → 3, 4, · · ·)
left detailed balance in the same region as the ground-state
ionization/recombination rates left detailed balance, namely at
τR ≈ 0.01. In a second step, we therefore put these lines arti-
ficially into detailed balance (which is very easy to do with a

Fig. 14. Hydrogen Balmer lines (incl. Heii blend) of model BW1 vs.
BP1.

data-driven code!) and actually found a much better agreement
with the plane-parallel results (cf. Fig. 18). Since in our model
the population of the decisive Heii ground state (all Hei levels
are coupled to this state and vary in proportion) was smaller than
in the plane-parallel case, whereas especially the Heii(n = 2)
level was in perfect agreement, there was only one possible so-
lution: In all our Lyman-lines, the scattering integrals had to
be much higher, thus effectively pumping electrons from the
ground state into higher states and depopulating the (n = 1) and
coupled Hei levels.

This argument was supported by the fact that all net radiative
rates (except of the (1 → 2) line, which also in our model is in
detailed balance until far out in the atmosphere) of the Lyman
lines were negative and dominated the rate equations.

Hence, we sought for a mechanism which enlarged the mean
line intensities compared to the plane-parallel calculations. This
mechanism was finally found in the different ways both ap-
proaches approximate the influence of electron scattering in the
NLTE line transfer. (“Approximate”, since at present neither
code accounts for the correct electron scattering redistribution
function because of computational time limitations.)

On the one hand, the plane-parallel models approximate
the Thomson scattering process to be always as coherent,
jν = neσeJν , even in the lines. In contrast, our approach, as
is typical for all available CMF-codes, regards the Thomson
emissivity to be constant over the line, with a value taken from
the neighbouring continuum, jν = neσeJ

cont
ν . This approach

follows from the argument that the electron scattering redistri-
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Fig. 15. Hei lines of model BW1 and BP1. Here, the contribution of
the Heii blend to Hei 4026 is marginal.

bution function has a much larger frequential width than the
line redistribution function (cf. Sect. 2.4.3) and is justified by
the investigations of Mihalas, Kunasz & Hummer (1976), who
showed that the second approximation (our approach) leads to a
much better agreement with the exact solution than the coherent
one.

In the “normal” case, this different formulation has only
a marginal influence on the results, which is obvious from a
comparison of the line profiles we have plotted above. Here,
however, the situation is different, since the continuum radiation
field at the Heii Lyman lines (229 Å< λ < 303 Å) is extremely
hot in pure H/He atmospheres, due to the dominating Thomson
scattering background opacity. Typical radiation temperatures
are Trad ≈ 60,000 K for a Teff = 50,000 K model. Thus, the
strong continuum radiation field becomes important, leading to
much larger “line” intensities than in the case when Thomson
scattering is treated in the coherent approximation. (In the latter
case, this term becomes negligible since it is almost completely
decoupled from the continuum due to the dependence via the
mean line intensity Jν .)

In order to check this chain of arguments, we have run a
simulation with no Thomson-scattering at all in the He Lyman
lines. Actually, we obtained essentially the same results as if the
lines were treated in detailed balance, although in the outer but
subsonic parts an additional influence of the velocity field was
perceptible in the occupation numbers, though not visible in the
profiles.

Fig. 16. Hydrogen Balmer lines of model AW1 vs. AP1.

The consequences of this investigation are not especially
encouraging, though not completely unexpected. On the one
hand and from a standpoint of consistency, our results (in par-
ticular the weaker Hei 4471 line) seem to be more accurate,
since the coherent approximation is more unrealistic than ours.
On the other hand, in reality there is a large bound-free back-
ground opacity in the spectral region under discussion due to
the metal ions neglected in our H/He models, which will drive
the radiation temperatures back to much cooler values. Thus,
at a first glance the “plane- parallel” result seems more physi-
cal. However, first test calculations including line blocking and
blanketing (Sellmaier 1996) point to the possibility that a fully
consistent treatment of the problem also reduces the strength of
the Heii ground state and thus of the 4471 line. The effect arises
in these models by coupling the Lyman lines strongly to the
pseudo-continuum created by the large number of overlapping
lines in the EUV, which, since they are scattering dominated,
maintain the high radiation temperature characteristics of the
Thomson opacity discussed above.

In any case, before the final word can be said about the actual
behaviour of Hei 4471, which is at present the only temperature
indicator of hot O-stars, the absolute temperature scale above
45,000 K (and, consequently, luminosities) derived by this line
only should be regarded with caution.

3.4.2. Balmer lines in A-stars close to the Eddington limit

In the last part of this section, we discuss briefly the behaviour
of the hydrogen Balmer lines in A-stars close to the Edding-
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Fig. 17. As Fig. 13, but for model OW1 vs. OP1. For the differences
between our (fully drawn) and the plane-parallel solution, see text.

ton limit, displayed in Fig. 19 (models AW8, AP7). At first, the
emission line character of Hα(which is not present in the cor-
responding models with higher gravity (AW1, AP1, Fig. 16) is
somewhat puzzling, however it is both theoretically understood
(Hubený & Leitherer 1989) and also observed (e.g., Kaufer et
al. 1996, McCarthy et al. 1995). Briefly, this emission arises
from the fact that the effective n = 2 groundstate is depopulated
by photoionizations in the Balmer continuum, where the cor-
responding radiation temperatures and thus the depopulation is
stronger for lower gravities. The latter effect is due to the lower
pressure and density in models with lower log g, so that the point
of τ = 1 in the Balmer continuum is shifted (compared to higher
gravity models) inside to higher temperatures.

The differences between our Balmer profiles and those of
the plane-parallel models are now readily understood as differ-
ences due to the expansion of the photosphere, a phenomenon
which is not accounted for the the plane-parallel approxima-
tion. As already discussed in Sect. 3.1 (cf. Fig. 8), our models
have a different run of pressure because of the g(R∗)R2

∗/r
2

dependence of the gravity. Consequently, with respect to the
formation of the Balmer continuum, our models have a higher
effective gravity than the plane-parallel ones in the decisive lay-
ers, so that the (n = 2) level is not as much depopulated and
our profiles display lower emission. This is clearly visible in the
Hβand Hγ lines. That the Hαline fits so nicely is more or less
by chance and related to the fact that this line is formed further
out in the atmosphere than the other two lines. There, because
of the likewise different dilution factors, we have an additional

Fig. 18. Hei 4471 of CMF model OW1 (dashed-dotted), for the same
model, however with Heii Lyman lines forced into detailed balance
(fully drawn), and for the plane-parallel model OP1 (dotted).

Fig. 19. Hydrogen Balmer lines of model AW8 vs. AP7.

influence on the ionizing radiation field and thus an additional
difference in the n = 2 departure, which partly compensates for
the log g-effect.

Thus, due to the fact that photospheres close to the Ed-
dington limit become extended, the gravity values derived from
plane-parallel Hγ lines have to be corrected to even lower values.
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Fig. 20. Hydrogen and Heii profiles from CMF(fully drawn) and
Sobolev plus continuum (dashed-dotted) line transfer in the NLTE so-
lution, for model OW2.

3.5. Comparison of CMF and Sobolev (plus continuum) line
transfer

In this section, we will briefly compare the profiles resulting
from the two alternative methods of line transfer which we can
apply in our NLTE code, namely the CMF- and the Sobolev
plus continuum transfer (cf. Sect. 2.3). Since this matter is well
discussed in the literature (e.g. Hamann 1981, Gabler et al. 1989,
de Koter et al. 1993, Sellmaier et al. 1993), we will address only
those points which may deserve some additional statements.
Figs. 20 to 23 display the situation for a large number of typical
cases, both with respect to temperatures and wind densities as
well as for different (strategic) lines. Note, however, that the
following remarks apply only if the temperature stratification
remains unaffected by the line transfer method, i.e., if we use an
identical atmospheric model both for CMF and SA transport.
If this were not true, we could obtain larger differences since
the type of line transfer would then also affect the ionization
structure via a different temperature structure resulting from a
different adjustment of radiative equilibrium. Our findings can
be summarized as follows:

Fig. 21. As Fig. 20, but for Hei lines.

– For all models considered, the line wings – whether they are
in absorption or emission – agree perfectly.

– If there are differences at all, these occur only in the line
cores, where the SA occupation numbers always generate
too much emission.

– An essential failure of the SA occurs only for moderate
mass-loss rates, whereas the differences for very low and
large Ṁ are acceptable in the framework of atmosphere
analysis.

Before we give some theoretical arguments, let us describe the
differences of the calculated profiles. Fig. 20 and 21 display the
H/He lines for a 40,000 K dwarf with (almost) no wind. A sig-
nificant discrepancy is only found in the Heii 4686 line, where
the line core of the SA model begins to turn into emission. All
other lines agree fairly well, although the cores of the Hei lines
are too weak. The differences in the equivalent width, however,
are only small, typically of the order of 20 to 30 %. This is also
true for the other models investigated here, so that we do not
present the corresponding Heiprofiles explicitly. Note, however,
that a consequent use of profiles resulting from SA calculations
(which are considerably cheaper with respect to computational
time) for atmospheric analyses would create a systematic shift to
cooler temperatures, compared with conventional plane-parallel
methods.

With increasing, but moderate, mass-loss (Fig. 22, model
OW3, Ṁ = 10−6M�/yr), Hαbecomes the most deviating line,
with the wings in absorption and the core in emission. With
respect to observed Hαprofiles, this one is of course unrealistic
On the other hand, Heii 4686 has now a full emission profile,
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Fig. 22. As Fig. 20, but for model OW3 (moderate wind)

so that the discrepancy becomes marginal when a rotational
convolution is performed.

Since the situation for O-stars with higher wind density is
discussed extensively in the various papers cited above, and
differences are shown to be present only in the weakest, e.g.,
Hei, lines, we skip this parameter range and proceed to the B-
star domain (models BW1 to BW3 at 25,000 K, Fig. 23, upper
three panels). Here, the locus of maximum discrepancy migrates
with increasingṀ from Hαto Hβ , and would be present in Hγfor
even stronger mass-loss rates. Note, that Hαin BW2 and Hβ in
BW3 have the largest deviations of all models considered in
our investigation and would lead to crucial misinterpretations if
used uncritically.

The lower three panels of Fig. 23 show the hydrogen Balmer
lines for some representative A-stars models (all with Teff =
9,500 K). In the first one (AW1, negligible Ṁ ), all three profiles
(being of similar strength) display the same degree of inconsis-
tency, namely the narrow cores are completely refilled in the SA
simulation. In contrast, for the model with the largest mass-loss
rate discussed here (AW3), not even the slightest difference can
be “observed”. Finally, the profiles of the SA model AW8 (the
one close to the Eddington limit) show again too much emis-

sion in the line cores, so that especially Hβwould lead to wrong
conclusions.

The immediate reason for the additional emission in the
line cores that occurs with the Sobolev transfer is displayed in
Fig. 24. We compare the departure coefficients of the hydro-
gen n = 2, 3 level of model BW2 (with the largest discrepancy
in Hα), resulting both from the CMF and the SA treatment.
Whereas in the continuum forming region and in the wind the
agreement is perfect, the difference is considerable at optical
depths where the line core is formed, i.e, where the line begins
to become optically thick (τR >∼ .01). Since in the SA simula-
tion the departure coefficient of the upper level is larger than
the lower one (and the radiation temperature at Hαis not too
different from Te), it is clear that the line core must appear in
emission. The reason that the n = 3 level (SA) is more strongly
populated than in the CMF case (which is true for the upper
levels of all lines showing a discrepancy) was discussed in con-
siderable detail by Sellmaier et al. (1993): particularly for lines
that are not too strong, the Sobolev approximation leads to an
overestimation of the mean line intensity in the region of the
ion’s thermal point. This is caused by the fact that the curvature
of the velocity field in the transition zone is most pronounced,
which causes in reality an asymmtric line escape probability
for outwards/inwards directed photons. By means of the (con-
ventional) SA, however, the escape probability is taken to be
symmetric (only dependent on the local velocity gradient) and
underestimates this quantity. Thus, for lines which are neither
completely optically thin nor thick the mean line radiation field
becomes too strong, thereby effectively overpopulating the up-
per levels with respect to the exact CMF solution which accounts
for curvature terms appropriately. For this reason, it is always
the line that just becomes optically thick in the transition region
that shows the largest discrepancy. This explains why the dis-
crepancy is shifted to weaker lines with increasing mass-loss.
This also explains why the Hei lines in O-stars are not as wrong
as one might suspect: Since the only line processes which affect
the ionization are the Heii resonance lines (cf. Sect. 3.4.1), the
overall ionization is correctly treated because these lines remain
optically thick (or continuum dominated) much further out in
the atmosphere. Thus, the erroneous SA treatment plays almost
no role for the establishment of the ionization equilibrium and
the differences in the line cores are again due to differences
within the Hei lines themselves.

4. Summary and future perspectives

We have introduced a new and fast NLTE line formation code as
a versatile tool for the spectroscopic analysis of hot stars with
winds. We have shown that this code fulfills one of the most
stringent requirements for such an objective, namely to repro-
duce both the photospheric stratification and the line profiles
resulting from an alternative plane-parallel treatment in the case
of very thin winds. Thus, we are now able to account for wind
effects also in lines which are only weakly wind contaminated
and avoid the problem of erroneously attributing inconsistent
plane-parallel vs. expanding atmosphere results to real physics.
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Fig. 23. CMF(fully drawn) vs. Sobolev (dashed-dotted) line transfer for hydrogen Balmer lines. Models BW1(no), BW2(moderate) and
BW3(strong wind); AW1(no), AW3(very strong) and AW8(no wind, close to the Eddington limit). Note that the agreement of the profiles
in AW3 is so good that the differences, although plotted, are not visible.



A.E. Santolaya-Rey et al.: NLTE-models for the analysis of blue stars with winds 505

Fig. 24. NLTE departure coefficients of hydrogen, n = 2 (fully drawn)
and n = 3 (dashed-dotted), for model BW2 and CMF line transfer
(lower curves) and Sobolev transfer (upper curves). For convenience,
both upper curves have been shifted by +1.

At first glance, the treatment of the wind by means of a
prescribed velocity field and mass-loss rate may be regarded
as a drawback compared to a consistent treatment including
the theory of radiatively driven winds (e.g., the unified model
atmosphere concept by Gabler et al. 1989). However, in view
of the present uncertainties in the theory, mainly with respect
to the “β-problem” outlined in the introduction and the wind
momentum problem (see Lamers & Leitherer 1993 and Puls
et al 1996), this procedure provides the maximum degree of
freedom for the synthesis of spectra and avoids biased results.

From the thorough tests we have performed in a wide range
of spectral class, luminosity and wind density, three points have
come to our attention which turned out to be essential for an
accurate spectroscopic analysis of blue stars. First, the absolute
temperature scale for stars with Teff >∼ 45, 000 K is uncertain
if derived from Hei lines alone, since the strength of these lines
almost exclusively depends on the behaviour of the Heii reso-
nance lines, with all the present uncertainties such as the correct
treatment of electron scattering and line-blocking in the spectral
region below roughly 310 Å. Independent methods such as the
analysis of the optical Niii, iv andv lines or the FUV Arvii lines
(if available, cf. Taresch et al. 1996) will provide an additional
check in future temperature calibrations, even if the situation
for Hei has been clarified.

Second, for stars close to the Eddingtion limit one has to
account for the photospheric extension, since this changes the
slope of the pressure stratification and all related quantities such
as the temperature run. Especially concerning the gravity deter-
mination (which is difficult for those objects in any case), this
different slope and its consequences for the formation of the line
wings can lead to significant changes in comparison to results
derived from the plane-parallel approximation.

Finally (and most regretably), the diagnostics of atmo-
spheres with only moderate wind densities are severely affected
by the use of the Sobolev line transfer (even when used in a

sophisticated form), as long as the escape probabilities are eval-
uated by assuming a foreaft symmetry. So far, one must use the
“exact” transfer (e.g., CMF) since otherwise at least the inferred
mass-loss rates would be underestimated due to an inappropriate
refilling of the line cores in the SA simulation.

Although with the development (and first applications) of
this code we have made significant progress towards the routine
quantitative spectroscopy of blue stars with winds, some caveats
should be mentioned.

The authors are well aware that the rather simple approach
taken here is only the first step towards a realistic description,
especially if one plans to analyze metal abundances or tries to
use metal lines as indicators of stellar parameters (e.g., silicon
for the temperature calibration of B-supergiants). Although the
incorporation of the considered elements is easy to manage due
to our data-driven input, the correct calculation of the ionization
equilibria (especially of trace ions) requires one to account for
the EUV line-blocking/-blanketing (cf. Sect. 1) and, if present,
the soft X-ray/EUV radiation field (MacFarlane et al. 1993,
Pauldrach et al. 1994, MacFarlane et al. 1994) arising from
the cooling zones of shocks (Hillier et al. 1993, Feldmeier et
al. 1996) generated by line-driven instabilities (Owocki et al.
1988, Feldmeier 1995) and the merging of consecutive shocks
(also Feldmeier et al. 1996).

Since particularly the incorporation of an exact treatment
of line-blocking is much too time-consuming for the concept
outlined here, we will have to rely on approximate methods for
calculating the required background opacities, e.g. in the spirit
outlined by Schmutz (1991). Progress with respect to this task
is under way in our group.

Finally, one of our ultimate goals is the NLTE abundance
determination of iron group elements from optical lines in ex-
tremely luminous A-type supergiants, related to our objective of
calibrating and using the wind-momentum luminosity relation
in distant galaxies (cf. Sect. 1). Due to the enormous number
of lines to be considered, the exact calculation of all transitions
might turn out as prohibitive if a fast solution is aimed at, al-
though Hillier (1996) has made significant progress into this
direction. For our purposes, we have to develop reliable crite-
ria which will allow for a seperation of lines into those to be
treated in the CMF and those which can be approximated by the
Sobolev transfer, without affecting the overall accuracy. This
work has also been started.
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Appendix A: atomic data

In this section, we describe our atomic models for hydrogen and
helium and the data used for calculating the Stark-broadening
in the formal integrals.

Our hydrogen model consists of 10 NLTE levels, defined
by their principal quantum number. Since we are not including
magnetic fields in our calculations, no splitting of the l values
is required.

Radiative ionization cross-sections are calculated using the
hydrogenic expression, which is proportional to ν−3. The ap-
propriate Gaunt factors are taken from Gingerich (1964). For
the collisional ionizations, a generic form is adopted (Mihalas
1978, p. 133), where the factor Γ is fitted in powers of temper-
ature T (all levels but n = 2) or logT (n = 2 level). Free-free
opacity is calculated using a hydrogenic form (Mihalas 1978)
with Gaunt factors from Karzas & Latter (1961).

Our implementation of the treatment of lines requires only
the oscillator strength as input for radiative processes; they are
taken from Wiese et al. (1966). For collisional processes, we
use the formula of Burke et al. (1967), scaled to the Sampson
& Golden (1971) results.

The ionized helium model includes 14 levels, all of which
are treated in full NLTE (with only one quantum number, n, to
describe each level, and all possible transitions among them).
Radiative bound-free and free-free cross-sections are calculated
using the same formulae as for hydrogen, with the obvious
changes. Collisional bound-free probabilities use the same two
expressions as for hydrogen, where the four highest levels are
treated in the manner described by Seaton (1962).

The oscillator strengths for radiative bound-bound transi-
tions are also taken from Wiese et al. (1966). Collisional bound-
bound cross-sections are those proposed by Hinnov (1966),
scaled to fit the results from Sampson and Golden (1971), as
in the hydrogen case.

The much more complicated model of neutral helium con-
sists of 27 levels, 14 for the singlet and 13 for the triplet con-
figuration, all of which are treated in NLTE. For n ≤ 4, all
possible L values are considered, while for 5 ≤ n ≤ 8 we take
two compressed levels per n, one for the singlets and the other
for triplets, packing the different L states into one.

The number of possible transitions and formulae used is
also increased compared to hydrogenic ions. Dielectronic re-
combination is not included at present; however, this should be
an only minor contribution since such a process becomes domi-
nant for HeI only at around 106 K (Burgess 1964). In any case,
high temperatures are reached only in the deepest layers of our
models, where the electron density is large enough to produce
collisional ionization before the stabilizing transition can take
place (Burgess and Summers 1969).

Allowed (radiative and collisional) and forbidden (only col-
lisional) HeI transitions are considered and treated, up to a total
number of around 250. For the different formulae employed,
we refer the reader to the paper by Butler & Giddings (1985),
where they describe the major features of DETAIL and all the
cross-sections implemented in it.

We now turn to the data used for calculating the Stark-
broadening of hydrogen and helium. For neutral hydrogen, Vi-
dal, Cooper & Smith (1970, 1971, 1973) have developed an uni-
fied theory which has proven to be highly accurate3. Schöning &
Butler (1989a, 1989b) have extended this theory to Heii lines.
Both groups have published tables of the corresponding line
profiles under conditions of astrophysical interest. When the
line we are considering is in the tables, we use their data; oth-
erwise, we apply the theory of Griem (1960) as used by Auer
& Mihalas (1972) with the improvements due to Simon (1979)
to obtain Stark profiles for HeII lines. For neutral helium, we
use tables computed with the theory of Barnard et al. (1969) for
the lines at 4026 and 4388 Å, and that of Barnard et al. (1974)
for those at 4922 and 4471 Å. For other Hei lines and in those
cases where the tables for the upper four lines do not extend far
enough in electron density, we use the “isolated line” approach
described by Griem (1974).

Appendix B: the temperature stratification: NLTE Hopf
function

The most tedious (and time-consuming) work in the construc-
tion of stellar atmospheres is the establishment of the temper-
ature stratification from a rigorous treatment of radiative equi-
librium. Considering the rather large number of present uncer-
tainties, which at present influence the resulting structures (cf.
Sect. 3.1), one may debate the extent to which this procedure
is useful if we consider the expanding atmospheres of massive
stars. Since it is of great importance, however, that the resulting
atmospheres and line profiles are at least internally consistent
– e.g, our results should reproduce the plane-parallel ones in
cases of negligible winds – we have developed an approximate
treatment of the problem which yields both the required con-
sistency and costs almost no time and effort. This procedure
consists of two steps, namely to adapt the results of available
plane-parallel NLTE models (this section) and to relate them to
the present situation of (spherically) atmospheres with a differ-
ent density stratification (Appendix C).

The first step is based on a suggestion by R.-P. Kudritzki and
exploits the fact that the decisive control parameter of the tem-
perature run is the Rosseland opacity (and not, e.g., the column
density). Thus, and at first neglecting the influence of spheric-
ity, two models with different density structures should yield
an analogous degree of flux conservation when both apply the
same functional dependence T (τR). From this philosophy, it is
straightforward to develop an adequate procedure. We take the
output from a converged plane-parallel NLTE model available to
our group –preferentially with the same elements as considered
in the model to be constructed – and relate their apparent T (τR)
stratification via the well-known formula for the grey case, i.e.,
we introduce a “NLTE Hopf function” qN(τR) (Eq. 7). In this
way, we account for NLTE effects leading to deviations from

3 In former theories, a different treatment was done for the line center,
the transition zone, and the wings of the profile; unified, in this case,
refers to a single treatment for the whole profile.
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Fig. 25. NLTE Hopf function from plane-parallel NLTE H/He models
OP2 (upper curves) and AP7 (lower curves, for parameters see Table 1).
Dotted: approximation of Eq. B1 with parameters from Table A1. For
convenience, both lower curves are shifted by -0.2.

the grey case. Strictly speaking, this approach will only then
result in the same degree of flux conservation if the τR-scale
of the model to be constructed is also calculated on the basis
of NLTE-opacities. However, due to the nature of Rosseland
opacities which give the highest weight to the smallest opac-
ities (which are then close to the pure Thomson background),
the differences between τR(LTE) and τR(NLTE) are only small.
Thus, significant differences of both scales, which would require
an additional iteration cycle (not presently implemented in our
code), are only to be expected if the ionization equilibrium of
the dominant ions is drastically shifted due to NLTE effects.

Finally, and in order to obtain a practicable tool for estab-
lishing the new temperature structure, the NLTE Hopf function
derived from the model output is parameterized in a way consis-
tent with the (two-point) functional behaviour of the grey Hopf
function (e.g., Mihalas 1978, p. 69), namely

qN(τR) ≈ q∞ + (q0 − q∞) exp(−γτR), (B1)

where q0, q∞ and γ are fit parameters to the run of qN(τR).
These parameters are chosen in such a way that the fitted qN

stratification in the decisive part of the τR-scale – from τR ≈ 3
outwards to the temperature minimum (in the typical NLTE case
at τR ≈ 0.01) – is the best compromise with the actual run. This
approach implicitly assumes that T (τR) ≈ T (q0) = Tmin for
τR < τ0, if the temperature minimum is located at τ0 (cf. the
discussion in Sect. 3.1). Fig. 25 and 26 give some examples of
the precision obtained, and Table 2 presents the parameters of
the NLTE Hopf function for a number of models discussed in
this paper.

Appendix C: the temperature stratification: inclusion of
sphericity effects

The solution of the spherical grey problem has been exten-
sively discussed by Hummer & Rybicki (1971 and references

Fig. 26. Temperature stratification of plane-parallel NLTE H/He mod-
els OP2 (upper curves) and AP7 (lower curves). Dotted: Temperature
structure from approximate NLTE Hopf function as in Fig. 25. For
convenience, both lower curves are shifted by -0.5.

Table 2. NLTE Hopf function parameterized as in Eq. B1 for a number
of plane-parallel NLTE H/He models, all with Y = NHe/NH = 0.1.

Teff log g q∞ q0 γ

50000 4.0 0.48 0.38 1.30
40000 4.0 0.82 0.48 1.63
37500 4.0 0.82 0.44 2.78
27500 3.0 1.05 0.33 0.73

2.75 1.05 0.33 0.55
25000 3.0 1.00 0.30 0.80

2.75 1.00 0.30 0.60
22500 3.0 0.85 0.28 0.70

2.75 0.85 0.28 0.65
9500 1.5 0.70 0.42 3.00

1.25 0.67 0.41 3.00
0.9 0.52 0.37 3.00

8500 1.25 0.85 0.44 3.00
1.0 0.80 0.44 3.00

therein). However, instead of using their final (numerical) re-
sults, we require an approximate procedure which will allow us
to generalize the approach of Appendix B for spherical geome-
tries. In particular, we seek the appropriate transformation of
the NLTE Hopf function derived from plane-parallel models to
retain the flux-conserving properties (under NLTE conditions)
of the scheme.

In spherical atmospheres, the asymptotic behaviour of the
grey mean intensity is well known:

J ∼ Ho

(
R∗
r

)2
(1 + τR) (τR → 0)

J ∼ 3Hoτ
′
R + C (τR →∞).

(C1)

Ho is the photospheric Eddington flux, τ ′R is defined in Eq. 9
andC is an integration constant depending on the chosen bound-
ary condition. Assuming now a power law stratification for the



508 A.E. Santolaya-Rey et al.: NLTE-models for the analysis of blue stars with winds

Rosseland opacity χR ∼ r−n, the ratio of τ ′R and τR is simply
given by

τ ′R
τR

=
n − 1
n + 1

(R∗
r

)2
. (C2)

In the outer atmospheres of the OBA-stars under consideration,
Thomson-scattering dominates, so that with n ≈ 2 we can write

τR ≈ 3τ ′R
(R∗
r

)2
(τR → 0) (C3)

and thus, from Eq. C1

J ∼ Ho

(R2
∗

r2
+ 3τ ′R

)
(τR → 0). (C4)

In the interior part of the atmosphere, we choose the integration
constant in such a way that we can unify both regimes

J ∼ Ho3τ ′R + C → Ho

((R∗
r

)2
+ 3τ ′R

)
(τ ′R →∞), (C5)

and obtain (up to now from the LTE condition J = B)

T 4(r) = T 4
eff

3
4

(R2
∗

3r2
+ τ ′R

)
. (C6)

For power law opacities, this equation is equivalent to

T 4(r) = T 4
eff

3
4
τ ′R
τR

( n + 1
3(n− 1)

+ τR

)
. (C7)

Note that Eq. C7 agrees with the “conventional” spherical grey
temperature law (Larson 1969), but has been derived here
in a somewhat different spirit. This expression is now (al-
most) consistent with the analogous plane-parallel one. In this
limit, τ ′R = τR and the offset in τR-scale relates well to the
corresponding one in the Eddington-approximation, namely
(n + 1)/(3(n − 1)) = 1/2 for n = 2 and = 5/9 for n = 4,
compared to the plane-parallel value of 2/3. Thus, we demand
that the NLTE Hopf function derived from plane-parallel models
(see above) shall correspond to this quantity and finally have

T 4(r) = T 4
eff

3
4
τ ′R
τR

(
qN(τR) + τR

)
= T 4

eff
3
4

(
q′N(τ ′R) + τ ′R

)
(C8)

where the spherical analog of the NLTE Hopf function has been
defined by

q′N(τ ′R) :=
τ ′R
τR
qN(τR). (C9)

Appendix D: calculation of net continuum rates in the ALI
formalism

In this appendix, we describe how we include the ionization/
recombination integrals into the rate equations. As pointed out
in Sect. 2.3, it is especially this formulation where our approach
differs mostly from other codes, except perhaps ISA (de Koter
et al. 1993), which applies a similar philosophy. Since in our

opinion the formulation of the net continuum rates is the very
heart of any NLTE code and decisively controls the stability
and convergence speed, we will give here our solution to the
problem in some detail.

To begin with, the net continuum rate between transition
k → l is defined as

A = nkRkl − nlRlk (D1)

with lower occupation number nl, upper occupation number nk
(in the continuum with respect to nl), recombination rate nkRkl

and ionization rate nlRlk. With ionization and recombination
rates written explicitly, we obtain

A = 4π nk

(
nl
nk

)∗ ∫
αlk(ν)
hν

(
2hν3

c2
+ Jν

)
e−hν/kT dν

− 4π nl

∫
αlk(ν)
hν

Jνdν. (D2)

The integration is understood to be performed always between
threshold frequency and – formally – infinity. Rearranging with
respect to the mean continuum intensity Jν , we have

A = 4π nk

(
nl
nk

)∗ ∫
αlk(ν)
hν

2hν3

c2
e−hν/kT dν

+ 4π
∫

αlk(ν)
hν

[
nk

(
nl
nk

)∗
e−hν/kT − nl

]
Jνdν, (D3)

where an asterisk denotes the usual LTE ratio (given by the Saha-
Boltzmann factor). Before we can further proceed, we have to
establish the relation between mean intensity and source func-
tion with regard to the ALI-formalism.

The complete continuum source function can be written as:

Sν =
ην
χν

=
ηt + σeJν
χt + σe

=: Sq
ν + THν · Jν (D4)

where the superscript “t” denotes the thermal part of emissiv-
ity and opacity, σe is the Thomson opacity and Sq the “quasi-
thermal” (because of the Thomson contribution to the opacity)
source function. Note that we have omitted the frequential de-
pendence of ηt and χt to avoid an accumulation of indices.

These thermal quantities include the contribution from all
transitions involved, so that with

ηt =
∑
i

ηt
i; χt =

∑
i

χt
i

βi =
χt
i

χt + σe

St
i =

ηt
i

χt
i

=
2hν3

c2

1
nl
nk

(
nk
nl

)∗
ehν/kT − 1

(D5)

the quasi-thermal source function can be expressed as

Sq =

∑
i η

t
i

χt + σe
=
∑
i

ηt
i

χt
i

χt
i

(χt + σe)
=
∑
i

βiS
t
i, (D6)
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and with Eq. (D4) the ALI formalism reads (e.g., Werner &
Husfeld 1985)

J (n) = Λ∗Sq(n) + Λ∗TH (n) · J (n)

+ ΛS(n−1) − Λ∗Sq(n−1) − Λ∗TH (n−1) · J (n−1). (D7)

The indices n and (n − 1) account for the iteration step in
which the corresponding quantities have been calculated, Λ is
the usual Lambda-Operator acting onSν and Λ∗ the appropriate
ALO. By assuming the Thomson coefficient, TH , to remain
constant between two consecutive iterations, this equation can
be put in a more compact form,

J (n) =
Λ∗(Sq(n) − Sq(n−1))

1− Λ∗TH
+ J (n−1). (D8)

The result of this different formulation is a considerable
acceleration of the convergence rate in cases of an optically
thick scattering continuum (e.g., for frequencies far away from
the edges), since the amplification “matrix” (Olson et al. 1986)
obtains large values as Λ∗TH → 1.

Introducing this equation forJ in Eq. (D3), we can in princi-
ple calculate the corresponding terms in the rate equations. The
problem that arises now is the well known non-linearity related
with this procedure: the current source function, Sq(n), depends
on the actual populations, which are still unknown; when the
dependence is explicitly written, the resulting expression to be
inserted in A is non-linear. To avoid the problem of solving a set
of N (number of levels) coupled non-linear equations, it is cus-
tomary to manipulate the equations in order to retain linearity,
typically by using some non-linear terms from the previous iter-
ation. That is what Rybicki (1971) called preconditioning, and
some authors (e.g., Herrero 1987, Voels et al. 1989, Rybicki &
Hummer 1991) apply this idea in their codes. Preconditioning,
in principle, decreases the power of the ALI cycle, as not all the
information from the current source function, S(n), is used, but
the gain in computational time is large enough to prefer it. Other
methods to solve this problem are the complete linearization,
developed by Auer & Mihalas (1969), which is restricted to a
rather limited number of levels, and the formulation by Paul-
drach & Herrero (1988), which uses the results from the two
previous iterations. (As an alternative to ALI and complete lin-
earization, we mention here also the newly rediscovered method
of successive overrelaxation (SOR, cf. Trujillo Bueno & Fabiani
Bendicho 1995)).

We will follow the philosophy of preconditioning, however
in our own formulation. The non-linearity appears because of
the term Sq(n) − Sq(n−1) in Eq. (D8), which is removed by an
approximate treatment of Eq. (D6): for each transition l → k,
we suppose

Sq =
∑
i

βiS
t
i ' βlkS

t
lk, (D9)

which is equivalent to assuming that the transition under con-
sideration is the dominant one, but weighting it by its real con-
tribution to the total (quasi-thermal) source function.

Are we allowed to make such an approximation? Certainly,
since βlk < 1 by definition and thus Λ∗βlk < Λ∗, i.e., our
modified ALO still underestimates the real Λ operator, which
ensures convergence (cf. Puls & Herrero 1988).

The second assumption of our approach is to require the
ratio (which is much better than any absolute value)βlk between
transition opacity and total opacity to remain constant between
iteration (n−1) and n, so that Eq. (D8) finally obtains the form

J (n) =
Λ∗β(n−1)

lk (St(n)
lk − St(n−1)

lk )
1− Λ∗TH

+ J (n−1). (D10)

Thus, we can remove the non-linear part in the second term of
equation (D3) via the definition of the thermal source function
and achieve linearity in both nl and nk:

[
nk

(
nl
nk

)∗
e−hν/kT − nl

]
J (n) =

=
[
nk

(
nl
nk

)∗
e−hν/kT − nl

] [
J (n−1) − Λ∗β(n−1)

lk St(n−1)
lk

1− Λ∗TH

]

− nk

(
nl
nk

)∗
2hν3

c2 e−hν/kT
Λ∗β(n−1)

lk

1− Λ∗TH
(D11)

In order to find a compact expression for A, we use the definition
of χt

lk for calculating βlk,

χt
lk = αlk(ν)

[
nl − nk

(
nl
nk

)∗
e−hν/kT

]
(D12)

and finally obtain the net continuum rate

A = 4π nk

(
nl
nk

)∗
(I1 − I2)− 4π nl(I3 − I4) (D13)

with integrals I1 to I4

I1 =
∫

αlk(ν)
hν

e−hν/kT
[

2hν3

c2
+ J (n−1)

ν

]
dν

I2 =
∫

αlk(ν)
hν

2hν3

c2
e−hν/kT

Λ∗αlk(ν)
(1− Λ∗TH)

n(n−1)
l

(χt + σe)
dν

I3 =
∫

αlk(ν)
hν

J (n−1)
ν dν

I4 =
∫

αlk(ν)
hν

2hν3

c2
e−hν/kT

Λ∗αlk(ν)
(1− Λ∗TH)

n(n−1)
k

(
nl
nk

)∗
(χt + σe)

dν.

In passing, we note that Eq. D13 results in the usual Lambda
iteration for Λ∗ = 0, whereas for βlk = 1 (only one transition
present) and TH = 0 (no electron scattering) this equation is
consistent with the usual ALI formulation for local ALOs.
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Appendix E: separation of line and continuum transfer in
the formal integral

In the following section, we develop a formalism to separate the
line and continuum transfer in the formal integral. This approach
can save a large amount of computational time in those cases,
where

i. the integral is solved on a radial micro-grid (cf. Sect. 2.4.1).
ii. the resonance zones have an only small spatial extent com-

pared to the rest of the ray.
iii. the continuum source function is approximately frequency-

independent over the line profile under consideration.

The maximum gain in computational speed by using the fol-
lowing approach is thus obtained if we consider pure Doppler
profiles and a “simple” continuum source function. However,
even for Stark-broadening a substantial acceleration is achieved,
since this effect is present only in the lower atmosphere. In order
to apply this approach universally, we have included the case
of a frequency dependent source function, e.g., non-coherent
e−−scattering. If this option is chosen (which is necessary only
for winds with a large Ṁ or a significat photon injection rate
from below the electron-scattering sphere), then the temporal
advantage of the procedure is lost.

Under the assumption that the frequential variation of the
continuum opacity over the line profile can be neglected, the
transfer equation along a certain ray (usual p − z−geometry
provided) can be written as

dI(z, x)
dz

= χl(z, x0) (Sl(z)− I(z, x)) +

+ χc(z) (Sc(z, x0)− I(z, x)) , (E1)

where x and x0 are the observer’s and CMF-frequency in units
of the wind’s maximum Doppler shift

x =
ν − νl

νl

c

v∞

x0 =
νCMF − νl

νl

c

v∞
= x − µ

v(z)
v∞

(E2)

(νl is the transition frequency). We now define a transformed
intensity via

Ĩ(z, x) = I(z, x)Uc(z)−
∫ z

zmin

Uc(z′)Sc(z′, x0)χc(z′)dz′, (E3)

with

Uc(z) = exp

[∫ z

zmin

χc(z′)dz′
]
. (E4)

Defining also a transformed source function, S̃l,

S̃l(z, x) = Uc(z)Sl(z)−
∫ z

zmin

Uc(z′)Sc(z′, x0)χc(z′)dz′, (E5)

it is straightforward to derive a transformed equation of transfer

dĨ(z, x)
dz

= χl(z, x0)
(
S̃l(z, x)− Ĩ(z, x)

)
. (E6)

The reader should note that this equation corresponds to the
transfer equation for the pure line case, i.e., it has to be solved
only inside the resonance zone(s). (One zone per ray and line
component, unless the components overlap within their intrin-
sic profiles). In between, the transformed intensity remains con-
stant. Up to this point, we have strictly followed the procedure
introduced by Hummer & Rybicki (1985) in order to derive a
“Sobolev approximation with continuum”. From now on, our
approach is different, since we consider the “exact” case. With
the obvious boundary conditions

Uc(zmin) = 1

Ĩ(zmin, x) = I(zmin, x) (E7)

the transformed transfer equation has the well-known solution

Ĩ(zmax, x) = I(zmin, x)e−τl(zmin,x) + (E8)

+
∫ zmax

zmin

S̃l(z
′, x)e−τl(z

′,x)χl(z
′, x0)dz′

with an optical depth τl

τl(z, x) =
∫ zmax

z

χl(z
′, x0)dz′. (E9)

In principle, we can calculate Ĩ at every position along the ray,
but in the following we are only interested in its value at zmax

to obtain emergent intensities and fluxes. Transforming back by
means of Eq. (E3), the emergent intensity reads

I(zmax, x) =
1

Uc(zmax)
× (E10)

×
[
Ĩ(zmax, x) +

∫ zmax

zmin

Uc(z′)Sc(z′, x0)χc(z′)dz′
]
.

Using the continuum optical depth along the ray,

τc(z) =
∫ zmax

z

χc(z′)dz′, (E11)

we can write I(zmax) in a more compact way,

I(zmax, x) = Ĩ(zmax, x)e−τ
max
c + Fs(0, x), (E12)

where

τmax
c = τc(zmin)

Fs(τc, x) =
∫ τmax

c

τc

Sc(τ ′c , x0)e−τ
′
c dτ ′c .
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Note that τc and Fs consist of pure continuum quantities and
have to be calculated only once per line profile (unless Sc be-
comes frequency dependent, see above). With these notations,
the transformed line source function becomes

S̃l(z, x) = eτ
max
c
(
Sl(z)e−τc(z) − Fs[τc(z), x]

)
, (E13)

so that the integral for the emergent intensity is finally given by

I(zmax, x) = I(zmin, x)e−(τmax
l +τmax

c ) + Fs(0, x) + (E14)

+
∫ zmax

zmin

(
Sl(z

′)e−τc(z′) − Fs[τc(z′), x]
)
e−τl(z

′,x)χl(z
′, x0)dz′.

The advantages of this formula compared to the conven-
tional solution are obvious. After having established our micro-
grid (typcially with five points per thermal Doppler velocity, see
Sect. 2.4.1) we can calculate all continuum quantities (τc(z) and
Fs(τc(z)) in advance and find, per ray and frequency, the bound-
aries of the resonance zone(s). This can be done without much
computational effort, if we organize the profile calculation in
such a way that the outer loop comprises the angular integra-
tion (p−rays) and the inner loop is the frequential one. In this
case then and when we proceed from one observer’s frequency
to the next, the boundaries of the resonance zones are shifted by
only a few number of depth points which can be found almost
instantaneously due to our micro-grid concept.

Inside the resonance zones, we calculate the modified line
source function (bracketed term above) and calculate the inte-
gral. Outside the resonance zones, nothing has to be done. Hav-
ing integrated throughout a given ray, the emergent intensity is
obtained by adding the first two terms in Eq. E14.

Hence, in the most favourable case of pure Doppler pro-
files, we have to perform typically 30 integration steps per ray,
frequency and component. (assuming a width of ±5 thermal
Doppler widths).
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