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Abstract. We study the effect of increasing the masses of the
outer planets to speed up the numerical integration of orbital
evolutions of fictitious comets subject to planetary close en-
counters. We use Öpik’s theory to model encounters on crossing
orbits, and find that the distribution of energy perturbations, and
especially of its tails, is changed significantly depending on the
range of initial conditions considered and on the enhancement
factor used for the planetary masses. We then analyze nearly
tangent, low-velocity encounters making use of a simple argu-
ment based on the opening of Hill’s surfaces of zero velocity,
again finding that the energy perturbation distribution depends
on the mass enhancement factor. To check these results we com-
pare the outcomes of integrations done with masses enhanced
by the factors 10 and 40 to those of integrations done with the
real masses, coming once more to the same conclusion; we put
these findings in perspective, discussing the more general is-
sue of the dynamical paths followed by potential short-period
comets in the region of the outer planets. Results concerning the
orbital evolution of comets obtained by integrations performed
with enhanced masses should be considered with caution.
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1. Introduction

The source regions so far envisaged for the two main compo-
nents of the population of short-period comets, i.e. the Halley-
type (HT) ones, with orbital periods P such that 20 < P <
200 yr, and with inclinations of any value, and those belonging
to the Jupiter-family (JF), with P < 20 yr, and with small in-
clinations, are the spherically symmetrical, centrally condensed
inner core of the Oort cloud (Bailey and Stagg 1990), and the
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so-called Edgeworth-Kuiper belt, a disc-like reservoir immedi-
ately outside the orbit of Neptune (Fernández 1980; Duncan et
al. 1988; Quinn et al. 1990). In order to discriminate between
them it is crucial to understand how multi-stage capture, i.e.
the process by which potential short-period comets are passed
from the dynamical control of one planet to that of the next inner
one, takes place; these transfers are essentially due to close en-
counters with the controlling planet, unless the approaches are
prevented by resonances or by peculiar orbital arrangements.

While to derive the HT comets from an isotropic source like
the inner Oort cloud does not appear to pose major problems,
it seems not as easy to get from that source the low inclina-
tion JF comets; the mechanism advocated for this task is the
rapidly diminishing capture rate for larger inclinations (Bailey
and Stagg 1990). However, this is contradicted by Quinn et
al. (1990), who computed the orbital evolutions of many thou-
sand comets perturbed by the four giant planets, starting from
orbits having semimajor axis a = 50 AU, perihelion distance
q uniformly distributed between 20 and 30 AU, and cosine of
inclination i uniformly distributed either between 0.95 and 1,
to simulate a disc-like source, or between 0 and 1, to simu-
late a prograde isotropic source (orbits with −1 < cos i < 0
were excluded for computational efficiency), and ending the in-
tegrations when orbits typical of the short-period comets were
reached. Starting from the flattened source led to much better
agreement with the observed population of short-period comets
than starting from the isotropic one, since in this last case too
many HT comets were produced and the distribution of inclina-
tions of JF comets was not reproduced well enough (note that
the very important issue of the observational completeness of
the two periodic comets populations was essentially not touched
in that work).

To reduce the computer time required by their very long
integrations, Quinn et al. (1990) used a solar system composed
of only the four outer giant planets on circular orbits, multiplying
the planetary masses by a factor µ = 10; according to them,
this would speed up significantly the orbital evolution, that they
considered to be modelizable like a diffusion process. Quinn
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et al. discussed various ways in which the orbital evolution in
their model may have been altered by the mass enhancement
compared to the case with the real masses, concluding that the
main features of the problem should not have been affected, and
supporting this conclusion also with the similarity of the results
obtained using µ = 40.

Bailey and Stagg (1990) questioned the possibility of treat-
ing the multi-stage capture of comets as a diffusion process,
since many comets undergo very close encounters with the plan-
ets that drastically change their orbital elements, and that are
better modelled as a stochastic process. In this case, the end
states of the evolution are essentially determined by the asym-
metries of the tails of the distribution of energy perturbations,
discovered by Everhart (1969; Oikawa and Everhart 1979), and
changing the masses of the planets can alter, as Bailey and Stagg
(1990) argue, these distributions.

In this paper we show that in fact the distribution of en-
ergy perturbations at close planetary encounters, a key feature
of any model attempting to reconstruct the orbital evolution of
comets, is significantly altered if the masses of the perturbing
planets are increased beyond a certain value. We do this in sev-
eral ways: using Öpik’s theory of close encounters, in the case
of initially crossing orbits (Sect. 2), by comparing the pertur-
bation distributions obtained from numerical integrations using
enhanced masses to those obtained with the unenhanced masses
(Sect. 3), and basing on results coming from studies of the evo-
lution of some peculiar short-period comets, interpreted in the
framework of the restricted circular three-body problem, in the
case of non-crossing orbits (Sect. 4). Finally, in Sect. 5 these
results are discussed in the context of the multi-stage capture of
short-period comets, and in Sect. 6 the conclusions are given.

Let us remark here that Öpik’s theory of close encounters
has been used in this paper not only, as is customarily done,
as a fast tool to compute close encounter outcomes, but above
all as a geometric tool to explore the qualitative features of
close encounter dynamics. With the increasing performances of
modern computers, that make the computation of a large number
of close encounters a less and less prohibitive task than it used to
be, it seems to us possible that the importance of Öpik’s theory as
a computational tool will decrease compared to its importance
for understanding close encounters outcomes.

2. Encounters on crossing orbits

We describe here the basic features of Öpik’s treatment of close
encounters on crossing orbits, following Carusi et al. (1990) and
Valsecchi (1992a); a complete description of the theory can be
found in Öpik (1976).

We start by assuming that the planet in question moves on a
circular orbit of radius ap = 1, and take the plane of its motion
as reference plane; the massless particle moves on an orbit, with
orbital elements a, e, i, ω and Ω, that crosses that of the planet
in one of the nodes. The direction from the Sun to the ascending
node of the particle’s orbit is the reference direction, so that
Ω = 0, and both G, the constant of gravity, and M , the mass of
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Fig. 1. The geometry of velocity deflection in the rotating frame centred
on the planet; for the definitions of the various vectors and angles, see
the text.

the Sun, are set equal to 1; in these units the circular heliocentric
velocity at a = 1 is vcirc = 1.

In a frame centred on the planet, with the z-axis perpendicu-
lar to the orbital plane of the planet, the y-axis in the direction of
the planet’s velocity and the x-axis pointing in the direction op-
posite to that of the Sun (see Fig. 1), the unperturbed encounter
velocity U of the particle, i.e. the velocity it would have when
encountering the planet if the acceleration due to the mass of
the latter were discarded, has components:

Ux = U sin θ sin φ (1)

Uy = U cos θ (2)

Uz = U sin θ cosφ (3)

where θ is the angle betweenU and the y-axis, andφ is the angle
between the y-z plane and that containingU and the y-axis (for
encounters at the ascending node −π/2 < φ < π/2).

In Fig. 1 the velocity vectors are U = CP and U ′ = CQ; θ
and θ′ are the angles between the y-axis and, respectively,U and
U ′; φ and φ′ are those between the y-z plane and, respectively,
U and U ′; ψ is the angle between the planes U -y and U -U ′,
and finally γ is the angle between U and U ′.

The modulus of U is:

U =
√

3− T (4)

where T is the well known Tisserand parameter:

T =
1
a

+ 2
√
a(1− e2) cos i. (5)

Note that, computing the encounter velocity in this way,
we are implicitly putting the heliocentric velocity of the planet
vp = 1, instead of vp =

√
1 + m, where m is the mass of the

planet.
The expressions of the components of U in terms of a, e

and i are:

Ux = ±
√

2− 1
a
− a(1− e2) (6)

Uy =
√
a(1− e2) cos i− 1 (7)

Uz = ±
√
a(1− e2) sin i (8)
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and those of a, e and i in terms of the components of U are:

a =
1

1− U 2 − 2Uy
(9)

e =
√
U 4 + 4U 2

y + U 2
x(1− U 2 − 2Uy) + 4U 2Uy (10)

i = arctan
Uz

1 + Uy
; (11)

in Eq. (6) the minus sign must be used for pre-perihelion en-
counters, and in Eq. (8) for encounters at the descending node.

These relations are valid for any orbit intersecting that of the
planet, and thus, in particular, both for the pre-encounter and for
the post-encounter orbit. In Öpik’s theory the latter is obtained
from the former in this way: the particle is assumed to move
unperturbedly along the pre-encounter heliocentric orbit until
it reaches the minimum distance from the planet b (the impact
parameter); at that point U is rotated, by the deflection angle
γ, into U ′, and the post-encounter orbital parameters a′, e′ and
i′ can then be computed, taking into account that |U ′| = |U |, at
the level of the approximations used.

Thus b is the distance between the planet and the intersection
of U with the plane perpendicular to U containing the planet
(the b-plane); γ, besides being the angle between U and U ′,
is also the angle between the asymptotes of the planetocentric
hyperbola on which the particle would move if the presence of
the Sun were ignored, and its magnitude is given by:

tan
γ

2
=

m

bU 2
(12)

where m is the mass of the planet. In terms of d, the minimum
encounter distance along the perturbed trajectory, we have

sin
γ

2
=

m

m + U 2d
. (13)

After computing γ, we still need to determine the direction
of U ′; since gravity is attractive, the direction of rotation is
opposite, in the b-plane, to that joining the planet to the point
of intersection between U and the b-plane itself. If ψ is, as said
before, the angle between the planes U -y and U -U ′, and χ the
angle between the planes U -y and U ′-y, we can determine θ′

and φ′, the two angles defining the direction of U ′ (note that
χ = φ− φ′), by:

cos θ′ = cos θ cos γ + sin θ sin γ cosψ (14)

tanχ =
sinψ sin γ

cos γ sin θ − sin γ cos θ cosψ
(15)

tan φ′ =
tan φ− tanχ
1 + tan φ tanχ

(16)

thus being able, given the initial orbital elements a, e, i, and the
parameters of the encounter, i.e. b (or d) and ψ, to compute the
final values a′, e′ and i′.

The above formulae can be used to investigate the effects,
on the outcomes of close encounters, of changing the mass of
the perturbing planet; however, before doing this we can make

some geometrical considerations useful to visualize the main
features of the problem.

Let us start from Eq. (12), which gives the deflection angle
γ as a function of m, the mass of the planet, b, the unperturbed
miss distance, and U , the unperturbed planetocentric velocity
of the particle.

The maximum possible deflection allowed by (12) is obvi-
ously γ = 180◦, corresponding to the intuitively simple case in
which the incoming velocity vector is exactly reversed, and this
leads to a final orbit that, if the particle passes close enough to
the planet, is essentially independent of the detailed geometry
of the encounter, and can be easily computed from the formulae
given above. Therefore, as noted by Valsecchi (1992a), we can
associate to every incoming orbit a conjugate orbit, obtained by
reversing the direction of U by 180◦.

Since (2) and (9) imply that:

1
a

= 1− U 2 − 2U cos θ, (17)

and U is constant, then a depends only on cos θ, i.e. on the
projection of U along the direction of the planet’s velocity; the
variation of the specific orbital energy E = −1/a (throughout
this paper, we disregard the factor 1/2 that should be present in
the expression for E) is therefore given by:

∆E =
1
a
− 1
a′

= 2U (cos θ′ − cos θ). (18)

From this relation between a, U and θ follows that, for a given
U , there are a minimum and a maximum possible value of the
post-encounter specific orbital energy

E′
min = U 2 − 1− 2U (19)

E′
max = U 2 − 1 + 2U (20)

that are obtained when, respectively, θ′ = 180◦ and θ′ = 0◦.
An interesting consequence of the geometry just described

is that, unless θ = 0◦ or θ = 180◦, because of (18) the energy
perturbation is larger for some not-so-small values of the impact
parameter b – and suitably chosen ψ – than for infinitesimal b;
this happens because in general the specific orbital energy of the
conjugate orbit is different from eitherE′

min orE′
max, and only

for the two orbits with θ = 0◦ and θ = 180◦, that are conjugate
with each other, the energy difference is the maximum possible
one.

Another consequence of (18), illustrated by Carusi et al.
(1990), is the explanation of the asymmetric tails of cometary
orbital perturbation distributions found by Everhart (1969)
and Oikawa and Everhart (1979): if, for instance, the pre-
encounter orbit has θ < 90◦, then cos θ > 0, and there are
more possible end states of lower orbital energy (those with
−1 < cos θ′ < cos θ) than of higher orbital energy (those with
cos θ < cos θ′ < 1), i.e. the energy perturbation distribution
must exhibit an excess of negative perturbations. The opposite
obviously holds for θ > 90◦, and a perfectly symmetrical en-
ergy perturbation distribution can be expected only if cos θ = 0.
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In general, if the encounter characteristics are such that γ >
60◦, the change of velocity, given by:

|∆U | = |U ′ −U | = 2U sin
γ

2
(21)

becomes larger thanU , with the maximum |∆U | = 2U reached
when γ = 180◦; when this last situation is approached,U ′ tends
towards the velocity vector corresponding to the conjugate or-
bit, and this has consequences on the perturbation distributions.
In terms of the encounter parameters, the condition |∆U | = U ,
beyond which we can expect that the influence of the geom-
etry of rotation of the velocity vector becomes really evident,
implies:

2| sin
γ

2
| =

2 tan γ
2√

1 + tan2 γ
2

=
2m√

b2U 4 + m2
= 1. (22)

However, the knowledge of the initial values of U and a
allows us to say something more on the energy perturbation
distribution; in fact, from (19) and (20) and the knowledge of
the initial θwe can deduce that the positive tail of the energy per-
turbation distribution starts to exhibit a pathological behaviour
(because closer encounters do not lead to larger energy pertur-
bations) when

θ = γ = 2 arctan
m

bU 2
(23)

and that the negative tail does so when

180◦ − θ = γ = 2 arctan
m

bU 2
. (24)

Thus, for the same set of initial conditions, implying the same
distribution of pre-encounter b and U , but different values of
m, we expect the energy perturbation distributions to change
shape at specific values of |∆E|, that depend only on the initial
conditions and not on the planetary mass.

To illustrate in practice this point, we have computed large
numbers of encounters with Neptune using Öpik’s theory; for
each encounter we have fixed the semimajor axis a of the initial
orbit of the comet at 50 AU, and have chosen at random:

– the perihelion distance, so that 20 < q < 30 AU;
– the cosine of inclination, so that 0.95 < cos i < 1;
– the coordinates bξ and bζ in the b-plane (see Appendix A),

so that −0.1 < bξ, bζ < 0.1, in units of the semimajor axis
of Neptune.

This experimental set-up is intended to model à la Öpik, for
unperturbed miss distances up to 3 AU, the starting conditions
of the integrations of a disc-like cometary source done by Quinn
et al. (1990). Actually, the initial orbital distributions change,
after some time, in a way that is not deducible a priori (this is
the very reason for performing numerical integrations!); here
we are just trying to reconstruct the perturbation distributions
at the start of Quinn et al.’s integrations.

The experiment has been performed, with identical initial
conditions, for values of µ of 1, 10 and 40, corresponding to

those used by Duncan et al. (1988) and by Quinn et al. (1990); the
results are summarized in the left box of Fig. 2, which is a log-
log plot of the frequency of perturbationsN versus their absolute
value |∆E|, in units of Neptune’s specific orbital energy, done
separately for positive and negative perturbations. We have also
repeated the computations for initial conditions corresponding
to the isotropic source of Quinn et al. (1990), allowing the cosine
of the inclination to vary between 0 and 1, and the results of this
second set of experiments are given in the right box of Fig. 2.

The fact that our curves exhibit maxima for not-so-small
values of the perturbation is due to the upper limit we imposed
on the miss-distance; above that limit the use of Öpik’s theory,
which assumes a point-like interaction, would be questionable.
Actually, strict compliance with Öpik’s prescriptions for the ra-
dius of applicability of his algorithm would have given a smaller
upper limit, especially for µ = 1; however, the results of the nu-
merical integrations that we describe in the next section show
that our upper limit is apparently still within the range of valid-
ity of Öpik’s theory. In any case, the small distant perturbations,
that if taken into account by the model would shift the maxima
to the left, towards smaller values, are not of interest here, since
the distortion of the distributions for increasing µ appears for
the largest perturbations.

Let us first discuss the distributions for the disc-like source
(left box of Fig. 2). For µ = 1 the positive and negative energy
perturbation distributions are very similar for log |∆E| <∼ −1.5,
with some excess of negative perturbations starting to show up
thereafter, and becoming significant for log |∆E| >∼ −1. This
asymmetry is a natural consequence of the choice of initial con-
ditions, in view of the previous discussion of Eq. (18), since the
energy perturbation distribution is symmetrical only if cos θ = 0.

The latter condition is shown in the left box of Fig. 3, which
is a cos i-q plot, where the continuous line joins the points for
which cos θ = 0, given a = 50 AU. Our initial orbits, like the
starting ones of Quinn et al. (1990), are evenly distributed in
cos i-q, and in the figure those to the upper right of the curve
have cos θ > 0; thus, the sample corresponding to the disc-
like source, that in the figure occupies the region above the
dotted horizontal line at cos i = 0.95, has to show a negative
perturbation excess.

The right box of Fig. 3 illustrates another important differ-
ence between the two samples, i.e. the distribution of Tisserand
parameter T , and hence of encounter velocity U , because of
(4); for the disc-like source we have 2.56 < T < 2.97 and
0.19 < U < 0.66, while for the isotropic source we have
0.60 < T < 2.85 and 0.39 < U < 1.55, i.e. generally faster,
less effective encounters.

Coming back to the perturbation distributions for the disc-
like source, we see that for µ = 10 the negative perturbation
excess is significant already at the immediate right of the max-
ima of the pair of curves, meaning that even for distant encoun-
ters, those with b ≈ 2÷ 3 AU, the perturbation asymmetry is at
work. For µ = 40 the maxima move further to the right, towards
log |∆E| ≈ 0.15; this value is close to the maximum possible
perturbation for our set of initial orbits and so, not surprisingly,
in its vicinity the curves have to bend downwards. Going be-
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Fig. 2. Frequency of energy perturbations vs.
their absolute value for comets interacting
with Neptune, according to Öpik’s theory;
the initial conditions for the left box are the
same as those of disc-like source of Quinn
et al. (1990), and those for the right box are
the same as those of isotropic source of the
same authors. The three pairs of curves in
each box correspond, left to right, to µ = 1,
µ = 10, and µ = 40; the distributions of
positive perturbations are denoted by open
dots, those of negative perturbations by full
dots. The units on the vertical axis are nor-
malized to the total number of encounters
for each value of µ.
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2
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2

Fig. 3. Left: the condition cos θ = 0 in the
cos i-q plane; orbits to the upper right of the
curve have cos θ > 0. The starting orbits
of Quinn et al. (1990) for a disc-like source
are evenly distributed above the horizontal
dotted line corresponding to cos i = 0.95,
whereas those for an isotropic source are
evenly distributed in the entire range shown
in the figure. Right: the conditionsT = 2

√
2,

T = 2.5, T = 2, T = 1.5, T = 1, in the same
plane.

yondµ = 40 we would see an even more pathological behaviour,
with the perturbation distributions being squeezed against the
condition log |∆E| ≈ 0.15. Incidentally, let us note that for
µ >∼ 29, according to Nacozy (1976), the hierarchy of the triple
system Sun-Jupiter-Saturn would be broken in less than a few
thousand years, and Saturn would be ejected from the system,
if the planets were allowed to perturb each other.

The perturbation distributions of the isotropic source, how-
ever, behave in a different way with increasing µ, as shown
in the right box of Fig. 2. Actually, there is no asymmetry for
values of log |∆E| up to about −1; beyond this value, and up
to log |∆E| ≈ 0, negative perturbations dominate, while for
larger values of |∆E| positive perturbations largely outnumber
the negative ones. It is noteworthy that the latter regime, the
one in which positive large energy perturbations are prevalent,
is only recognizable for large µ, since for µ = 1 it would require
extremely close, and thus extremely rare, close encounters.

The key to understand what is going on is given by Eqs. (17),
(19) and (20): since all our orbits have the same a and the same
distribution of q, but different distributions of i, we have that the
isotropic source extends to lower values of T , i.e. larger values
of U , and to smaller values of cos θ (see Eq. 17 and Fig. 3); this
in turn means that, because of Eq. (20), larger and larger positive

∆Emax become accessible, as i increases, whereas the same is
not true for negative ∆Emax, due to the form of Eq. (19).

Fig. 4 illustrates what we have just described; it shows the
condition log |∆Emax| =const. for negative (left box) and pos-
itive energy perturbations (right box). For the disc-like source
(above the dotted line), the maximum negative values of ∆E
are somewhat larger than the maximum positive ones and in
addition, as already seen before, the majority of orbits have
cos θ > 0, so that negative large perturbations are more numer-
ous than positive large ones.

For the isotropic source, negative values of initial cos θ
largely dominate, so that one would expect that the asymme-
try of large perturbations to be in favour of the positive ones;
however, the fact that the values of log |∆Emax| for negative
perturbations level off slightly beyond log |∆E| ≈ 0.14 implies
that deep decelerating encounters in a vast region of the q-i
space all contribute to the perturbation bins approaching this
value, causing the excess of negative perturbations noted be-
fore. Going to larger perturbations, however, the positive tail of
the perturbations “owns the battlefield”, as expected.

We have thus seen that the effect of µ >∼ 10, in the case
of initially crossing orbits, is to alter the distribution of energy
perturbations by significantly varying the proportion of positive
and negative large perturbations with respect to the case of µ =
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Fig. 4. Left: the conditions log |∆Emax| = 0,
log |∆Emax| = 0.06, log |∆Emax| = 0.1,
log |∆Emax| = 0.14, in the cos i-q plane,
for negative energy perturbations.
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log ∆Emax = 0.2, log ∆Emax = 0.35,
log ∆Emax = 0.5, log ∆Emax = 0.65,
log ∆Emax = 0.7, in the same plane, for
positive energy perturbations.

1; to avoid this µ should be kept in the vicinity of 1, but in this
case, of course, the very reason for using µ > 1, i.e. to obtain
a significant speed-up of the numerical integrations, would be
lost.

3. Numerical checks

To verify that the shape of the perturbation distribution does in-
deed change when the planetary masses are enhanced, we have
performed various sets of numerical integrations characterized
by the same initial conditions but different values of µ. The
integrations were done with the same program of Manara and
Valsecchi (1991) – based on the RADAU integrator (Everhart
1985) – but having only Neptune, on a circular orbit, as per-
turber, and using for the fictitious comets the same distribution
of initial conditions of Quinn et al. (1990). Each comet has been
followed for a time span corresponding to one sidereal period
computed from the initial value of a (equal to 50 AU for all of
them), i.e. for about 354 yr. We obtained the ∆E distributions
simply from the difference between the value of E′ = −aN/a′
at the end of the one-revolution integration and the starting one,
E = −aN/50. A total of 100 000 comets was integrated for
each value of µ.

Fig. 5 shows the distributions that we obtained, for µ = 1,
µ = 10 and µ = 40, for both sources, when we limited the
integrations to the cases in which the miss distance b, computed
along the unperturbed orbit, was less than 3 AU, in order to be
able to compare with the results of Öpik’s theory; this procedure
made up for very long computations, since a very large number
of orbits had to be followed unperturbedly in order to extract
the 100 000 necessary to draw each pair of curves.

The overall agreement of Fig. 5 with Fig. 2 is remarkable.
For the disc-like source the squeezing of the distributions, as
µ increases, against the condition log |∆E| ≈ 0.15, as well as
the prevalence of negative large perturbations, are well repro-
duced; the same can be said for the features of the distributions
related to the isotropic source, with the negative perturbations
being more abundant for log |∆E| approaching 0.1 and positive
perturbations largely dominating thereafter, and by much wider
margins for larger µ.

We repeated the same numerical experiments dropping the
condition b ≤ 3 AU, in order to see how much of the alterations
of the distributions for µ > 1 would be still present when the
strong perturbations due to close encounters are “diluted”, as it
happens in reality, by the much more numerous weak, ordinary
perturbations. Fig. 6 shows the distributions that we obtained in
this way.

In this case for both sources the largest values of log |∆E|
obtained with µ = 1 are smaller than the thresholds beyond
which the asymmetries become noticeable. On the other hand,
for µ ≥ 10 a sufficient number of large perturbations is present
in the samples so as to clearly show, for the disc-like source, the
negative large perturbations excess, therefore indicating a qual-
itative difference with the almost-asymmetry-free perturbation
distribution characterizing the µ = 1 case shown in the figure.
For the isotropic source, the positive large perturbation excess
for large µ is reproduced, whereas the negative excess for less
extreme perturbations is recognizable only for µ = 40.

Overall, Fig. 6 confirms the distortions of the distributions
introduced by µ ≥ 10, and shows that they are especially sig-
nificant for the disc-like source, where the squeezing imposed
by the geometrical constraints on the rotation of the planetocen-
tric velocity vector is recognizable even on the relatively small
perturbation samples shown in the figure.

4. Encounters on nearly-tangent orbits

A substantial fraction of planetary encounters undergone by
comets takes place on nearly-tangent orbits. Manara and Valsec-
chi (1991), integrating fictitious objects in low-eccentricity, low-
inclination orbits in the outer planetary region, found about 30%
of the encounters to be of this type. For observed short-period
comets these encounters are also rather frequent, as can be seen
in the catalogues of orbital evolutions of Carusi et al. (1985,
1995) and Belyaev et al. (1986).

As a matter of fact, Öpik’s theory cannot be applied when
the orbits are not crossing, and in this case the encounters must
be treated in the framework of a more-than-two-body-problem.
Nevertheless, many of the short-period comets discovered in the
last few decades have undergone such encounters with Jupiter,
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and their evolutions have been studied numerically in detail,
so that some qualitative understanding of the main features of
these encounters has been obtained.

Good examples of encounters with Jupiter on nearly-tangent
orbits are those of 39P/Oterma, between 1933 and 1941, and
of 82P/Gehrels 3 between 1963 and 1976. In both cases the
initial orbits were well decoupled from that of Jupiter (Carusi
et al. 1985, 1995), since the pre-encounter perihelion distances
were large, q ≈ 5.7 AU, and the inclinations very low, i ≈ 3◦,
so that the Tisserand parameter T (computed with respect to
Jupiter) was greater than 3 and no encounter velocity U could
be computed; the final aphelia were well inside Jupiter’s orbit,
Q ≈ 4.5 AU.

In this type of encounters the comet’s approach is from the
front, if its semimajor axis is greater than that of the planet, or
from behind, in the other case, with the planetocentric velocity
vector respectively nearly anti-parallel (or nearly parallel) to the
direction of motion of the planet; after some time spent in the
vicinity of the planet, during which a temporary satellite capture
is possible, the comet leaves that region either with essentially
the same incoming velocity or with the planetocentric velocity
rotated by about 180◦. In the first case the final semimajor axis
is close to the initial one, and in the second it has jumped to
one lower than that of the planet, if the initial one was larger, or
vice-versa.

This last case resembles the one, discussed in Sect. 2, of the
180◦ deflection of the velocity vector into the conjugate orbit;
however, to the deflection into the conjugate orbit can corre-
spond any value of the energy perturbation, depending on the
initial θ, and in particular even a null energy perturbation, when
θ = 90◦, while in the present case the perturbation, when the ve-
locity vector is reversed, is about twice the difference between
the specific orbital energy of the comet and that of the planet.
This is shown by Fig. 8 of Carusi et al. (1981), where is given
the distribution of −1/a perturbations for 79 fictitious objects,
plus the real 39P/Oterma, for the 1933-1941 nearly-tangent en-
counter mentioned before: the histogram has two peaks, at 0
and at −0.1 AU−1, with nothing in between.

We can get an estimate of how the perturbation distributions
in these encounters scale with µ by considering the size and
shape of Hill’s surfaces of zero velocity in the restricted circular
three-body problem. When these surfaces are nearly closed, for
T >∼ 3, in order to encounter the planet the comet has to pass
close to one of the Lagrangian points L1 and L2, depending
on whether it comes from an exterior or an interior orbit. The
approach to the Lagrangian point is slow, and becomes even
slower when the comet reaches the immediate vicinity of the
point. We then compute the orbital elements of the comet at the
Lagrangian point, with zero velocity relative to it: in fact, since
most of the orbital perturbation takes place when the comet is
at a distance from the planet smaller than that of the Lagrangian
points, we can assume these elements as typical of the pre-
encounter and post-encounter orbits.

The distance h of L1 and L2 from the planet, in units of its
semimajor axis, is:

h ' 3

√
m

3
(25)

where m, as before, is the planet’s mass in units of that of the
Sun. The comet, when at rest in L1 would then be at the perihe-
lion of a heliocentric orbit with q = a(1− e) = 1 + h, and when
at rest in L2 would be at the aphelion of a heliocentric orbit with
Q = a(1 + e) = 1− h; in both cases i = 0.

To obtain a and e of these orbits we compute the comet’s
heliocentric velocity v:

v2 = (1 + h)2 =
2

1 + h
− 1
a

(26)

for the comet in L1, and

v2 = (1− h)2 =
2

1− h
− 1
a

(27)

for the comet in L2 (as before we disregard the difference from
unity of the planet’s velocity); keeping only the first power of h
we get

a ' 1 + h
1− 3h

(28)

for the comet in L1, and

a ' 1− h

1 + 3h
(29)

for that in L2, with

e ' 3h (30)

in both cases. For Jupiter, that means e ' 0.2, and a ' 7 AU,
for a comet coming from, or ending in, an exterior orbit, and a '
4 AU in the other case. These estimates are in good agreement,
given the crudeness of the argument, with the pre-encounter
and post-encounter orbits of 39P/Oterma (a = 6.92 AU, e =
0.16 and a = 3.98 AU, e = 0.15) and of 82P/Gehrels 3 (a =
6.94 AU, e = 0.18 and a = 4.05 AU, e = 0.15), indicating
that the pre- and post-encounter sizes and shapes of the orbits
depend essentially on the size of h and, therefore, on the mass
of the planet. This agrees with the results found in an analysis
of the motion of comets undergoing encounters of this type by
Tancredi et al. (1990), who proceeded along a similar way of
reasoning, taking also into account the eccentricity of Jupiter’s
orbit.

We then compute the specific orbital energy difference be-
tween the two Lagrangian points

EL1 − EL2 '
1 + 3h
1− h

− 1− 3h
1 + h

' 8h (31)

in this way obtaining the distance between the two peaks in the
perturbation distribution. For Jupiter 8h ' 0.5, in units of the
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Fig. 5. Frequency of energy pertur-
bations vs. their absolute value for
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from numerical integrations; in this
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isotropic source; the distributions
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Fig. 6. Same as Fig. 5, but dropping
the condition b ≤ 3 AU.

planet’s specific orbital energy; expressed in AU−1, this value
agrees well with the result by Carusi et al. (1981).

Thus, also in the case of nearly-tangent encounters, which is
not treatable with Öpik’s theory, the enhancement of the masses
of the perturbing planets affects the energy perturbation distri-
butions, but in a way which is different from what we obtained
in the case of crossing orbits. The altered distribution remains
bimodal, like that found by Carusi et al. (1981), with one peak
centred on 0, but the distance between the peaks varies with 3

√
µ.

5. Dynamical paths in the outer planetary region

To illustrate the consequences of the results of the last section,
let us consider Fig. 7, which is anE-e plot of the solar system. In
the left box of this figure the four pairs of straight lines starting
at e = 0 refer, top to bottom, to Neptune, Uranus, Saturn and
Jupiter respectively, and represent orbits for which either q = ap
(upper line of each pair, ap is the planet’s semimajor axis) or
Q = ap (lower line); orbits that are within the pair of lines of a
planet can cross the orbit of the latter. Also shown in the left box
of the figure, as small dots, are the orbits, computed for µ = 1,
corresponding to the small body at rest in the Lagrangian points
L1 and L2, whose semimajor axes and eccentricities have been

given in Sect. 4. In the central and right boxes of the figure there
are the same lines and dots, but with the positions of the latter
computed for µ = 10 and µ = 40 respectively.

Comets close to these orbits can jump from inside to out-
side, or vice-versa, of the orbit of the corresponding planet,
and the dots shown in Fig. 7 can be therefore considered to
be the milestones of the cometary dynamical path, consisting
of nearly-tangent orbits, long-known from studies of the past
evolutions of observed short-period comets. As the central and
right boxes of Fig. 7 show, these milestones are shifted towards
larger eccentricities for µ = 10 and µ = 40, and those relative
to Jupiter and Saturn are in regions in which crossing encoun-
ters with adjacent planets are possible, something not allowed
for µ = 1. In this way new dynamical paths are open, like for
example transitions from a Uranus-crossing to a Saturn-tangent
orbit, and only the detailed examination of intermediate stages
of numerical integrations can tell us what is their actual impact
on the overall evolution.

In order to discuss more in general the evolution of cometary
orbits in the outer planetary region let us now examine, in Fig. 8,
various views of a relevant parameter space first introduced by
Kresák (1972, 1982).
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Table 1. Orbital elements, specific orbital energies and Tisserand parameters with respect to each outer planet of the known Centaurs.

Asteroid i e a −aJ/a TJ −aS/a TS −aU/a TU −aN/a TN

(2060) Chiron 1977 UB 6.9 0.383 13.699 −0.38 3.36 −0.70 2.89 −1.41 2.95 −2.21 3.45
(5145) Pholus 1992 AD 24.7 0.572 20.295 −0.26 3.20 −0.47 2.64 −0.95 2.48 −1.49 2.71

1993 HA2 15.6 0.522 24.735 −0.21 3.79 −0.39 3.03 −0.78 2.64 −1.22 2.71
1994 TA 5.4 0.306 16.818 −0.31 3.72 −0.57 3.08 −1.15 2.92 −1.80 3.21
1995 DW2 4.1 0.246 25.030 −0.21 4.45 −0.38 3.51 −0.77 2.97 −1.21 2.97
1995 GO 17.6 0.622 18.126 −0.29 3.07 −0.53 2.58 −1.06 2.51 −1.67 2.83
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Fig. 7.E-e plot of the solar system.
In each of the three boxes of the
figure the tangency conditions for
each of the four outer planets are
shown and the dots denote orbits
corresponding to the Lagrangian
points L1 and L2 of each planet; the
left plot is for µ = 1, the central one
for µ = 10 and that on the right for
µ = 40.

In the top plot of the figure the dots denote all the peri-
odic comets contained in Marsden and Williams’ Catalogue of
Cometary orbits (1992), as well as all the long-period comets,
taken from the same catalogue, for which original orbits have
been computed, while the open circles denote all the Centaurs
and trans-neptunian objects currently known, taken from the
listings available at the Minor Planet Center World Wide Web
server; they are plotted in a−aJ/a vs.−TJ diagram, where aJ
is the semimajor axis of Jupiter’s orbit and TJ is the Tisserand
parameter evaluated with respect to this planet:

T =
aJ
a

+ 2

√
a(1− e2)

aJ
cos i. (32)

The three other plots, containing the same objects, have as axes
−aS/a vs. −TS , −aU/a vs. −TU −aN/a vs. −TN , i.e. the
specific orbital energy and the Tisserand parameter computed
with respect to Saturn, Uranus and Neptune.

In each plot, vertical lines are drawn for values of the Tis-
serand parameter equal to 3, 2

√
2 and 2. In general, for Tp >∼ 3

(where p can be J , S, U or N ) comets have dynamical charac-
teristics like those of 39P/Oterma (very slow encounters, with
the possibility of perihelion-aphelion exchanges and temporary
satellite captures); for 3 >∼ Tp >∼ 2

√
2 direct ejection into hy-

perbolic orbit due to an encounter with planet p is impossible,
while for lower values of Tp these ejections become possible.
Finally, for Tp < 2 the encounter velocity becomes larger than
the orbital velocity of the planet; in the case of Jupiter, TJ < 2
is becoming widely used to separate Halley-type comets from

Jupiter-family ones, following the suggestion by Carusi et al.
(1987; see also Kresák 1994, Levison and Duncan 1994, and
Valsecchi 1992b).

The curve on the left of each plot corresponds, for i = 0,
to circular orbits; it delimits a forbidden region, since at its left
e2 < 0. Along the curve, arrows denoted by letters point to the
positions of the planets whose name begin with the correspond-
ing letters; the planet whose semimajor axis is used as unit of
length is located at−ap/a = −1 and Tp = 3. The curve tangent
to the circular limit at the planet’s position corresponds to or-
bits tangent to that of the planet in their perihelion (for a > ap)
or aphelion (for a < ap); this curve and the circular limit are
inclination dependent.

The 45◦-inclined line from −ap/a = −1, Tp = 3 to
−ap/a = 0, Tp = 2 corresponds to cos θ = 0; as we have
seen before, above it the distribution of energy perturbations
presents an excess of negative large perturbations, while below
it the opposite is true. Finally, the other 45◦-inclined line, the
one from −ap/a = −2.5, Tp = −2.5 to −ap/a = 0, Tp = 0
corresponds to orbits for which the z-component of the angular
momentum is null, i.e.:√

a

ap
(1− e2) cos i = 0; (33)

for these orbits, fall into the Sun at an extreme of their ω-cycle
is possible (Bailey et al. 1992).

Despite this long list of lines and curves, these plots make
the task of understanding the evolution of cometary orbits some-
what easier; in fact, due to the approximate conservation of the
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Fig. 8. Comets, Centaurs and
trans-neptunian objects in a (top to
bottom) −aJ/a vs. −TJ , −aS/a
vs.−TS ,−aU/a vs.−TU −aN/a
vs.−TN diagram; for explanations,
see the text.

Tisserand parameter relative to a certain planet at close encoun-
ters with that same planet, the evolution mostly takes place along
straight lines.

If a comet suffers a large perturbation in energy due to, say,
an encounter with Saturn, it is displaced along a vertical line
(corresponding to its value of TS) in the second plot from the
top, the one relative to Saturn. In the other three plots, how-
ever, its displacement will be along a straight line parallel to
the tangent to the circular limit at Saturn’s position (this can be
shown starting from the definition of Tp, see Appendix B); sim-
ilar statements hold for encounters with the other major planets.

In this way one can relatively easily visualize the path along
which objects starting from the Edgeworth-Kuiper belt can
reach the region of Jupiter-family comets. To this purpose, let us
examine in more detail, with the help of Fig. 9, the way in which
former Edgeworth-Kuiper belt members (Trans-Neptunian Ob-
jects, TNOs) can pass from the dynamical control of Neptune to
that of Uranus. This figure contains an enlargement of the third
box from top of Fig. 8, the one centred on Uranus, and in it are
reported not only the various curves referring to Uranus, but also

those referring to Neptune, in order to illustrate the dynamical
paths and the geometrical constraints on the orbits.

The currently known TNOs are characterized by 2.89 ≤
TN ≤ 3.14; those that reach a dynamical situation allowing
close encounters with Neptune would do so with 2.9 <∼ TN <∼
3.0, thus meaning that encounters with Neptune will be unable
to eject them on hyperbolic orbits. In Fig. 9 we can see that
the TNOs that are on more eccentric orbits, the ones in the
2/3 mean motion resonance with Neptune, are characterized
by the lowest values of TN ; their orbits cross already the orbit
of Neptune, and would have close encounters with the planet
if they lost the phase protection given by the resonance. The
non-resonant TNOs, on the other hand, would more probably
become able to encounter Neptune by reaching orbits nearly
tangent to that of the planet, with TN >∼ 3. Either way, once
their dynamics is controlled by encounters with Neptune all
these former TNOs would tend to move between the two lines
TN = 3 andTN = 2

√
2; in a first phase they would have, relative

to Neptune, cos θ > 0 (see Fig. 9, where the TNOs are above
the line cos θ = 0 relative to that planet) so that the perturbation
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Fig. 9. An enlargement of the third box on the top of Fig. 8, the one
relative to Uranus; for explanations, see the text.

distribution would have a negative excess, favouring a decrease
of the orbital energy and thus a shrinking of the orbit. After
some time the condition cos θ = 0 will be crossed, the sign
of the asymmetry of the perturbation distribution will change
and the further progress toward Uranus-controlled orbits will
be slower, with many objects brought back at higher semimajor
axes by very close encounters. Nevertheless, some objects will
reach Uranus-tangent or Uranus-crossing orbits after a suitable
sequence of decelerating perturbations.

It is then probable that those former TNOs that will be
“passed on” to Uranus will have 2

√
2 <∼ TU <∼ 3.0; to see

this, let us consider that the TN =const. lines in Fig. 9 cross the
TU =const. ones at a certain angle, and that very close encoun-
ters with Neptune on crossing orbits in a vast majority of cases
would displace the bodies inwards only as far as the aphelion
of the final orbit is not smaller than aN , a condition shown in
the figure. It is easy to see that only for the extreme negative
perturbations, and for TN tending towards 2

√
2, the ex-TNO

can end up in an orbit with TU < 2
√

2.

Once in the “corridor” 2
√

2 <∼ TU <∼ 3.0, similar consid-
erations would apply to the further evolution towards Saturn-
controlled orbits, and again the relatively high value of the Tis-
serand parameter with respect to the controlling planet would
prevent hyperbolic ejections, thus making for an efficient trans-
port process. Note that hyperbolic ejections can take place also
for objects that at a certain point of their orbital evolution are
in the “corridor” relative to planet p, but only if either their Tp
becomes less than 2

√
2 (see later for a discussion of the causes

that can lead to this), or if they are ejected by another planet,
say p′, with respect to which Tp′ < 2

√
2.

Considering the currently known Centaurs (see Table 1 for
their orbital elements as well as for their specific orbital energies
and Tisserand parameters with respect to the four outer plan-
ets), we have that three of them, namely Chiron, 1994 TA and

1995 DW2, seem to fit the above scenario; on the other hand,
the other three have much lower values of TU .

This may have several reasons. First, we have neglected in
this discussion the effect of planetary eccentricities on the con-
servation of the Tisserand parameter; according to Öpik (1976),
the effect of repeated encounters with a planet on an eccentric
orbit is to secularly decrease T . Second, and probably more
important, the effect of close encounters with another planet
can lead, as discussed before, to important variations of the Tis-
serand parameter with respect to the planet under consideration;
to this purpose it is interesting to note that, of the three Cen-
taurs with TU < 2

√
2, 1993 HA2 can interact with Uranus and

Neptune, while Pholus and 1995 GO can interact with Saturn,
Uranus and Neptune, thus increasing the chances for TU to de-
crease over time.

It is then clear that an artificial increase of the energy per-
turbations in computations using larger planetary masses would
enhance the effect just described and therefore, similarly to what
discussed at the end of the previous section, it would lead to sig-
nificantly different evolutionary routes; in particular, due to the
lower values of T relative to the various controlling planets,
these routes would allow a higher rate of losses to hyperbolic
orbits.

6. Conclusions

In the previous sections we have shown that the shape of the
energy perturbations distributions at close encounters depends
on µ, the planetary mass enhancement factor used to speed-up
numerical integrations of orbital evolutions.

In the case of crossing encounters we have used Öpik’s the-
ory; the validity of this theory in the present context is shown
by the result of Carusi et al. (1990), who were able to repro-
duce the original result of Everhart (1969), whose integrations
of cometary encounters with Jupiter showed the existence of
asymmetric tails in perturbation distributions, and by the nu-
merical checks done for this paper, in which we have computed
the distribution of energy perturbations for the same initial con-
ditions of the disc-like source of Quinn et al. (1990) using three
different values of mass enhancement, namely µ = 1, µ = 10
and µ = 40. These results refer to a set of initial orbits like to
that used by Quinn et al. (1990), and so they do not necessarily
apply to what happens to the orbits in the course of the nu-
merical integrations. It is likely, however, that alterations in the
first phases of the evolution introduced by using µ > 1 would
propagate to the successive phases.

The geometry involved in Öpik’s theory is useful also to
understand the greater efficiency of a disc-like over an isotropic
source, which is a very important point in the Edgeworth-
Kuiper-belt vs. inner-Oort-cloud debate. Referring to the left
box of Fig. 3, we can see that the range of inclinations used by
Quinn et al. (1990) for the computations starting from a pro-
grade isotropic source spans the whole figure, and so most of
the starting orbits have cos θ < 0, and thus positive perturbation
excess, helping to explain the lower efficiency of this source.
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No equivalent of Öpik’s theory exists for the case of en-
counters on nearly-tangent orbits; we have presented an ar-
gument, based on the opening of the zero-velocity curves of
the restricted, circular three-body problem, implying that the
perturbation distribution is bimodal, with two well separated
peaks – as shown by the numerical integrations by Carusi et al.
(1981) – one of which is at about |∆E| = 0, with the other at
|∆E| = 8h(µ), thus showing that also in this case the perturba-
tion distribution depends on µ.

We have seen that the orbital evolution in the outer planetary
region can be conveniently discussed in an orbital energy vs.
Tisserand parameter diagram; one can expect that the multistage
capture, in the case of the real masses of the outer planets, should
take place along a low inclination path rather close to the circular
limit in the diagram, and this implies that along this path the
values of Tp relative to the planet controlling the motion should
not become too much smaller than 3. For µ > 1, on the other
hand, the path should be displaced away from the circular limit,
at lower values of Tp with respect to the controlling planets;
if the values of Tp become at a certain stage less than 2

√
2,

hyperbolic ejections would become possible, thus decreasing
the efficiency of the transfer process.

Finally, the orbital energy vs. Tisserand parameter diagrams
also illustrate how little is the contribution that comets coming
from the Oort cloud, directly perturbed by Jupiter into more
tightly bound, observable orbits, can give to the Jupiter family:
most of the observed long period comets have TJ < 2, and the
perturbations of all the four giant planets simply do not work in
the right direction to bring them into orbits of short period and
TJ > 2 (Kresák 1982).
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Appendix A: setting up encounters in the b-plane

Given a set of initial orbital elements for bodies encountering
a planet, i.e. given triples of a, e, i or equivalent elements, the
next problem is that of appropriately choosing sets of values
of b and ψ. If the set of initial orbits is composed of highly
inclined deep crossers, then one may choose at random either
simply b2 between 0 and b2

max, and ψ between 0 and 2π, or
bξ and bζ (two orthogonal coordinates in the b-plane, see later
for details) between −bmax and bmax, discarding the cases in
which b2

ξ + b2
ζ > b2

max; the latter method is the one we used,
since it is easily adapted to the constraints described below. On
the other hand, if among the initial orbits there are some that
fulfill one or more of the following conditions

sin i < bmax (A1)

1− bmax < q (A2)

Q < 1 + bmax (A3)

then one must consider the limitations to the coordinates in the
b-plane coming from orbital geometry, since some combinations
of b and ψ are not allowed.

In order to compute the appropriate boundaries, we note
that (A1), (A2) and (A3) imply, respectively,

|bz| < sin i (A4)

−bmax < bx (A5)

bx < bmax (A6)

where bx, and bz are the first and third component of b in the
planetocentric rotating frame. Note that (A5) and (A6) can be
combined into

−bmax < bx < bmax (A7)

allowing encounters on orbits with 1 < q < 1 + bmax or 1 −
bmax < Q < 1, something that can be done provided that, in
such cases, care is taken in order to choose b and ψ only in the
ranges allowed by orbital geometry, as we do.

In general, given the coordinates ξ, η, ζ of a point in the
frame whose η-axis is directed along U and whose ηζ-plane
contains the direction of motion of the planet (this is the frame
whose ξζ-plane is the b-plane; note that Bottke et al. 1996 have
a slightly different, although essentially equivalent, definition),
its coordinates x, y, z in the planetocentric rotating frame are
given by

x = ξ cosφ + (η sin θ + ζ cos θ) sin φ

y = η cos θ − ζ sin θ

z = −ξ sin φ + (η sin θ + ζ cos θ) cosφ;

in particular, the coordinates of a point belonging to the b-plane,
where bη = 0 by definition, are given by (Greenberg et al. 1988)

bx = bξ cosφ + bζ cos θ sin φ (A8)

by = −bζ sin θ (A9)

bz = −bξ sin φ + bζ cos θ cosφ. (A10)

These are then the steps to set up the Monte Carlo exper-
iments described in the text in which encounters within bmax

are computed using Öpik’s theory:

1. a set of initial a, e, i is chosen from the given distribution;
2. a pair bξ and bζ is chosen at random between −bmax and
bmax;

3. if b =
√
b2
ξ + b2

ζ < bmax the pair is retained;

4. xmin, xmax, zmin, zmax are determined from

xmin = −min(bmax, 1− q)

xmax = min(bmax, Q− 1)

zmin = −min(bmax, sin i)

zmax = min(bmax, sin i);

5. bx and bz are determined from (A8) and (A10);
6. if xmin < bx < xmax and zmin < bz < zmax the pair is

retained;
7. the value of ψ = arcsin (bξ/b) = arccos (−bζ/b) is com-

puted.
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Appendix B: displacements in the energy vs. Tisserand
parameter diagrams

Consider a comet with orbital elements a0, e0 and i0; in Fig. 8
it is located at

x0 = −ap
a0
− 2

√
a0(1− e2

0)
ap

cos i0 (B1)

y0 = −ap
a0

(B2)

in the diagram relative to planet p.
If the comet is perturbed by a close encounter with planet p′

into a new orbit with elements a, e and i, we want to compute
the new coordinates x and y in the diagram relative to planet p.
Obviously, the new coordinate y will be

y = −ap
a

; (B3)

to compute x, we have to take into account the conservation
of the Tisserand parameter relative to planet p′, so that we have
(note that the following considerations are valid only if the orbits
of the two planets p and p′ are circular and coplanar)

ap′

a
+
√

a

ap′
Θ =

ap′

a0
+
√

a0

ap′
Θ0; (B4)

where we have put

Θ = 2
√

1− e2 cos i (B5)

Θ0 = 2
√

1− e2
0 cos i0. (B6)

We thus get

Θ =

√
a3
p′

a0
√
a
−
√
a3
p′

√
a3

+
√
a0√
a

Θ0, (B7)

so that we can compute x

x = −ap
a
−
√

a

ap
Θ

= −ap
a
− ap′

a0
+
ap′

a
−
√
a0√
ap

Θ0

= y(1− ap′

ap
)−

ap′
√
ap +
√
a3

0Θ0
√
apa0

. (B8)

We therefore have that the close encounters with planet p′

cause displacements, in the −ap/a vs. −Tp diagram, along a
straight line of slope ap/(ap − ap′ ); since a particle with the
same orbital parameters as planet p′, i.e. a = ap′ , e = i = 0,
would have with respect to this planet Tp′ = 3, and would be
located in the −ap/a vs. −Tp diagram on the circular limit,
it then follows that the straight line Tp′ = 3 is tangent to the
circular limit (for i = 0) at the location of planet p′, and all the
other straight lines Tp′ =const. are parallel to it.
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Öpik E.J. 1976, Interplanetary Encounters, Elsevier, New York
Quinn T., Tremaine S., Duncan M. 1990, ApJ, 355, 667
Tancredi G., Lindgren M., Rickman H. 1990, A&A, 239, 375
Valsecchi G.B. 1992a, In Periodic Comets, eds. J.A. Fernández, H.

Rickman, Universidad de la República, Montevideo, p. 81
Valsecchi G.B. 1992b, In Periodic Comets (First round table: Dynamics

of periodic comets), eds. J.A. Fernández, H. Rickman, Universidad
de la República, Montevideo, pp. 98-100

This article was processed by the author using Springer-Verlag LaTEX
A&A style file L-AA version 3.


