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Abstract. We study the surface-wave dynamo proposed by
Parker (1993) as a model for the solar dynamo, by solving equa-
tions for the mean magnetic field B0, as well as for the mean
’magnetic energy tensor’ T = 〈BB〉/8π. This tensor provides
information about the energy balance, rms field strengths and
correlation coefficients between field components. The main
goal of this paper is to check whether the equations forB0 and
T are compatible, i.e. whether both have ”reasonable” solutions
for a set of ”reasonable” parameters. We apply the following
constraints: B0 has a period of 22 years and, taking into ac-
count the effect of period variations, a decay time of 10 dynamo
periods, and T is marginally stable. We find that under these
constraints, the equations for B0 and T are compatible only if,
apart from turbulent transport out of the dynamo region, an ad-
ditional energy sink is introduced. If this extra term is omitted,
then marginal stability of T requires a turbulent diffusion in the
convection zone of the order β2 >∼ 3 × 1014 cm2 s−1, whereas
the conditions onB0 require β2 ≈ 1012 cm2 s−1. Furthermore,
the rms surface field strength, the maximum rms field strength
and the magnetic energy flux through the upper surface of the
convection zone cannot simultaneously assume solar values. We
explore the possibility that the extra energy sink is provided by
resistive dissipation, hitherto not accounted for in the equation
for T, by considering various cases. We demonstrate that with
a heuristically modified equation for T, the inconsistencies can
be removed. Our results suggest that resistive dissipation is the
dominant sink of magnetic energy, and that resistive heating
may amount to several percent of the solar luminosity.
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1. Introduction

In recent years observational evidence and various calculations
have resulted in a coherent set of requirements for solar-dynamo
models. From measurements of the emerging flux in active re-
gions it is inferred that the total subsurface flux is of the order
1024 Mx (Galloway & Weiss 1981; Golub et al. 1981). This

amount of flux cannot be maintained in the convection zone,
because buoyancy forces would lead to rapid expulsion on a
timescale of months, much shorter than the timescale for the
amplification of toroidal field by a radial velocity shear.

Van Geffen & Hoyng (1993) and Van Geffen (1993a, 1993b)
have confirmed that a dynamo operating within the convection
zone cannot be responsible for the solar cycle. These authors
found that the field strength at the base of the convection zone
is only of order Brms ≈ 200 G and that the mean field B0

decays on a timescale of about 2 weeks due to phase mixing
(this concept is explained below). A convection zone dynamo
thus produces only a weak, rapidly fluctuating aperiodic field.

It is currently believed that the magnetic flux is concentrated
in the stably stratified overshoot layer between the radiative core
and the convection zone (Zwaan 1978, Spiegel & Weiss 1980).
In this layer, which has a thickness of about 2×109 cm, the field
must be of order 2× 104 G to explain the measured flux. Since
not all the flux in the overshoot layer may emerge at the surface,
and the field may have a filamentary structure, the actual field
strength may be of order 105 G. It has been shown that such
strong fields can indeed be stored in the overshoot layer (e.g.
van Ballegooijen 1982, Moreno-Insertis et al. 1992). A value
of 105 G is also in agreement with the field strength required
for rising flux tubes to resist the Coriolis force sufficiently so
that they emerge at the solar surface within the observed ac-
tivity belts and having the correct tilt with respect to the equa-
tor (Choudhuri 1989, D’Silva & Choudhuri 1993, Caligari et
al. 1995).

The evolution of the mean magnetic field B0 is described
by the following equation:

∂tB0 = ∇× {u0 ×B0 + αB0 − β∇×B0}. (1)

Hereu0 = Ωr sin θeφ is the large scale velocity field. Helioseis-
mological data indicate that the Sun rotates differentially and
that the radial velocity shear is concentrated near the base of
the convection zone. Hence strong azimuthal fields in the over-
shoot layer can be produced by differential rotation. The sign of
∂Ω/∂r is positive at low latitudes and negative at high latitudes
(Goode 1995). If u1 denotes the turbulent velocity field and if
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Fig. 1. Geometry of Parker’s interface wave dynamo. In our calculations
we adopted d1 = 2×109 cm, d2 = 2×1010 cm and a = 4×10−6 s−1.

τc is the typical correlation time of the turbulence, we may write
α and the turbulent diffusivity β as

α = −1
3
τc〈u1 · (∇× u1)〉, β =

1
3
τc〈u2

1〉. (2)

Thus α is proportional to the mean helicity of the turbulent
velocity field. This quantity is nonzero in a rotating turbulent
medium such as the solar convection zone. Since, in the North-
ern hemisphere, α is believed to be positive in the bulk of the
convection zone and to change its sign near the base, α∂Ω/∂r
probably has the right sign in the lower part of the convection
zone for dynamo waves to travel towards the equator at low lati-
tudes. Due to the high field strength in the overshoot layer, well
above the equipartition value,α and β are assumed to be greatly
reduced compared to their values in the convection zone.

It was suggested by Parker (1993) that such an overshoot-
layer dynamo can be modelled through spatial separation of the
radial velocity shear and the α-effect. The model proposed by
Parker employs a flat geometry, and, in our case, has local valid-
ity in the Northern hemisphere of the Sun (Fig. 1). It describes
a convection zone (region 2) in which α /= 0 and the velocity
shear is zero, below which there is a thin overshoot layer (region
1). Here α = 0, and the turbulent diffusivity is reduced, i.e.

fβ =
β1

β2
� 1. (3)

One has to allow for some turbulent diffusion in the overshoot
layer, because dynamo action requires transport between the
two regions. Differential rotation is schematically described by

u0(x) = u0(x)ey, ∂xu0 =

{
a (−d1 < x < 0)

0 (0 < x < d2).
(4)

Cartesian coordinates are employed, with x denoting the radial,
y the azimuthal and z the latitudinal coordinate. The interface
between the overshoot layer and the convection zone is at x = 0;
the equator is at z = 0. We assume translational symmetry along
the y-axis and consider only axisymmetric solutions (∂/∂y =
0). The geometry of the model differs from Parker’s original
model in that boundaries are specified at x = −d1 and x = d2.
The introduction of boundaries is necessary for computing the
energy balance of the dynamo, in particular the energy loss into

empty space (Sect. 4.2). For the sake of consistency, we solve
the equation for B0 using the same geometry. The effect of
the boundaries onB0 is expected to be small, since the dynamo
operates at the interface between overshoot layer and convection
zone.

Our approach to mean-field dynamo theory is statistical and
is based on the ’finite-energy method’ (Hoyng 1987, Van Gef-
fen & Hoyng 1993, Van Geffen 1993a), which can be briefly
described as follows. If the parameters α and β are taken as
non-fluctuating constants, as is usually done, Eq. (1) applies
strictly only for a mean field that is defined as an ensemble av-
erage. Every ensemble member represents a dynamo that is on
average marginally stable with, in the solar case, a mean period
Pdyn = 22 years and, on top of that, period fluctuations of the
order ∆Pdyn/Pdyn ≈ 0.1. If we ignore for the moment latitude
dependence, amplitude modulations and other details of the so-
lar cycle, we may schematically represent the magnetic field of
one ensemble member asB ∝ cos(ωt+ψ0), whereω = 2π/Pdyn

is the dynamo frequency, subject to variations (δω/ω ≈ 0.1),
and ψ0 is an initial phase. The frequency variations give rise
to phase mixing between the ensemble members, so that the
resulting mean field is slightly subcritical, decaying at a rate
|γ| ≈ 0.1/Pdyn. The decay time τdec = 1/|γ| is interpreted as
the coherence time of the actual magnetic field.

The result of phase mixing is different, however, for the
magnetic energy density |B|2/8π, since it is positive defi-
nite. For each ensemble member we may approximate B2 ∝
cos2(ωt+ψ0) = 1

2 + 1
2 cos 2(ωt+ψ0). Thus the magnetic energy

of a periodic dynamo has a constant term, and an oscillating
term. Applying the ensemble average to B2, we infer that the
fundamental mode of 〈B2〉 should be (roughly) constant and
non-periodic. The periodic overtones, which result from the os-
cillating part of B2, should decay due to phase mixing.

To summarise, the finite-energy method provides us with the
following constraints: the mean magnetic energy is marginally
stable and non-oscillatory and, in the solar case, the mean mag-
netic field has a period of 22 years and a decay time of about 10
dynamo periods.

The main goal of the present paper is to verify whether these
constraints can be met. The motivation for using Parker’s model
came from the intuitive feeling that here the decay time of the
mean field may be of the right order, much longer than that of a
convection-zone dynamo (Van Geffen & Hoyng 1993 and Van
Geffen 1993a), because the overshoot layer, where strong fields
are produced, has a lower level of turbulence, hence maybe
also less variability and less phase mixing. Van Geffen (1993b)
found that the mean-field decay time did not increase signif-
icantly when a lower turbulent diffusivity is adopted near the
base of the convection zone. However, since his calculations
were carried out on a finite grid and his spatial resolution in
the overshoot layer was insufficient, he was not able to treat
large discontinuities. The simplified geometry employed in the
present paper allows us to obtain analytical expressions for the
mean field and the mean magnetic energy on both sides of the
interface between the overshoot layer and the convection zone.
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Since no closed equation exists for 〈B2〉, it is necessary to
consider an equation for

T = 〈BB〉/8π, (5)

henceforth referred to as the mean magnetic energy tensor. Our
main conclusion is that, also for Parker’s surface dynamo wave,
the constraints posed by the finite-energy method cannot be met
for reasonable parameters, unless the equation for T, as intro-
duced by Knobloch (1978) and Hoyng (1987), is modified by
including an additional energy sink. Such a modification is in-
troduced and motivated in Sect. 2. In Sect. 3 we turn to the mean
magnetic field. In Sect. 4 we present the equations, boundary
conditions and main assumptions for T. In the following three
sections we treat three cases, each based on a different assump-
tion for the resistive dissipation. Sect. 8 contains a discussion
of our results as well as our conclusions.

2. Mean-field dynamo theory and resistive dissipation

The evolution of the magnetic field is described by the induction
equation,

∂tB = ∇× {u×B − η∇×B}. (6)

In the solar convection zone, the velocity field u has a large-
scale componentu0, which is more or less constant in time, and
a rapidly varying turbulent component u1. This suggests that in
the kinematic limit Eq. (6) can be treated as a linear stochas-
tic differential equation with a multiplicative driving term u1.
Under certain assumptions, the theory of stochastic differen-
tial equations (see for instance Van Kampen 1992) provides an
equation for B0 = 〈B〉. Here it suffice to mention that for a
stochastic differential equation of the form

∂tA = [L0 + L1]A, (7)

where L0 is a time-independent operator and L1 is a stochastic
operator with 〈L1〉 = 0, one obtains

∂t〈A〉 =
[
L0 +

∫ ∞

0
ds 〈L1(t)L1(t− s)〉] 〈A〉. (8)

This is a general result, valid if the correlation time τc of
the stochastic operator is sufficiently short (τc|L1| � 1 and
τc|L0| � 1). In the case of the induction equation (6), the term
containing u1 is identified as L1 and the other terms (including
the dissipative term) form L0. Hence the former condition is
equivalent to τcu1/l � 1, which is questionable for the Sun,
but we ignore this well-known problem of mean-field electrody-
namics for the moment. A derivation of the mean-field equation
(1) based on this method is presented e.g. by Hoyng (1992). In
principle the same procedure can be applied to the magnetic
energy tensor BB/8π, which obeys the following equation,
obtained from Eq. (6) by adding Bi∂tBj to Bj∂tBi:

(∂t + u · ∇)BiBj =
∑
k

{
(∇kui)BkBj + (∇kuj)BkBi

}
+ η∇2BiBj − 2η

∑
k

(∇kBi)(∇kBj). (9)

Unfortunately, this equation cannot be treated in the same man-
ner as the induction equation itself. In the present form it is
not a closed equation for BB, i.e. it cannot be written as
∂tBB = LBB for some differential operator L. The closure
problem is caused by the term −2η

∑
k(∇kBi)(∇kBj). One

manner in which this difficulty has been resolved is to ignore
resistive dissipation altogether, assuming that it plays no role in
the energy balance of the dynamo. In that case, a closed equa-
tion is obtained for the magnetic energy tensor, and the same
method, used in deriving the mean-field equation can be applied
(Knobloch 1978, Hoyng 1987).

However, solutions of this approximative equation turn out
to be problematic. The core of the problem is that the only
energy sink available to the dynamo is the energy flux through
the upper surface of the convection zone. Marginal stability
of the energy can then be realised only by making the energy
transport through the dynamo by means of turbulent diffusion
sufficiently effective, which in practice means that turbulent
diffusivity has to be unphysically large. We demonstrate this in
Sect. 5.

Resistive dissipation provides an additional energy sink, and
operates through a cascade from large scales to small scales,
where the field is dissipated. However, the closure problem in-
dicates that, unlike for the mean-field equation, where it suffices
to define a total diffusivity β + η, no simple recipe is available
for modifying the mean-energy equation to take into account
resistive dissipation. This fundamental difference between B0

and T originates in the different treatment of small-scale fields.
The former gives a description of only the largest scales in the
dynamo, since the rapidly varying small-scale fields cancel out
in the averaging procedure. The latter contains all length scales,
as can be seen by writing B = B0 + δB, which provides

〈B2〉 = B2
0 + 〈(δB)2〉. (10)

Hence resistive dissipation does not affect B0, but can be very
important for T.

In this paper an attempt is made to treat the effect of re-
sistivity on T in a heuristic and approximative way. For tur-
bulent fluids with high Reynolds numbers the energy distribu-
tion over the length scales is characterised by the inertial-range
spectrum, defined by (see for instance Moffatt 1978, Ch. 11 or
Biskamp 1993, Ch. 7):

ld � l� lin. (11)

Three different length scales can thus be distinguished:

1. a large injection length scale lin ≈ d2 related to variations
of the mean field and the mean energy;

2. the inertial-range length scales l, related to the stretching
and folding of field lines due to the turbulent velocity;

3. the dissipative length scale ld. By definition, this is the length
scale at which the dissipative timescale equals the energy-
transfer timescale.

For stationary turbulence, conservation of energy implies that
the injection rate, the transfer rate and the dissipation rate of the
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magnetic energy are equal. Hence, in an equilibrium situation,
resistive dissipation should balance the energy production, and
this is achieved by continuing the energy cascade down to what-
ever length scale is required to balance the input. This suggests
the following simple approximation: we replace the last term
of Eq. (9) by a scale-independent term−2ν BiBj , and we omit
the term η∇2BiBj , since it will give rise to a negligible term
after averaging (similar to the treatment of resistive dissipation
in the equation forB0). The value of the dissipation coefficient
ν is dictated by the energy production rate. It is not expected
that this term can describe the effect of resistive dissipation in
detail, but it should account for its average effect on T. This
approximation resolves the closure problem and enables us to
study if resistive dissipation can, in principle, solve the incon-
sistencies that we encounter when it is ignored. The resulting
equation forBiBj can be averaged using the standard methods:

∂tBiBj =
∑
kl

[
L(0)
ijkl + L(1)

ijkl

]
BkBl, (12)

with

L(0)
ijkl = (∇ku0i)δjl + (∇ku0j)δik

−δikδjl (u0 · ∇ + 2ν), (13)

L(1)
ijkl = (∇ku1i)δjl + (∇ku1j)δik − δikδjl u1 · ∇. (14)

For details on the various steps that are involved in applying
Eq. (8) to Eq. (12), the reader is referred to Hoyng (1987).

3. The mean magnetic field

In this section our main goal is to find sets of parameters for
which the mean magnetic field has a period of 22 years and a
decay time of 10 dynamo periods.

3.1. Equations

We expressB0 in terms of the toroidal field T and the poloidal
vector potential P , i.e.B0 = Tey +∇×Pey . Substitution into
Eq. (1) gives

(∂t − β1∇2)P = 0

(∂t − β1∇2)T = −a∂zP

}
(−d1 ≤ x ≤ 0),

(∂t − β2∇2)P = αT

(∂t − β2∇2)T = 0

}
(0 < x ≤ d2).

(15)

On the right hand side of the last equation, the term −α∇2P
has been neglected, in accordance with the αω-approximation.

3.2. Boundary conditions

We specify boundary conditions at each of the three interfaces,
beginning with the one between the radiative core and the over-
shoot layer. Turbulent diffusivity vanishes in the radiative core.

Fig. 2. The mean magnetic field B0 with α = −150 cm s−1,
β1 = 1.72 × 1010 cm2s−1, β2 = 1.55 × 1012 cm2s−1, Pdyn = 22
years and τdec = 220 years. The mean field is concentrated in ’belts’
of alternating polarity migrating toward the equator (downwards in the
figure). Top: poloidal field lines of B0 as a function of x and z at
t = 0. Drawn field lines have clockwise, dashed field lines anticlock-
wise orientation. Poloidal field is created only in the convection zone,
and diffuses into the overshoot layer. This diffusion, in combination
with the migration of the dynamo wave along the z-axis, results in
a phase lag that increases with the distance to the interface x = 0.
Bottom: toroidal (azimuthal) field T as a function of x and z at t = 0.

Therefore no poloidal field or magnetic flux may penetrate be-
low x = −d1 (see also Choudhuri 1990). This results in

P = ∂xT = 0 at x = −d1. (16)

At the interface between regions 1 and 2 continuity of B0 is
required, i.e.

[[P ]] = [[T ]] = [[∂xP ]] = 0 at x = 0. (17)

Here [[· · ·]] denotes the jump at the boundary. Furthermore, if
we integrate the toroidal component of Eq. (1) from x = −δ to
x = δ and let δ ↓ 0 we obtain:

[[β∂xT ]] = 0 at x = 0, (18)

where β assumes the value β1 for x = 0− and β2 for x = 0+.
Boundary conditions at x = d2 are provided by matching the
field in the convection zone to a potential field above the solar
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surface (Krause & Rädler 1980). The potential field satisfies
∇×B0 = 0, i.e.

∇2P = 0; ∇× Tey = 0 (x > d2). (19)

Continuity of B0 implies

[[P ]] = [[T ]] = [[∂xP ]] = 0 at x = d2. (20)

We consider only plane-wave solutions of the form P =
p(x)eikzz+λt, and similarly for T (Sect. 3.3). We use this to sim-
plify the boundary conditions at x = d2. First we note that
Eq. (19) reduces to

(∂2
x − k2

z)P = 0; T = 0 (x > d2). (21)

The relevant solution for x > d2 decays exponentially with
the distance to the solar surface, i.e. p ∝ e−kz(x−d2). Hereby
one of the boundary conditions (20) can be eliminated, and the
remaining two may be written as follows:

(∂x + kz)P = 0; T = 0 at x = d2. (22)

3.3. Solutions

We consider plane-wave solutions that propagate towards the
equator along the z-axis, i.e.

P = p(x) eikzz+λt, (23)

T = q(x) eikzz+λt. (24)

Here kz is the latitudinal wavevector, and the (complex) growth
rate λ is written as

λ = iω + γ, (25)

from which we obtain the dynamo period and the mean-field
decay time,

Pdyn = 2π/ω; τdec = 1/|γ|. (26)

The general solution of Eq. (15) is as follows:

p1/d1 = A1eκ1x + B1e−κ1x, (27)

q1 = A2eκ1x + B2e−κ1x (28)

+
iad1kzx

2β1κ1

(
A1eκ1x −B1e−κ1x

)
, (29)

p2/d2 = A3eκ2x + B3e−κ2x

− αx

2β2κ2d2

(
A4eκ2x −B4e−κ2x

)
, (30)

q2 = A4eκ2x + B4e−κ2x. (31)

Here the indices on p and q specify the two dynamo regions,
and

κ1 =
√
k2
z + λ/β1; κ2 =

√
k2
z + λ/β2. (32)

It is assumed that Re κ1 > 0 and Re κ2 > 0. We have included
d1 and d2 in the definition of p1 and p2 respectively, so that all the
integration constants A1, A2, · · ·, B4 have the same dimension.

On imposing the boundary conditions, we obtain eight rela-
tions between the integration constants, which are presented in
Appendix A. They form a square matrix of coefficients, whose
determinant should vanish. This results in a transcendental dis-
persion relation, every rootλi of which corresponds to a dynamo
mode. We are interested only in the fundamental mode, i.e. the
one with the largest growth rate γi.

Since the dispersion relation cannot be solved analytically,
we resort to an iterative numerical method. A useful initial value
λ0 for the iterations is obtained from a simplified form of the
dispersion relation. To that purpose we ignore all terms that
grow exponentially with |x|, i.e. B1 = B2 = A3 = A4 = 0. The
dispersion relation then is

κ1κ2(κ1 + κ2)(fβκ1 + κ2) = −iaαkz/4β2
2 , (33)

which corresponds to Eq. (22) of Parker (1993). Second, we use
fβ � 1 and approximate |κ1| ≈

√|λ0|/β1 � |κ2| (Eq. 32; see
below for a justification). This yields

κ2
1κ

2
2 = −iC/4, (34)

where the dynamo number C is defined as

C ≡ β1aα

β3
2k

3
z

. (35)

Inserting κ1 and κ2, it follows that

λ2
0 + β2k

2
zλ0 + iβ2

2k
4
zC/4 = 0. (36)

We conclude that, to first approximation, the fastest growing
solution has a frequency ω0 and a growth rate γ0 given by

ω0/β2k
2
z =

1

2
√

2

{
− 1 +

√
1 + C2

}1/2
, (37)

γ0/β2k
2
z = − 1

2 +
1

2
√

2

{
1 +

√
1 + C2

}1/2
. (38)

These estimates are used as starting values for solving the exact
dispersion relation iteratively.

3.4. Parameters

From helioseismological measurements (Goode 1995) the to-
tal velocity jump at the base of the convection zone, near the
equator, is estimated to be ad1 = 8 × 103 cm s−1, so that
a = 4 × 10−6 s−1 for d1 = 2 × 109 cm. This supposes that
the entire velocity jump occurs within the overshoot layer.

For the wavenumber in the azimuthal direction we take kz =
10−10 cm−1, which corresponds to a half wavelength ofπ/kz ≈
3.1×1010 cm or 180◦/kzR� ≈ 26◦. Thus |λ|/β2 ≈ ω�/β2 ≈
10−20 has the same order of magnitude as k2

z , and |λ|/β1 �
k2
z . This justifies the approximation that we adopted for κ1 in

Eq. (33).
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Table 1. Combinations of α, β1 and β2 for which the dynamo period
Pdyn = 22 years and the mean-field decay time τdec = 220 years.

α β1 β2 fβ C
[cm s−1] [cm2 s−1] [cm2 s−1]

−25 5.31× 1010 6.12× 1011 8.68× 10−2 −23.2
−50 2.80× 1010 9.24× 1011 3.03× 10−2 −7.11
−150 1.72× 1010 1.55× 1012 1.11× 10−2 −2.75
−500 1.25× 1010 2.61× 1012 4.80× 10−3 −1.42

The poorly known value of α is varied between −25 and
−500 cm s−1. An upper limit on |α| is given by lΩ, where l
is a typical convective length scale and Ω ≈ 2 × 10−6 s−1 is
the solar rotation rate (Stix 1989, Ch. 8). Near the base of the
convection zone we may estimate l ≈ 109 cm, so that lΩ ≈
2 × 103 cm s−1. This is an upper limit, because the value of α
depends on the correlation between the turbulent velocity field
u1 and the vorticity ∇ × u1 (Sect. 4.3). The chaotic nature of
the convection zone suggests that this correlation may be weak,
i.e. |α| � lΩ.

The fundamental mode of B0 should have Pdyn = 22 years
and τdec ≈ 10Pdyn, i.e. ω = ω� = 9.05 × 10−9 s−1 and γ =
γ� = 1.44 × 10−10 s−1. In order to meet these criteria we
proceed as follows. Starting with a first guess of the required
values of β1 and β2, we solve the dispersion relation and find
the eigenvalue λ of the fundamental mode. We repeat this by
applying successive corrections to β1 and β2, until ω = ω� and
γ = γ�.

From Table 1 we see that for such solutions, a smaller value
of |α| requires a larger ratio fβ . This provides a lower limit to
α, since fβ should satisfy fβ � 1; the smallest adopted value
of |α| is 25 cm s−1. Fig. 2 shows a typical solution.

4. The mean magnetic energy

4.1. Equations

The arguments presented in Sect. 2 lead to the following equa-
tion for T, which is a modified version of that derived by
Knobloch (1978) and Hoyng (1987):

(∂t + u0 · ∇)Tij =
∑
kl

∇k

(
αεiklTlj + αεjklTli

)
+
∑
k

{
(∇ku0i)Tkj + (∇ku0j)Tki

}
+ 2

5γ
(
2
∑
k

Tkkδij − Tij
)

+∇ · β∇Tij − 2νTij . (39)

The mean magnetic energy tensor is related to the mean mag-
netic stress tensor, which can be expressed in terms of T as
2Tij − εδij , where ε is the mean magnetic energy density,

ε =
∑
i

Tii. (40)

We employ the off-diagonal components of T to define correla-
tion coefficients of the field components:

Cij ≡ Tij√
TiiTjj

=
〈BiBj〉√
〈B2

i 〉〈B2
j 〉
. (41)

These coefficients must satisfy |Cij | ≤ 1.
The advection term vanishes because the differential rota-

tion u0 (Eq. 4) is in the y-direction, and because only axisym-
metric solutions are considered, i.e. ∂/∂y = 0. For the gradient
of u0 in the overshoot layer we insert ∇iu0j = aδixδjy. Apart
from α and β, there is a third dynamo coefficient γ, related to
the rms vorticity,

γ =
1
3
τc〈|∇ × u1|2〉. (42)

It represents the creation of small-scale magnetic field due to
the random field-line stretching by the convective motions. The
effect of vorticity is to enhance the diagonal components of T
(i.e. the mean magnetic energy), but to decrease the off-diagonal
components. The dissipative term−2νT reduces all components
of T at the same rate and leaves the correlation coefficients
unaffected.

As was argued in the introduction, we focus on the fun-
damental mode of Eq. (39), which should be non-periodic,
marginally stable, axisymmetric (∂/∂y = 0) and independent
of latitude (∂/∂z = 0).

Due to its symmetry, T has only six independent tensor ele-
ments that can be conveniently arranged into one vector, whose
components are Tµ, with µ = xx, xy, xz, yy, yz and zz. Ap-
plying Eq. (39) to the geometry of the Parker model, we obtain
the following equations for Tµ in the overshoot layer (region 1)
and T ′µ in the convection zone (region 2):

(∂t + 2ν1 − β1∂
2
x)Tµ =

∑
ν

(aXµν + 2
5γ1Γµν)Tν , (43)

(∂t + 2ν2 − β2∂
2
x)T ′µ =

∑
ν

(αΞµν∂x + 2
5γ2Γµν)T ′ν . (44)

Here Γ, X and Ξ are constant matrices, presented in Appendix B.
From Eqs. (40) and (43–44), we obtain the equations governing
the mean magnetic energy density in the two dynamo regions:

∂tε1 = 2aTxy + (2γ1 − 2ν1 + β1∂
2
x) ε1, (45)

∂tε2 = (2γ2 − 2ν2 + β2∂
2
x) ε2. (46)

Vorticity and differential rotation are sources of mean magnetic
energy. The former contributes equally to all diagonal compo-
nents of T, while the latter contributes to Tyy , the mean en-
ergy in the azimuthal field, but not to Txx and Tzz . The source
term for Tyy due to differential rotation is 2aTxy , and closer
inspection of Eq. (43) shows that this term is generated from
Txx, the mean energy in the radial magnetic field. Thus the ef-
fect of differential rotation may be schematically represented as
Txx → Txy → Tyy . On its turn,Txx is produced entirely by vor-
ticity. Hence, differential rotation enhances the magnetic energy
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by converting radial field, generated by vorticity, into toroidal
field. Turbulent diffusion enables transport of mean magnetic
energy along the x-axis, and resistive dissipation converts the
magnetic field into heat locally.

4.2. Boundary conditions

For details of the boundary conditions, which number 24, the
reader is referred to Appendix C; here it suffice to give a gen-
eral idea of their derivation. We integrate Eq. (39) over a small
distance δ along the x-axis on either side of a boundary, and we
let δ ↓ 0, which yields[[
β∂xTij + α

∑
l

(
εixlTlj + εjxlTli

)]]
= 0, (47)

where [[...]] indicates the jump at the boundary. This condition
is applied at x = −d1 and x = 0. The magnetic energy flux at a
given point is defined as

F = −β∂xε. (48)

By definition, a net flux in the positive x-direction is positive.
Eq. (47) implies that F vanishes at x = −d1 and that it is con-
tinuous at x = 0. We also assume continuity of T at x = 0. The
boundary conditions at x = d2, the convection zone - vacuum
interface, are less trivial. We assume that here the energy flux
is proportional to the energy density itself, i.e.

(∂x +
κ0

d2
) ε2 = 0 at x = d2. (49)

Here κ0 is a dimensionless constant that measures approxi-
mately the ratio of the efficiency of energy transport through
the surface at x = d2 and through the bulk of the convec-
tion zone. The nature of the energy transport at the convection
zone - vacuum interface is discussed in detail in Van Geffen &
Hoyng (1993). These authors estimate that κ0 is of the order
30− 300.1 The value of κ0 affects the decline of T near x = d2,
but has a negligible effect on the solutions in the bulk of the
dynamo, as is the case for all the boundary conditions at x = d2.
This is expected, since the dynamo is seated near the interface
of the two regions, while the upper part of the convection zone
plays only a passive role. The remaining conditions at x = d2

are presented in Appendix C.

4.3. Constraints on the parameters

The normalised helicity H in the convection zone is defined as

H ≡ − α√
β2γ2

=
〈u1 · (∇× u1)〉√〈|u1|2〉〈|∇ × u1|2〉

. (50)

It measures the correlation betweenu1 and the vorticity∇×u1,
and it obeys a Schwartz-type inequality:

|H| ≤ 1. (51)

1 Van Geffen & Hoyng (1993) use (∂x + 1/ρ) ε = 0 at the upper
surface of the convection zone and find R�/ρ ≈ 100 − 1000, where
ρ = d2/κ0, so that κ0 ≈ 0.3R�/ρ ≈ 30− 300.

For given α and β2, this implies a lower bound on γ2. No re-
liable estimate for H is known, but it is likely that |H| � 1
(Moffatt 1978, Ch. 11). In the overshoot region condition (51)
is automatically satisfied because α is neglected there.

A second constraint is based on the following estimate of
the typical length scale of the turbulence in the convection zone
(Eqs. 2 and 42):

lt ≡
√
β2

γ2
≤ d2. (52)

Obviously the turbulent length scale, i.e. the typical size of a
convective cell, should not exceed the thickness of the convec-
tion zone. Hence there is the condition lt ≤ d2, which implies
another lower bound on γ2.

The central idea of Parker (1993) is that strong magnetic
fields suppress the turbulence in the overshoot layer. For sim-
plicity we assume thatγ is suppressed by the same factorfβ � 1
as β:

γ1

γ2
= fβ . (53)

4.4. Solution of Eqs. (43–44)

We separate the time dependence of T using the following
ansatz:

Tµ(x, t) = T̃µ(x) eΛt, (54)

and similarly forT ′µ. The general solution of Eqs. (43–44) is pre-
sented in Appendix B. The boundary conditions constitute 24
relations between the integration constants, whose determinant
should vanish. Every root Λ of this dispersion relation corre-
sponds to a separate mode. We are only interested in the mode
with the largest growth rate Re Λ (the fundamental mode). As
we argued in the Introduction, this mode should be non-periodic
(Im Λ = 0). It has been observed before, that this is indeed al-
ways the case (Van Geffen & Hoyng 1993), although no formal
proof is available. By themselves, the oscillating modes are un-
physical because they have a magnetic energy of alternating
sign. They play a role as transients in initial value problems,
which we are not considering here.

5. Case A: no resistive dissipation (ν1 = ν2 = 0)

In this section we focus on verifying whether solutions with ν1 =
ν2 = 0 are physically acceptable, postponing a more detailed
discussion of the various tensor elements of T to Sect. 6.

5.1. Parameters

We set lt = d2 and thereby adopt the minimal value of γ2 that
is compatible with Eq. (52). As it turns out, Eq. (51) is then
satisfied by a large margin, for all the marginally stable solutions
of case A (Table 2). We adopt four different ratios fβ , namely
10−1, 10−2, 10−3 and 10−4. Then γ1 follows from Eq. (53). The
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Table 2. Parameters that result in marginal stability of T, with
ν1 = ν2 = 0 and lt/d2 = 1.

run κ0 fβ β2 γ2 H
[cm2 s−1] [s−1]

A1 100 10−1 3.1× 1014 7.8× 10−7 9.6× 10−3

A2 ” 10−2 5.5× 1014 1.4× 10−6 5.4× 10−3

A3 ” 10−3 1.6× 1015 4.1× 10−6 1.8× 10−3

A4 ” 10−4 7.1× 1015 1.8× 10−5 4.2× 10−4

A5 300 10−1 3.0× 1014 7.4× 10−7 1.0× 10−2

A6 ” 10−2 5.3× 1014 1.3× 10−6 5.7× 10−3

A7 ” 10−3 1.6× 1015 4.0× 10−6 1.9× 10−3

A8 ” 10−4 7.0× 1015 1.8× 10−5 4.3× 10−4

α-coefficient plays an insignificant role in the energy equation,
and a change in its value has a negligible effect on the growth
rate Λ. For this reason we do not vary α in Eq. (44), but set
α = −150 cm s−1. We adopt two values for κ0, namely 100
and 300. The parameters d1, d2 and a are as indicated in Fig. 1.

We obtain marginally stable solutions in the following way.
After making an initial guess of the required value of β2, we
solve the dispersion relation and obtain the growth rate Λ of
the fundamental mode. We then apply successive corrections to
β2, while keeping fβ and lt constant, until Λ equals zero. The
physical idea behind this method is that we vary the efficiency
of turbulent transport to the solar surface, the only energy sink in
the dynamo in case A, until the marginally stable state is reached.
The required values of β2 and the corresponding values of γ2

and H are shown in Table 2. Since lt/d2 may in fact be smaller
than unity, we may underestimate γ2 and hence also the energy
production rate due to vorticity. Therefore the values of β2 must
be understood as minimal values, required for marginal stability.
Marginal stability of T is reached only ifβ2 >∼ 3×1014 cm2 s−1,
a very high value also found by Van Geffen (1993a).

5.2. Implications for the mean magnetic field

The diffusivities that are required for marginal stability of T are
at least a factor 102 larger than the values that were adopted
for the mean-field equation (Table 1). The effect of such large
diffusivities on the mean field can be clarified with the help of
Eq. (35), which provides an estimate of the dynamo frequency
ω. If ω = ω� and β2 = 3× 1014 cm2 s−1, say, then ω/β2k

2
z ≈

3× 10−3 � 1, so that |C| � 1. Then Eq. (35) reduces to

ω ≈ β2k
2
z|C|/4 =

β1a|α|
4β2

2kz
, (55)

which, after substitution of ω�, a and kz , yields the following
estimate of the value of |α|, required for the mean field to have
a 22-year period:

|α| ≈ 9× 10−13β2/fβ . (56)

Although α does formally appear in Eq. (43–44), it has a neg-
ligible influence on the growth rate Λ. In other words, T re-
mains close to marginal stability, even if a different value of α

is adopted. Hence we have some liberty to change α for a given
solution of Eqs. (43–44). The values of β2 presented in Table 2
imply that |α| must be of the order 3 × 103 − 6 × 105 cm s−1

(Eq. 56). But we have the following two upper limits for |α|.
First, there is condition (51). Since the solutions presented in
Table 2 all have lt/d2 = 1, we may employ Eq. (52) to write
this condition in the form |α| ≤ β2/d2. Second, |α| should not
exceed the typical maximum value lΩ ≈ 2× 103 cm s−1 in the
lower part of the convection zone (Sect. 3.4). Commonly |α| is
believed to be about a factor 102 smaller. Some of the required
values of α violate condition (51), and all of them exceed lΩ. In
other words, α would have to be unphysically large to counter-
act the strong turbulent diffusion and produce a dynamo period
of 22 years.

5.3. Root mean square magnetic field strength

Since T is solved from a linear equation with linear bound-
ary conditions, it is determined up to an arbitrary multiplicative
factor. We calibrate T by using reference values, based on ob-
servations, for the magnetic energy flux, F = −β∂xε, and for
the rms field strength,

Brms =
√

8πε. (57)

Three estimates are considered here, and our aim is to verify
whether marginally stable solutions with ν1 = ν2 = 0 can repro-
duce all three simultaneously.

1) Active regions and small flux tubes, which are known to
have a field strength of about 103 G, cover about 1% of the
solar surface during the solar maximum, so that Brms(d2) ≈√

10−2 × 106 = 100 G.
2) The rms field strength in the overshoot layer is believed to

be about 2× 104 − 105 G.
3) The total energy flux, required for coronal heating, is esti-

mated to be Fc ≈ 5×106 erg cm−2 s−1 (Withbroe & Noyes
1977, Kuperus et al. 1981). This flux may be provided by
the magnetic energy flux through the upper surface of the
convection zone, which after inserting Eqs. (49) and (57)
can be expressed as

Fs ≡ F (x = d2) =
β2κ0B

2
rms(x = d2)
8πd2

. (58)

Presumably this energy flux is in the form of Alfvén waves.

Let us apply the first estimate and fix Brms(d2) = 100 G. The
resulting values of Fs, shown in Table 3, are at least two orders
of magnitude larger than Fc. These numbers can be reduced
only by adopting much smaller values for β2 or κ0, such that
β2κ0 is reduced by at least a factor of the order 100. But β2 is
determined by the constraint of marginal stability and we cannot
decrease κ0 as much as would be required.

From estimates 1) and 2) it follows that the ratio of maximum
rms field strength to rms surface field strength,

rB ≡ maxBrms(x)
Brms(d2)

, (59)
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Fig. 3. Mean magnetic energy density ε as a function of x (ε is set to 1
at x = d2) for two marginally stable solutions with ν1 = ν2 = 0 (drawn
curve: A1; dashed curve: A4). For case A1 (fβ = 0.1), the transition
from the overshoot layer to the convection zone is quite smooth (in
this plot the discontinuity in ∂xε is coincidentally removed due to the
stretching of the x-coordinate in the overshoot layer). For case A4
(fβ = 10−4) the transition is sharp: the smaller fβ , the less efficient
turbulent transport is in the overshoot layer, and the higher the resulting
concentration of magnetic energy.

Table 3. Values of rB and Fs for marginally stable solutions with
ν1 = ν2 = 0, α = −150 cm s−1 and lt/d2 = 1. The values of Fs

are calibrated by assuming Brms(d2) = 100 G.

run rB Fs [erg cm−2 s−1]

A1 8.8 6.2× 108

A2 12 1.1× 109

A3 32 3.2× 109

A4 95 1.4× 1010

A5 15 1.8× 109

A6 22 3.2× 109

A7 55 9.5× 109

A8 170 4.1× 1010

should be of the order 200 <∼ rB <∼ 1000. In Table 3 we present
the values of rB for marginally stable solutions with ν1 = ν2 = 0.
None of these are within the required range. The value of rB

depends on fβ and κ0. The smaller fβ , i.e. the less efficient
turbulent diffusion in the overshoot layer is, the more magnetic
energy accumulates there, and the larger rB becomes. This effect
is demonstrated in Fig. 3. We could achieve better agreement
for rB by adopting some value fβ < 10−4, but we have not
pursued this, since the constraint of marginal stability would re-
quire a turbulent diffusivityβ2 larger than 7×1015 cm2 s−1 (see
Table 2). This would cause a further increase of Fs. The effect
of a change in κ0 can be inferred from Eq. (46) and bound-
ary condition (49), which yield the following marginally stable
solution:

ε2(x)
ε2(d2)

=
1
2

( κ0

k7d2
+ 1
)

e−k7(x−d2)

−1
2

( κ0

k7d2
− 1
)

ek7(x−d2) (0 ≤ x ≤ d2), (60)

where k7 =
√

(Λ + 2ν2 − 2γ2)/β2. Hence we can increase rB

by increasing κ0, as is demonstrated in Table 3 (compare e.g.

Table 4. Case B: vorticity coefficients, turbulent length scales, dissipa-
tion coefficients and corresponding dissipative timescales (in months)
for marginally stable solutions, with β1 and β2 as in Table 1, and
30 <∼ κ0 <∼ 300.

run H α γ2 lt/d2 ν 1/2ν
[cm s−1] [*] [*] [mo]

B1 1.00 −50 0.0027 0.92 0.061 3.12
B2 ” −150 0.014 0.52 0.082 2.33
B3 ” −500 0.096 0.26 0.14 1.33
B4 0.71 −25 0.0020 0.87 0.074 2.56
B5 ” −50 0.0054 0.65 0.078 2.45
B6 ” −150 0.029 0.37 0.10 1.83
B7 ” −500 0.19 0.18 0.22 0.89
B8 0.32 −25 0.010 0.39 0.13 1.44
B9 ” −50 0.027 0.29 0.14 1.41
B10 ” −150 0.15 0.16 0.20 0.96
B11 ” −500 0.96 0.08 0.95 0.20
B12 0.10 −25 0.10 0.12 0.30 0.64
B13 ” −50 0.27 0.09 0.32 0.60
B14 ” −150 1.4 0.05 1.4 0.13
B15 0.05 −25 0.41 0.06 0.49 0.39
B16 ” −50 1.1 0.05 1.1 0.18

? in units of 10−6 s−1

runs A1 and A5). Unfortunately, this would also result in a larger
Fs (Eq. 58).

5.4. Summary

We may summarise the findings of Sect. 5 as follows. If resis-
tive dissipation is neglected, then the resulting solutions T are
unlikely to describe the solar dynamo, for three reasons, the first
two of which are a direct consequence of the abnormally high
turbulent diffusivities (β2 >∼ 3 × 1014 cm2 s−1), required for
marginal stability of T:

� a value of β2 >∼ 3 × 1014 cm2 s−1 is incompatible with a
dynamo period of 22 years;

� the magnetic energy flux through, and the rms field strength
at the upper boundary of the convection zone cannot both
assume solar values;

� rB, the ratio of maximum rms field strength to rms surface
field strength, is too small.

6. Case B: uniform resistive dissipation (ν1 = ν2 /= 0)

In the previous section we did not succeed in obtaining a con-
sistent dynamo model on the basis of the finite energy method.
Apparently we require an extra energy sink, possibly due to
resistive dissipation. For this reason we now turn to the case
ν1, ν2 /= 0, and we make the simplest possible approximation:

ν1 = ν2 = ν. (61)
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Fig. 4. Diagonal components of the mean magnetic energy tensor T
and correlation coefficients Cij as a function of x (Tyy is set to 1 at
x = d2), for a marginally stable solution with little vorticity (B5). Note
the large, predominantly toroidal field (By) in the overshoot layer and
its strong correlation with the radial field (Bx). In the convection zone,
there is a strong correlation between Bz and By .

Under this assumption, our treatment of resistive dissipation
amounts to the introduction of a global decay factor e−2νt for a
given solution of Eqs. (43–44) without resistive dissipation.

6.1. Parameters

For the parameters α, β1 and β2 we employ the values shown in
Table 1. For each of these combinations we fix γ2 by adopting
several values of H in the range from H = 1 to H = 0.05,
under the condition that Eq. (52) is satisfied. Then γ1 follows
from Eq. (53). Notice that Eqs. (51) and (52) now pose almost
equally strong constraints on the parameters, as is demonstrated
by the fact that lt/d2 and H , which should both be smaller that
unity, have the same order of magnitude (Table 4).

Here H = 1 corresponds to maximal helicity, or minimal
vorticity (Eq. 50). It is likely that |H| � 1 (Sect. 4.3), but by
decreasing |H| for fixed values of α and β2, the role of vorticity
increases. Beyond a certain point, the energy production is dom-
inated by random stretching of field lines, with only a negligible
contribution of differential rotation. Such solutions are unlikely
to describe the solar dynamo, since they do not exhibit strong,
predominantly toroidal fields in the overshoot layer. Hence, for
a given combination of α and β2, there is a lower limit on |H|.
From numerical experience we conclude that for solutions with
|H| <∼ 0.05, the dominant source of magnetic energy is random
field-line stretching.

Fig. 5. Diagonal components of the mean magnetic energy tensor T
and correlation coefficients Cij as a function of x (Tyy is set to 1 at
x = d2), for a marginally stable solution with strong vorticity (B15).
Compared to Fig. 4, the toroidal magnetic field is less predominant and
all Cij are reduced, except Cxy in the overshoot layer.

In most cases, we adopt κ0 = 100, but in some cases we use
a different value. The reason for this is explained in Sect. 6.3.
However, it turns out that the values of ν, required for marginal
stability of T are, within the given accuracy of Table 4, insen-
sitive to these changes of κ0.

6.2. Solutions

Two examples of marginally stable solutions are shown in
Figs. 4 and 5. As will be argued in Sect. 6.3, these solutions
appear to be reasonable models of the solar dynamo. The main
features of Fig. 4 are as follows:

� the diagonal components of T reach a maximum in the over-
shoot layer, and decline almost exponentially throughout the
convection zone, until the onset of a more rapid decline near
the upper surface;

� the dominant component of T is Tyy , the mean magnetic
energy in the toroidal field. This is a consequence of differ-
ential rotation;

� as a result of differential rotation, which creates toroidal
field (By) from radial field (Bx), there is a strong correlation
between Bx and By in the overshoot layer;

� there is a strong correlation between By and Bz in the con-
vection zone due to the α-effect;

� if we integrate Eqs. (45–46) over x, we obtain the energy
balance, given by

∂tE = Qtot −Qdiss − Fs = 0. (62)
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Fig. 6. Ratio rB of maximal rms field strength to rms surface field
strength for various models of case B, plotted versus the normalised
helicity H . The full circles denote solutions with κ0 = 100. The drawn
curves are interpolations between solutions with identical values of
α, from α = −25 cm s−1 (top curve) to α = −500 cm s−1 (bottom
curve). The area between the dotted lines indicates the estimated range
of rB for the Sun. In two cases we have adjusted rB by changing κ0

(open circles).

Here E is the total magnetic energy per unit of surface area,
given by E = E1 + E2, where E1 =

∫ 0
−d1

dx ε1 and E2 =∫ d2

0 dx ε2; Qtot is the total energy production rate, i.e.

Qtot = 2a
∫ 0

−d1

dxTxy + 2γ1E1 + 2γ2E2, (63)

and Qdiss is the total rate of resistive dissipation, given by

Qdiss = 2ν1E1 + 2ν2E2. (64)

Table 5 shows that Fs accounts for less than 10−3 times
Qtot, i.e. the dominant energy sink turns out to be resistive
dissipation. This is due to the low efficiency of turbulent
transport.

The solution presented in Fig. 5 has a smaller normalized he-
licity H . We recall that this is equivalent to a larger vorticity γ2

(for given α and β2). The main differences between Figs. 4 and
5 are as follows:

� the dominance ofTyy is reduced, because vorticity enhances
Txx, Tyy and Tzz at the same rate;

� most correlation coefficients are reduced, due to the increase
in vorticity. However, Cxy is not reduced in the overshoot
layer, because here Tyy is mainly created by differential
rotation fromTxx and not directly by vorticity. This results in
a strong correlation betweenBx andBy , almost irrespective
of the value of γ1 and γ2 (see Sect. 4.1).

6.3. Root mean square magnetic field strength

Fig. 6 shows rB as a function of H for models B1, B2, · · ·,
B16 (Table 4). For a subset of solutions, indicated in Table 5,
rB agrees with solar estimates, i.e. 200 <∼ rB <∼ 1000. This
good agreement is possible because if ν is sufficiently large,
the convection zone becomes a net sink of energy, resulting

Table 5. Values ofκ0 andFs for marginally stable solutions that are rea-
sonable as models for the solar dynamo. The values ofFs are calibrated
by assuming Brms(d2) = 100 G.

run κ0 Fs Fs/Qtot

[erg cm−2 s−1]

B1 100 1.8× 106 2.3× 10−4

B2 200 6.2× 106 6.6× 10−4

B4 100 1.2× 106 1.9× 10−5

B5 100 1.8× 106 8.8× 10−5

B6 100 3.1× 106 4.3× 10−4

B9 100 1.8× 106 1.0× 10−5

B13 300 5.5× 106 2.0× 10−4

B15 100 1.2× 106 2.7× 10−6

in an exponential decay of ε throughout most of the convec-
tion zone. Without resistive dissipation this effect cannot oc-
cur for marginally stable solutions, since k7 is then purely
imaginary (Eq. 60). On most occasions we adopted κ0 = 100,
but in two cases we used a different value in order to im-
prove agreement for rB. These modified solutions are indi-
cated by the open symbols in Fig. 6. With the present cal-
ibration, the magnetic energy flux through the solar surface
for solutions with 200 <∼ rB <∼ 1000 is of the order Fs ≈
(1 − 6) × 106 erg cm−2 s−1 (Table 5), i.e. comparable to the
flux required for coronal heating, Fc ≈ 5× 106 erg cm−2 s−1.
This agreement results from the much smaller turbulent diffu-
sivities employed here (β2 ≈ 1012 cm2 s−1), compared to those
required in Sect. 5 (β2 >∼ 3× 1014 cm2 s−1).

Hence, by including resistive dissipation, and setting ν1 =
ν2, we are able to obtain solutions for T that reproduce approxi-
mately the correct values of both rB and Fs. For these solutions,
the timescale for resistive dissipation is 1/2ν ≈ 1 month, com-
parable to the convective turnover time. We discuss this issue
further in Sect. 8.

7. Case C: reduced dissipation in the overshoot layer (ν1 �
ν2)

If a strong, large-scale azimuthal magnetic field exists in the
overshoot layer, then small-scale structures are less likely to
form there than in the convection zone. Hence it is perhaps
more realistic to assume that in the overshoot layer resistive
dissipation is less efficient than in the convection zone, i.e. ν1 �
ν2.2 In this section, we briefly examine that possibility, assuming
that ν1/ν2 is reduced to the same value as β1/β2 and γ1/γ2, i.e.

ν1

ν2
= fβ . (65)

Our aim is to explore the effect of this assumption on a typical
solution with ν1 = ν2 /= 0, obtained previously in Sect. 6 (case
B). To that purpose we vary ν1 iteratively, while keeping ν1/ν2

fixed, until the marginally stable state is reached. Fig. 7 shows
the distribution of mean magnetic energy for such a solution.

2 We thank dr. M. Schüssler for this suggestion



340 A.J.H. Ossendrijver & P. Hoyng: Mean magnetic field and energy balance of Parker’s surface-wave dynamo

Fig. 7. Mean magnetic energy density ε as a function of x (ε is set to 1
at x = d2) for a marginally stable solution with ν1 = 7.2 × 10−8 s −1

and ν2 = 2.4 × 10−6 s −1 (case C with ν1/ν2 = fβ). The remaining
parameters are as in case B5.

The main differences with case B5, relevant for our discussion,
are as follows:

� the required value of ν2 is much larger (by a factor of about
30);

� the required value of ν1 is only slightly smaller;
� there is a much more rapid decline of ε throughout the con-

vection zone (about 20 decades; rB = 8.8× 1010).

The first two points indicate that a small reduction in ν1, com-
pared to its value in case B, has to be compensated by a large
increase in ν2. This effect can be explained as follows. If we de-
crease resistive dissipation in the overshoot layer, than transport
of magnetic energy out of the overshoot layer should increase,
in order to achieve marginal stability of T. Therefore the gradi-
ent of the magnetic energy density in the overshoot layer, ∂xε1,
has to steepen. Since there is continuity of energy flux, this can
be achieved by sharpening the gradient in the convection zone,
i.e. by increasing resistive dissipation there (ν2). However, this
mechanism is rather indirect and inefficient, requiring a large
increase in ν2.

The third point is a consequence of the strong resistive dis-
sipation in the convection zone (large ν2), leading to a steep
gradient in the magnetic energy density (see Eq. 60). It follows
that this model does not correspond to the solar dynamo, since
rB is many orders of magnitude larger than the highest estimated
value (about 103) for the Sun.

It may be felt that ν1 is still unrealistically large - indeed
one’s first intuition would to take ν1 = 0. However, this is not
possible, because then even larger values of ν2 would be re-
quired, leading to a further increase of rB.

We may therefore summarize the results of this section as
follows. If we want to balance the energy production in the over-
shoot layer without envoking resistive dissipation as a dominant
energy sink in this region, then turbulent transport has to be made
more efficient. This requires a steeper gradient of the magnetic
energy density, which can be achieved by increasing resistive
dissipation in the convection zone (ν2). Compared to case B,
there are two main effects. First, the dissipation time scale in
the convection zone (1/2ν2) becomes much shorter than the
convective turnover time (about 1 month). This is problematic,

as will be argued in the Discussion. Second, the ratio rB is very
large, and for this reason case C does not appear to correspond
to the solar dynamo.

8. Summary and discussion

We have studied the Parker’s ’surface-wave dynamo’
(Parker 1993) by solving equations for the mean magnetic field
B0 and for the mean magnetic energy tensor T. The mean quan-
tities are interpreted as ensemble averages, so that the dynamo
parameters may be treated as constants. In solving the mean-
field equation, we chose the parameters in such a way, that B0

has a period of 22 years and a decay time of about 10 dynamo
periods. This slight sub-criticality of B0 is motivated by the
concept of phase mixing, which arises in the ensemble average
due to variability in the dynamo period.

The equation for T was solved under the constraint of
marginal stability. If resistive dissipation is ignored, this requires
a turbulent diffusivity of the order β2 >∼ 3×1014 cm2 s−1. Con-
sequently,α has to be unphysically large forB0 to have a period
of 22 years. Furthermore, the three calibrations of T that we em-
ploy, namely for the rms field strengths in the overshoot layer
and at the solar surface, and for the magnetic energy flux through
the solar surface, are inconsistent if ν1 = ν2 = 0.

Concerning the large turbulent diffusivities that are required
if ν1 = ν2 = 0, we confirm the results of Van Geffen (1993b),
who found similar values, in spite of the fact that the over-
shoot layer was badly resolved in his finite-grid calculation.
It is evident that transport of mean magnetic energy by turbu-
lent diffusion cannot provide an energy sink that is efficient
enough to render T marginally stable. One conclusion of this
paper is therefore that an additional energy sink, previously not
accounted for, must be envoked to balance the energy budget.

A possible candidate investigated in this paper is resistive
dissipation, which operates through an energy cascade from the
largest scale down to the dissipative scale, where the magnetic
energy is converted into heat. With respect to resistive dissi-
pation, we pointed out a fundamental difference between B0

and T. Since B0 corresponds to the largest length scale of the
dynamo, it is not affected by resistive dissipation, which op-
erates at the smallest length scale. On the other hand, T has
contributions from all length scales. Consequently, the scale
dependence of resistive dissipation results in a closure problem.
Our approach has been to apply the simplest possible, scale-
independent approximation, and describe the average effect of
resistive dissipation on T through a coefficient ν.

With this heuristic treatment of resistive dissipation, we are
able to comply with the conditions on B0 and T, posed by
the finite-energy method. Admittedly, the finite-energy method
loses some of its previous appeal, because we have no estimates
or constraints for ν, and simply adjust its value as to attain
marginal stability of T. But by doing so, and setting ν1 = ν2, we
are able to obtain solutions that correctly reproduce the three
calibrations for T. Thus the inconsistencies, that arise when tur-
bulent transport and subsequent loss at the surface are assumed
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to provide the only sink of magnetic energy in the dynamo, are
removed.

In these models, most of the energy loss in the dynamo re-
sults from resistive dissipation, and only a small fraction from
turbulent transport to the boundary. We find that the timescale
for resistive dissipation needs to be of the order of one month.
This is comparable to the eddy turnover time, the characteristic
timescale for the energy cascade. In numerical simulations of
hydromagnetic convection by Nordlund et al. (1992), a similar
timescale for ohmic decay was found. Due to the impenetrable
boundaries that were employed by these authors, the importance
of energy transport out of the dynamo region cannot be assessed
from their calculations. Relevant for our discussion is their re-
sult that the magnetic energy of a small-scale dynamo in the
convection zone can attain a stationary state through a balance
with resistive dissipation, and that the entire magnetic energy is
converted within one convective turnover time. Whether their
result also applies to the overshoot layer is uncertain. Here the
magnetic field is believed to be strong and well-ordered, so
that turbulence is suppressed, and small-scale structures, essen-
tial for resistive dissipation, are less likely to develop. Hence,
although our results are consistent with those of Nordlund et
al. (1992), we probably overestimate the dissipation rate in the
overshoot layer (ν1). Given our simplified, linear treatment of
the energy cascade, this is perhaps not too surprising.

Setting to zero or reducing resistive dissipation in the over-
shoot layer is not a fruitful option in the present model, because
this makes it impossible to obtain a marginally stable solution
that is also physically reasonable. It seems that turbulent diffu-
sion is too inefficient in transporting a significant fraction of the
produced magnetic energy out of the overshoot layer, unless β1

is very large, or the gradient of the magnetic energy density is
very steep. The latter requires that the dissipation timescale in
the convection zone (1/2ν2) be much shorter than the convec-
tive turnover time, which is unlikely. We may speculate that the
inefficiency of turbulent diffusion can be resolved by treating
turbulent diffusivity not as a scalar but as a tensor, and enhanc-
ing the radial component relative to the other components in
order to model schematically the effect of magnetic buoyancy.
It is nevertheless consistent with the dynamo mechanism de-
scribed by Eqs. (45–46) to allow some resistive dissipation in
the overshoot layer, for the following reason. The production of
magnetic energy results mainly from differential rotation, which
amplifies the magnetic field created by vorticity. The α-effect,
responsible for the large-scale field, has little impact on the mag-
netic energy. In other words, the magnetic energy as described
by Eqs. (45–46) mainly resides in small scales, so that resistive
dissipation may be important in the convection zone as well as
in the overshoot layer.

If we accept for the moment the dissipation rates of Sect. 6,
we may estimate the total heat produced by resistive dissipation
asAQdiss = 2νAE, whereA ≈ 2×1022 cm2 is the area of a strip
extending 35◦ on both sides of the equator, positioned at the base
of the convection zone, and Qdiss is given by Eq. (64). Employ-
ing the calibration Brms(d2) = 100 G, we obtain typical values
ofAE of the order 1039−1040 erg. The corresponding values of

AQdiss range from about 0.04L� up to values larger than L�.
Although we are clearly overestimating the value of AQdiss in
some cases, there are other indications that hint at the important
role of resistive heating in the solar dynamo. It has been esti-
mated that viscous and resistive heating in the convection zone
can indeed amount to several percents of the convective flux, i.e.
of the solar luminosity (Hewitt et al. 1975, Brandenburg 1993).
A high dissipation rate poses in turn a strong demand on dif-
ferential rotation, the main energy source of the dynamo. A
simple estimate of the total kinetic energy of the differential ro-
tation in the overshoot layer yieldsAEdiff ≈ 1

2Ad1ρ(∆v0/2)2 ≈
1
8ρAd

3
1a

2 ≈ 7.3× 1037 erg. Here ρ ≈ 0.23 g cm−3 is the mass
density and ∆v0 = ad1 ≈ 8 × 103 cm s−1 is the difference in
rotational velocity accross the overshoot layer. It follows that
AEdiff is about two orders of magnitude smaller than the total
magnetic energy of the dynamo. Therefore differential rotation
can provide the energy for the dynamo only if it is very efficiently
replenished. In fact, the build-up timescale ofEdiff must be about
AEdiff/AQdiss <∼ 6 days, if we employAQdiss >∼ 0.04L�. Such
a rapid conversion of kinetic energy to magnetic energy in the
overshoot layer requires in turn an efficient coupling with the
convection zone.

Acknowledgements. This research was supported by the Netherlands
Foundation for Research in Astronomy (NFRA).

Appendix A: dispersion relation for the mean magnetic field

The boundary conditions forB0 provide the following relations
between the integration constants:

e−κ1d1A1 + eκ1d1B1 = 0, (A1){ad1kz(κ1d1 − 1)
2β1κ1

A1 − κ1A2

}
e−κ1d1

+
{ad1kz(κ1d1 + 1)

2β1κ1
B1 + κ1B2

}
eκ1d1 = 0, (A2)

A2 + B2 −A4 −B4 = 0, (A3)

A1 + B1 − (A3 + B3)/fd = 0, (A4)

fdκ1(A1 −B1)− κ2(A3 −B3)

+
α

2β2κ2d2
(A4 −B4) = 0, (A5)

iad1kz
2β2κ1

(A1 −B1) + fβκ1(A2 −B2)

− κ2(A4 −B4) = 0, (A6)

e−κ2d2A4 + eκ2d2B4 = 0, (A7)

(kz + κ2) eκ2d2A3 + (kz − κ2) e−κ2d2B3

− α

2β2

{
1 +

1 + kzd2

κ2d2

}
eκ2d2A4

− α

2β2

{
1− 1 + kzd2

κ2d2

}
e−κ2d2B4 = 0. (A8)



342 A.J.H. Ossendrijver & P. Hoyng: Mean magnetic field and energy balance of Parker’s surface-wave dynamo

Here fd = d1/d2. These equations may be represented as an 8 by
8 matrix operating on the integration constants A1, A2, · · ·, B4.
The dispersion relation results from equating its determinant to
zero.

Appendix B: expressions for the mean magnetic energy ten-
sor

With ansatz (54), Eqs. (43-44) become

(Λ + 2ν1 − β1∂
2
x) T̃µ =

∑
ν(aXµν + 2

5γ1Γµν) T̃ν , (B1)

(Λ + 2ν2 − β2∂
2
x) T̃ ′µ =

∑
ν(αΞµν∂x + 2

5γ2Γµν) T̃ ′ν . (B2)

Here the matrices Γ, X and Ξ are

Γ =


1 0 0 2 0 2
0 −1 0 0 0 0
0 0 −1 0 0 0
2 0 0 1 0 2
0 0 0 0 −1 0
2 0 0 2 0 1

 ,X =


0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 2 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

 , (B3)

Ξ =


0 0 0 0 0 0
0 0 −1 0 0 0
0 1 0 0 0 0
0 0 0 0 −2 0
0 0 0 1 0 −1
0 0 0 0 2 0

 . (B4)

Of these matrices, Γ and Ξ can be diagonalised simultaneously.
Therefore Eq. (B2) is easily solved, but we start with Eq. (B1),
from which it readily follows that

T̃xx − T̃zz = C1ek1x + D1e−k1x, (B5)

T̃xz = C3ek1x + D3e−k1x, (B6)

where k1 =
√

(Λ + 2ν1 + 2
5γ1)/β1. Next we solve T̃yz , which is

coupled to T̃xz in a resonant manner:

T̃yz = C5ek1x + D5e−k1x

− ax

2β1k1

(
C3ek1x −D3e−k1x

)
. (B7)

The following equation forw = (T̃xx + T̃zz, T̃xy, T̃yy) remains:

(Λ + 2
5γ1 − β1∂

2
x)w =

 8
5γ1 0 8

5γ1

a/2 0 0
4
5γ1 2a 4

5γ1

w
+ 1

2a(T̃xx − T̃zz)

0
1
0

 . (B8)

The matrix M on the right hand side is transformed into diagonal
form UMU−1 by means of a transformation matrix U, which is
not reproduced here explicitly. Hence the solution of Eq. (B8)
may be expressed asT̃xx + T̃zz

T̃xy
T̃yy

 = U−1

w′2w′4
w′6

 . (B9)

Here

w′µ = Cµekµx + Dµe−kµx

−aUµ4

2mµ
(T̃xx − T̃zz) (µ = 2, 4, 6), (B10)

and mµ are the eigenvalues of M, i.e. the solutions of

m3
µ − 24

25γ
2
1m

2
µ − 8

5a
2γ1 = 0. (B11)

The wavenumbers kµ are

kµ =
√

(Λ + 2ν1 + 2
5γ1 −mµ)/β1 (µ = 2, 4, 6). (B12)

The general solution of Eq. (B1) is provided by Eqs. (B5–B7)
and (B9).

In region 2 we proceed as follows. We transform Γ and Ξ
to diagonal forms SΓS−1 and SΞS−1 respectively, where S is
the corresponding transformation matrix (not reproduced here).
This provides the following general solution of Eq. (B2):

T̃ ′µ =
∑

ν(S−1)µνhν (µ = xx, xy, .., zz; ν = 7, 8, .., 12), (B13)

where

hµ = Cµekµ+x + Dµekµ−x (µ = 7, 8, .., 12). (B14)

The wavenumbers kµ± are

k7± = ±
√

(Λ + 2ν2 − 2γ2)/β2, (B15)

k8± = −i
α

2β2
±
√

(Λ + 2ν2 + 2
5γ2)/β2 − α2/4β2

2 , (B16)

k9± = i
α

2β2
±
√

(Λ + 2ν2 + 2
5γ2)/β2 − α2/4β2

2 , (B17)

k10± = ±
√

(Λ + 2ν2 + 2
5γ2)/β2, (B18)

k11± = −i
α

β2
±
√

(Λ + 2ν2 + 2
5γ2)/β2 − α2/β2

2 , (B19)

k12± = i
α

β2
±
√

(Λ + 2ν2 + 2
5γ2)/β2 − α2/β2

2 . (B20)

Appendix C: boundary conditions for the mean magnetic
energy tensor

In the solar interior (x < −d1), turbulent diffusivity vanishes, so
that β in Eq. (39) assumes the negligible molecular value η �
β1. There is no α-effect below the convection zone (α = 0 for
x < 0). Applying Eq. (47) atx = −d1, we findβ1∂xTij |−d1 = 0,
i.e.

∂xTµ = 0 at x = −d1 (µ = xx, xy, .., zz). (C1)

Consequently, the energy flux across this boundary vanishes:
∂xε1|−d1 = 0. Continuity of T at x = 0 yields

Tµ = T ′µ at x = 0 (µ = xx, xy, .., zz). (C2)
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We apply Eq. (47) at x = 0, which provides

β1∂xTxx = β2∂xT
′
xx

β1∂xTxy = β2∂xT
′
xy − αT ′xz

β1∂xTxz = β2∂xT
′
xz + αT ′xy

β1∂xTyy = β2∂xT
′
yy − 2αT ′yz

β1∂xTyz = β2∂xT
′
yz + α(T ′yy − T ′zz)

β1∂xTzz = β2∂xT
′
zz + 2αT ′yz


at x = 0. (C3)

Note that the first, fourth and sixth of these equations together
guarantee a continuous energy flux across x = 0.

Atx = d2, we assume that the magnetic energy density at the
surface is equally distributed among its components Txx, Tyy
and Tzz . The idea is that due to the reprocessing of the (predom-
inantly azimuthal) field on its way up through the convection
zone, the field is small-scale and shows no net preference for
any direction at the surface. By the same token, the off-diagonal
elements of T should then vanish near the surface:

T ′xx = T ′yy = T ′zz

T ′xy = T ′xz = T ′yz = 0

}
at x = d2. (C4)

For the remaining condition at x = d2 we refer to the main text
(Eq. 49).
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