 |  |
Astron. Astrophys. 325, 725-744 (1997)
4. Interpretation and discussion
From Sect. 3 one can see that the molecular surroundings of
IRAS 20126+4104 present intriguing kinematical characteristics, which
change depending on the tracer observed. Now, we give an
interpretation capable of accounting for all the features observed in
a consistent manner.
In the following, we shall assume a distance to IRAS 20126+4104 of
1.7 kpc, as done by other authors (see WBM and references
therein). This value might be in error by a factor 2.5, because the
kinematic distance for a local standard of rest (LSR) velocity of
km s-1 is about
4.2 kpc: however, this is highly uncertain as a peculiar velocity
of only 5 km s-1 relative to the assumed rotation
curve would imply a strong variation of the distance; moreover a
distance of 4.2 kpc corresponds to a height of 265 pc above
the galactic plane, which is very large for a young star forming
region. We conclude that 4.2 kpc can be taken as an upper limit
on the distance.
4.1. The HCO flow
As shown in Figs. 4 and 7, the molecular gas seen in the HCO
(1-0) line presents a peculiar SE-NW bipolar
structure with a velocity reversal at
km s-1 and
km s-1 respectively in the blue- and red-shifted
gas. We believe that this can be explained if we are looking at an
almost edge-on bipolar outflow, i.e. with ,
where i is the angle between the outflow axis and the line of
sight. In fact, as discussed by Cabrit & Bertout (1986)
(see their
Fig. 1 and Table 1), if the opening angle, , of
the cone representing the outflow is such that ,
then either lobe of the outflow is associated with both blue- and
red-shifted gas. This is because the cone representing the outflow
intersects the plane of the sky passing through the centre of the
outflow itself. Then, if i is not exactly equal to
, the velocity of the gas on one side of such
plane (e.g. towards the observer) will be on the average higher than
that on the opposite side (away from the observer): thus, one side
would contribute to the inner wings, the other to the outer wings of
the line. Examples of this are shown in Fig. 6 of Cabrit & Bertout
(1986), where is assumed: their maps look
qualitatively similar to what one might obtain by superimposing the
maps in the top and bottom panels of our Fig. 7. Note that in
this model the outflow semi-axis pointing away from the observer lies
at SE, whereas that approaching the observer is at NW.
We conclude that the HCO (1-0) emission
traces a bipolar molecular outflow with an axis slightly inclined with
respect to the plane of the sky.
As noted in Sect. 3.1, the previous conclusions are inconsistent
with the N-S velocity shift seen in the 13 CO(2-1) line by
us and - on a larger scale - by WBM, who mapped the same region also
in the 12 CO(2-1) line (see their Fig. 2). Such a
disagreement can be explained by the fact that molecules like
12 CO or 13 CO sample more extended and lower
density regions than CS or HCO and hence may
also trace different velocity fields. Therefore, if two outflows do
exist, then the CO lines give a better representation of the large
scale outflow and of its mean physical parameters (temperature, from
12 CO, and mass, from 13 CO), whereas our maps
in the CS and HCO transitions are much more
suitable for studying the kinematics of the outflow on a smaller scale
associated with IRAS 20126+4104 and the H2 O masers. Note
that the existence of two outflows in the same region has been
hypothesised also by other authors in analogous cases (see e.g. Ladd
& Hodapp 1997).
4.1.1. Time scale and physical parameters of the flow
At the end of the previous section we have hypothesised the
existence of two outflows seen on different scales in the same region.
However, in the following we shall ignore the large scale flow seen by
WBM and concentrate on the small scale flow, seen by us in HCO
. We thus assume that also the 13 CO
emission mapped by us with the 30-m telescope on a small region
( ) traces the same outflow seen in HCO
. Under such assumption, one can estimate the
mass in the outflow by using the 13 CO(2-1) or HCO
(1-0) line. The former is a better probe for
mass estimates, because the value of the 13 CO abundance is
known reasonably well. However, we have just pointed out that
13 CO is a low density probe suitable for sampling larger
scales than those we wish to investigate in this paper; moreover, with
the 30-m telescope we have mapped only part ( )
of the 13 CO emitting region, as evidenced by the larger
maps of WBM, which reveal emission on a scale of at least
. In this respect, HCO is
to be preferred because less extended in size, although, in turn, it
is affected by great uncertainty on the value of its abundance, which
can easily vary by an order of magnitude.
We made an estimate using both lines. For this purpose, we
integrated our maps over the whole region mapped with the 30-m
telescope, in the velocity ranges from -28 to
-5 km s-1 and from -2 to
21 km s-1. The results obtained from the
13 CO(2-1) and HCO (1-0) maps are
listed in Table 5. They have been derived under the hypothesis of
optically thin emission, which seems reasonable for the line wings,
and assuming [13 CO/H2 ]=
, [HCO /H2 ]
, and =30 K for
both molecules; the latter corresponds to the peak
of the 13 CO(2-1) line.
![[TABLE]](img123.gif)
Table 5. Mass estimates for molecular outflow
The mass estimates derived from the two molecular species differ by
about a factor 3-4, which is well within the uncertainties mentioned
above. In the following we shall use the mass estimates from HCO
, which seem more appropriate for deriving the
physical parameters of the flow.
Estimates of the HCO outflow time scale, mass
loss rate, momentum, and mechanical luminosity are given in
Table 6.
![[TABLE]](img124.gif)
Table 6. Physical parameters of HCO outflow
The time scale of the outflow can be estimated from the size
measured from the PdBI maps (Fig. 7) and the maximum velocity at
which emission is detected; the mass loss rate is derived from the
values of Table 5 and the time scale; the momentum has been
obtained by summing the contribution at each velocity in the flow
(i.e. of each channel in our channel maps in the HCO
line); similarly, the mechanical luminosity has
been obtained by summing the kinetic energy at each velocity and
dividing the result by the time scale. Note that the mass loss rate in
Table 6 refers to the outflow, to be distinguished from the mass
loss rate, , of the stellar object powering the
outflow itself. The latter can be evaluated assuming momentum
conservation and e.g. a stellar wind velocity of
200 km s-1: under this assumptions one obtains
yrs-1.
We stress that the time scale in Table 6 is very likely an
upper limit to the true age of the flow, because - as previously
discussed - the flow axis lies almost in the plane of the sky:
therefore, while the size of the lobes is a good estimate of the real
size, the velocity measured underestimates the intrinsic expansion
velocity. As a consequence, the mass loss rate, momentum, and
mechanical luminosity in Table 6 are to be taken as lower limits.
In particular, the mass loss rate looks unusually high: although this
estimate is sensitive to the assumed HCO
abundance, we believe that values such high cannot presently be
excluded.
It is interesting to compare the energy in the outflow with that
dissipated by the shocks emitting the H2 line. The
luminosity of the H2 line is obtained from the integrated
flux in the H2 image, which turns out to be about
. This estimate has to be increased by a factor
to take into account the global emission in
all H2 lines (Davis & Eislöffel 1995) and is
anyhow quite uncertain due to the unknown foreground extinction;
nevertheless, as already noted, also the computed outflow luminosity
is a lower limit, so that one can reasonably conclude that only
of the flow energy is radiated in the shock.
This is similar to values found for other flows (see Table 7 of
Davis & Eislöffel 1995): the fact that such ratio is
insensitive to the geometry of the different regions seems to indicate
a unique acceleration mechanism for the outflow.
4.2. The ambient molecular gas
The outflow described in Sect. 4.1 arises from a molecular clump
mapped in the 13 CO, CS, and HCO
lines, as shown for example by the grey scale in Fig. 4. The
densest part of this clump is seen in high density tracers such as
those of Fig. 3 and in the PdBI maps of HCO
(see grey scale in Fig. 7): clearly, the bulk gas surrounds the
position of the H2 O masers and has an angular size of
( pc).
It is important to estimate the kinetic temperature,
, and the mass of the ambient gas. This can be
done using different tracers and the results are given in
Table 7. In particular, can be taken
equal to the peak of the 13 CO(2-1)
line (see Fig. 1 of WBM), which is thermalised and optically thick at
line centre, and appears resolved in our 30-m maps; alternatively, one
can use the peak of the PdBI maps in the HCO
(1-0) line. Another possibility is to assume
that the CH3 OH molecule is populated according to LTE and
derive the rotational temperature by means of Boltzmann plots of the
CH3 OH(3-2) and (5-4) lines (see Fig. 14). These
different approaches lead to kinetic temperatures in the range
30-50 K, which we consider to be encouraging agreement. One also
sees that higher density tracers indicate slightly higher
temperatures, which suggests that the temperature increases towards
the centre of the clump; this indication will be confirmed by the even
greater temperature of the core associated with the H2 O
masers (see Sect. 4.3).
![[TABLE]](img131.gif)
Table 7. Temperature and mass estimates for the bulk gas
![[FIGURE]](img135.gif) |
Fig. 14. Boltzmann plot from the CH3 OH(3-2) and (5-4) lines observed with the 30-m telescope. The column densities are source averaged, assuming a source angular diameter of . The straight line represents a least square fit to the data and corresponds to a rotation temperature of 50 K
|
The mass can be computed from 13 CO or HCO
with the same method used for the values in
Table 5: in this case the line emission has been integrated in
the velocity interval from -5 to -2 km s-1 over
the whole region mapped with the 30-m telescope. Otherwise, the
C34 S lines can be used to obtain an H2 density
of cm-3, by fitting the
observed line intensities with a numerical model based on the large
velocity gradient approximation (see e.g. Cesaroni et al. 1991): then
the mass is computed once the clump radius is known
( pc). Finally, an additional estimate of
the mass is obtained from the continuum flux measured at 1.3 mm
by Walker et al. (1990): their beam should
cover most of the clump and hence give a reliable value for the total
mass of the ambient gas. Under the assumption that the 1.3 mm
continuum is due to optically thin dust emission, we have used Eq.
(A10a) of Mezger et al. (1990), with b =1.9, solar metallicity,
and =40 K, to compute the gas mass. This
is given in Table 7.
Note that the masses in Table 7 derived from 13 CO
and HCO may be lower limits, since the emission
is optically thick. In fact the optical depth at line centre can be
easily derived from the ratio between 12 CO and
13 CO (WBM) and between HCO and
H13 CO (Acord, priv. comm.) and turns
out to be for 13 CO and
for HCO . Note also that
the mass derived from the 1.3 mm continuum differs from that
computed by Walker et al. (1990) because of different values used for
the distance, temperature, and dust emissivity.
The different estimates of the mass give consistent values, with
the sole exception of that derived from 13 CO which seems
sensitively larger than the others, although only by a factor
. As already noted in Sect. 4.1, this is
probably due to the fact that, given the large abundance of
13 CO, the 13 CO line is sensitive also to more
extended, lower density/temperature regions than the other tracers. We
conclude therefore that a mass of 100 is
a reasonable estimate for the gas on size
scales. This corresponds to an H2 density of
cm-3.
Note that the existence of a large temperature increase towards the
cloud core is very likely, as already noted above: here, we stress
that such temperature gradient is not taken into account by the method
used to derive a mass estimate from the millimeter continuum flux,
which instead assumes the cloud to be isothermal. A better model
capable of taking into account also temperature gradients would be
necessary to compute the fraction of the mass in the ambient cloud
(where K) and that in the core
( K), but this goes beyond our purposes.
We shall come back to this point in Sect. 4.3.
4.3. The CH3 CN core
Both the single dish maps of the high density tracers (Fig. 3)
and the HCO interferometer maps (Fig. 7)
demonstrate that the emission in the range from -9 to
2 km s-1 is closely associated with the compact
core detected in the CH3 CN and CH3 OH lines and
in the 3.3 mm continuum (Fig. 9). The size of this core is
0.01 pc and hence we consider it likely
that it is a "circumstellar" rather than "interstellar" in origin. The
high temperature derived (see Table 8) confirms this. It
coincides with the H2 O maser spots and with the
nominal position of the IRAS source: while the former
association is clearly established as the position of the masers is
very accurate (the VLA beam is about 0 08), the latter is uncertain,
due to the low angular resolution of IRAS. Nevertheless, in the
following we shall use the name IRAS 20126+4104 to indicate the core
seen with the PdBI: we shall justify this at the end of this
section.
![[TABLE]](img146.gif)
Table 8. Physical parameters of molecular core at IRAS 20126+4104 position
We now discuss the nature of such core.
From the dust continuum and the CH3 CN lines one can
derive estimates of the diameter, mass and temperature of the core.
These are given in Table 8.
The temperature has been derived from the CH3 CN lines
measured towards the peak position by using two different methods. The
first, called the rotation diagram (RD) method, assumes that all
energy levels of CH3 CN are populated according to local
thermodynamic equilibrium (LTE) with a single excitation temperature.
The second, called rotational temperature equilibrium (RTE) method,
uses two distinct excitation temperatures to describe the level
populations (for further details see e.g. Olmi et al. 1993). Both
methods assume optically thin emission in the lines.
We have applied the RTE method to the CH3 CN(5-4),
(8-7), and (12-11) ground state lines and the RD method to the
CH3 CN(5-4) ground state and =1
lines. In both cases a source diameter of has
been assumed. The fits obtained with these techniques are shown in
Figs. 15 and 16. In the latter we have also tried to correct for
optical depth effects in the ground state CH3 CN(5-4) lines
multiplying the corresponding column densities by a factor 5: in fact,
this is a rough estimate of the CH3 CN(5-4) optical depth
as derived from the ratio between the CH3 CN and C
CN lines assuming [CH3
CN/H2 ]/[13 CH3 CN/H2
]=70. The RTE technique is consistent with
K, whereas the RD method implies K
in the thin limit and K when the
correction for the optical depth is applied.
We thus conclude that 200 K is the most likely value for
in the core. Incidentally we note that neither
the core nor the ambient gas temperature are sufficient to explain the
observed line FWHM in terms of thermal broadening: in particular, as
pointed out in Sect. 3.1, the FWHM increases from
km s-1, in the lines
tracing the ambient gas, to
km s-1, in the transitions arising from the
core. Such an enhancement resembles that seen in Mon R2 by
Tafalla et
al. (1996) and suggests that turbulence increases on small scales,
close to the origin of the outflow.
![[FIGURE]](img154.gif) |
Fig. 15. RTE fits to the CH3 CN(5-4), (8-7), and (12-11) ground state lines. A source angular diameter of has been assumed. The straight lines represent least square fits to the data. The HPBW for the (5-4), (8-7), and (12-11) lines are respectively , and
|
![[FIGURE]](img156.gif) |
Fig. 16. RD fits to the CH3 CN(5-4) ground state and =1 lines. A source angular diameter of has been assumed. The full line represents the least square fit to the data; the dashed line is instead the fit to the points obtained by correcting the ground state column densities by a factor 5 to take into account the line optical depth
|
The same methods used for computing give
also an estimate of the source averaged CH3 CN column
density, and hence of the gas mass of the core, assuming
[CH3 CN/H2 ]= : this is
indicated with in Table 8. Alternatively,
the mass can be estimated, in the optically thin limit, from the
continuum emission at 3.3 mm - which we assume to be mostly due
to dust (see Sect. 3.3) - as already done in Sect. 4.2, assuming
=200 K: this is indicated with
. The two values agree very well, suggesting a
core mass of .
As already discussed in Sect. 4.2, the assumption of a single
temperature for deriving the mass from the continuum flux is not very
realistic. However, we believe that can hardly
be wrong by more than a factor , because the
contribution to the millimeter continuum flux from the high-mass
( ), low-temperature (
K) ambient gas is comparable to that from the low-mass
( ), high-temperature (
K) core.
One can estimate the bolometric luminosity,
, by integrating the four IRAS fluxes, shown in
Fig. 11. Under the assumption that most of the emission seen by
IRAS originates from the core, can be taken as
an estimate of its luminosity. The result is given in column 7 of
Table 8. In column 8 we show the spectral type of the star
with luminosity , as derived from Panagia
(1973). seems to indicate the existence of an
early type (B0.5) star: this is perfectly consistent with the IRAS
colours of IRAS 20126+4104, which satisfy the Wood & Churchwell
(1989b) criteria for identifying UC HII regions.
For an optically thin UC HII region fed by a B0.5
star one would expect a continuum flux at 3.6 cm of
mJy; on the other hand, the continuum
flux measured at 3.6 cm by Marti & Rodriguez (in prep) is
much lower ( mJy), consistent with a B2.5
star. The discrepancy between the spectral types derived from
and from the radio flux is well known (see
e.g. Wood & Churchwell 1989a): in fact, the former tends to
overestimate the spectral type if many stars fall in the IRAS beam,
the latter underestimates it if dust is present in the
UC HII region.
We conclude that there are clear indications for IRAS 20126+4104
being a young early type (B2.5-B0.5) (proto)star deeply embedded in a
hot, dense, compact molecular core.
© European Southern Observatory (ESO) 1997
Online publication: April 28, 1998
helpdesk.link@springer.de  |