 |  |
Astron. Astrophys. 327, 325-332 (1997)
3. Distribution in the galactic disk
Once the heliocentric distance for each cloud in our sample is
determined (see Sect. 3.1.1), then the corresponding galactocentric
distance R can be computed. Column 8 in Table 2 displays
this parameter. The galactocentric distance distribution of the 177
outer Galaxy clouds is shown in Fig. 7. The sample appears complete
for distances up to 15.5 kpc from the galactic center.
![[FIGURE]](img101.gif) |
Fig. 7. Galactocentric distance distribution of the 177 outer Galaxy clouds for which physical properties have been derived. The sample appears to be incomplete for distances beyond 15.5 kpc from the galactic center
|
Fig. 8 shows the distance from the plane, z, as a function
of the galactic longitude for all our clouds. To visualize the effect
of warping and flaring of the molecular disk the ensemble of clouds
has been divided in three groups depending on their galactocentric
radius: a) between 9 and 11 kpc; b) between 11 and 13 kpc; and c)
between 13 and 19 kpc. For our sample of clouds the maximum distance
from the plane, z of about 700 pc below the plane, is found at
around in galactic longitude. The thickness of
the molecular disk increases with galactocentric radius from 200 pc
for the nearest group to 800 pc for the farthest.
![[FIGURE]](img104.gif) |
Fig. 8. Distance from the galactic plane as a function of the galactic longitude for our sample of clouds. To visualize the warping and flaring of the molecular disk the ensemble of clouds has been divided in three different galactocentric distances: a between 9 and 11 kpc, b between 11 and 13 kpc, and c between 13 and 19 kpc. The straight line indicates roughly the inclination of the plane at each range of distances. The flaring increases from 200 pc for the nearest group up to 800 pc for the farthest
|
The distribution of the clouds in the third quadrant projected on
the galactic disk is shown in Fig. 9, where we have represented,
arbitrarily, by larger filled circles the clouds which are more
massive than . No grand design spiral pattern
can be readily visualized from the projection of the clouds on the
galactic disk. A similar result has been obtained by Wouterloot et al.
(1990) using CO emission associated with IRAS sources in the second
and third galactic quadrants.
![[FIGURE]](img109.gif) |
Fig. 9. Distribution of the outer Galaxy clouds from our sample projected on the galactic disk. The Sun is at , . The circle segments correspond to galactocentric distances of 10, 15, and 20 kpc, respectively. The small and large filled circles represent clouds less and more massive than , respectively. No grand design spiral structure can be readily visualized from this figure
|
From the study of the physical properties of the 177 molecular
clouds located in the third galactic quadrant, beyond 2 kpc from the
Sun, we can conclude the following:
- The clouds follow the size-line width and size-mean number
density power-law relations found by other authors.
- Under the assumptions made the clouds are in approximate
virial equilibrium because they come relatively close
(
) to fulfill the requirement of
for clouds in virial equilibrium.
- Adopting
molecules cm-2 (K km s
, twice the value used for inner Galaxy clouds,
the derived statistically agree with the
computed .
- The clouds are less massive, smaller and with narrower line widths
than those in the inner Galaxy.
- The mass spectrum for the clouds with
has
a slope -1.45, which is similar to that found for the inner Galaxy
clouds (-1.50).
- The warping and flaring of the outer molecular disk is clearly
delineated.
© European Southern Observatory (ESO) 1997
Online publication: April 8, 1998
helpdesk.link@springer.de  |