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Abstract. The evolution of a binary star system by various an-
alytic approximations of mass transfer is discussed, with partic-
ular attention payed to the stability of these processes against
runaway on the thermal and dynamical timescales of the mass
donating star. Mass transfer in red giant - neutron star binary
systems is used as a specific example of such mass transfer, and
is investigated. Hjellming & Webbink’s (1987) results on the
dynamic timescale response of a convective star with a core to
mass loss are applied, with new results.

It is found that mass transfer is usually stable, as long as the
wind’s specific angular momentum does not exceed the angular
momentum per reduced mass of the system. This holds for both
dynamical and thermal timescales. Those systems which are
not stable will usually transfer mass on the thermal timescale.
Included are graphs illustrating the variation of ∂ ln rL

∂ lnm ≡ ζL
with mass ratio in the binary, for various parameters in the
non-conservative mass transfer, as well as evolutionary paths
of interacting red giant neutron star binaries.
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1. Introduction

The dominant feature in the evolution of stars in tight bina-
ries, and the one which distinguishes it from the evolution of
single stars is the presence of various forms of mass transfer
between the two stars. Mass transfer occurs in many different
types of systems, to widely varying effects (cf.: Shore 1994):
contamination of the envelope of a less evolved star with chem-
ically processed elements, as in Barium stars; winds from one
star, which may be visible as a screen in front of the other, as
in EM Car, AO Cas, and most notably the binary PSR 1259-
63 (Johnston et al. 1992; Kochanek 1993; Melatos et al. 1995;
Johnston et al. 1995); catastrophic mass transfer, by common
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envelope phase, as in W UMa systems; or a slow, steady mass
transfer by Roche lobe overflow (RLOF).

Mass transfer is particularly interesting if one considers the
evolution of a system with at least one degenerate star. In these
cases, mass transfer produces spectacular effects, resulting in
part from the intense magnetic and gravitational fields of the
compact objects – pulsed X-ray emission, nuclear burning, no-
vae outbursts, and so on. Also, since the mass transfer rates can
be high, and orbital period measurements accurate, one may see
the dynamical effects of mass transfer on the binary orbit, as in
Cygnus X-3 (van Kerkwijk et al. 1992; van den Heuvel 1994).

In the case of cataclysmic variables (CVs) and low mass
X-ray binaries (LMXBs), one has a highly evolved, compact
star (CVs and LMXBs contain white dwarfs and neutron stars,
respectively) and a less evolved main sequence or red giant star.
Mass transfer usually proceeds by accretion onto the compact
object, and is secularly stable. The transfer may be accompanied
by a stellar wind from the mass-losing star, or ejection of matter
from the accretor, as in novae and galactic jet sources.

There are various unanswered questions in the evolution of
LMXBs into low mass binary pulsars (LMBPs, in which a mil-
lisecond radio pulsar is in a binary with a low mass white dwarf
companion) and of CVs. Among these are the problem of the
disparate birthrates of the LMXBs and the LMBPs (Kulkarni
& Narayan 1988), estimation of the strength of X-ray heating
induced winds from the donor star (London et al., 1981; Lon-
don & Flannery 1982; Tavani & London 1993; Banit & Shaham
1992), effects of X-ray heating on the red giant structure (Pod-
siadlowski 1991; Harpaz & Rappaport 1991; Frank et al. 1992;
Hameury et al. 1993), et c.

The problem of mass transfer in binaries by Roche lobe
overflow has received a good deal of attention in the literature
over the past few decades, typically in investigations of one
aspect or another of orbital evolution or stability. Ruderman
et al. (1989) examined mass transfer by isotropic winds and
accretion, in investigating the evolution of short period binary
X-ray sources with extreme mass ratios, such as PSR 1957+20
and 4U1820-30. King & Kolb (1995) developed models with
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accretion and (typically) isotropic re-emission of transferred
matter, in the context of the period gap in cataclysmic variables.

The aim of this paper is to present a unified treatmant of
binary orbital evolution and stability, with relevant equations
in a general form. The limits of pure modes of mass transfer
and extreme mass ratios are presented and examined, to gain a
qualitative understanding of slow, non-disruptive mass transfer
in its various forms.

The paper is organised as follows. Kinematic equations for
orbital evolution, assuming mass transfer through some well-
specified mode(s), are derived in Sect. (2). Conditions for and
regions of stability are derived in Sect. (3). The theory is ap-
plied to LMXBs in Sect. (4), and conclusions drawn in the final
section. Two appendices contain further details on the unified
models and on comparisons among the various limits of the
models.

2. Mass transfer and the evolution of orbital parameters

In this section, expressions for the variation of orbital parameters
with loss of mass from one of the stars are derived. In what
follows, the two stars will be referred to as m1 and m2, with the
latter the mass losing star.

A binary composed of two stars with radii of gyration much
less than the semimajor axis awill have an angular momentum:

L = µ
2π
P
a2(1− e2)1/2 , (1)

where the period P is related to a and the total mass MT =
m1 + m2 through Kepler’s law:

GMT = a3

(
2π
P

)2

. (2)

Here, the reduced mass µ = m1m2/MT , the mass ratio q =
m2/m1, and e is the eccentricity. Tidal forces circularise the
orbits of semidetatched binaries on timescales of 104y � τnuc,1

the nuclear timescale on which the binaries evolve (Verbunt &
Phinney 1995). Furthermore, one expects stable mass transfer
by RLOF to circularise orbits. Consequently, an eccentricity
e = 0 will be assumed for the remainder of this work.

Eqs. (1) and (2) combine to give expressions for the semi-
major axis and orbital period, in terms of the masses and angular
momentum:

a =

(
L

µ

)2

(GMT )−1 , (3)

P

2π
=

(
L

µ

)3

(GMT )−2 , (4)

with logarithmic derivatives:

∂ ln a = 2 ∂ ln (L/µ)− ∂ lnMT , (5)

∂ lnP = 3 ∂ ln (L/µ)− 2 ∂ lnMT . (6)

1 In the usual case where the tidal timescale is also much shorter than
the timescale of angular momentum loss by gravitational wave radia-
tion, binaries in which mass transfer is driven by angular momentum
loss are also tidally locked.

There are various modes (or, borrowing from the terminol-
ogy of nuclear physics, channels) of mass transfer associated
with the different paths taken by, and destinations of mass lost
from m2.

The details of mass transfer must be considered, in order to
calculate the orbital evolution appropriate to each mode. Several
of these modes are described here, roughly following Sect. 2.3
of the review article by van den Heuvel (1994).

The mode which is most often considered is accretion, in
which matter from m2 is deposited onto m1. The accreted com-
ponent (slow mode) conserves total mass MT and orbital an-
gular momentum L. In the case considered here, of a Roche
lobe filling donor star, matter is lost from the vicinity of the
donor star, through the inner Lagrangian point, to the vicinity
of the accretor, about which it arrives with a high specific angu-
lar momentum. If the mass transfer rate is sufficiently high, an
accretion disk will form (cf: Frank, King, and Raine 1985). The
disk forms due to viscosity of the proffered fluid and transports
angular momentum away from and mass towards the accretor.
As angular momentum is transported outwards, the disk is ex-
pands to larger and larger circumstellar radii, until significant
tides develop between the disk and the mass donor. These tides
transfer angular momentum from the disk back to the binary
and inhibit further disk growth (Lin & Papaloizou 1979). The
mass transfer process is conservative if all mass lost from the
donor (m2) is accreted in this way.

The second mode considered is Jeans’s mode, which van
den Heuvel calls, after Huang (1963), the fast mode; the third is
isotropic re-emission. Jeans’s mode is a spherically symmetric
outflow from the donor star in the form of a fast wind. The best
known example of Jeans’s mode: the orbital evolution associ-
ated with Type II supernovae in binaries (Blaauw 1961) differs
markedly from what is examined here. In that case, mass loss is
instantaneous. A dynamically adiabatic outflow (m/ṁ� Porb)
is considered here.

An interesting variant of Jeans’s mode is isotropic re-
emission. This is a flow in which matter is transported from
the donor star to the vicinity of the accretor, where it is then
ejected as a fast, isotropic wind. The distinction between Jeans’s
mode and isotropic re-emission is important in considerations
of angular momentum loss from the binary. Mass lost by the
Jeans mode carries the specific angular momentum of the mass
loser; isotropically re-emitted matter has the specific angular
momentum of the accretor.

Wind hydrodynamics are ignored.
The fourth case considered is the intermediate mode, or mass

loss to a ring. No mechanism for mass loss is hypothesised for
this mode. The idea is simply that the ejecta has the high specific
angular momentum characteristic of a circumbinary ring.

The differences among each of these modes is in the vari-
ation of the quantities q, MT , and most importantly L/µ, with
mass loss. For example, given a q = 0.25 binary, mass lost into
a circumbinary ring (ar > a) removes angular momentum at
least 25 times faster than mass lost by isotropic re-emission.
This difference will have a great effect on the evolution of the
orbit, as well as on the stability of the mass transfer.
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Table 1. Names, brief description of, and dimensionless specific an-
gular momentum of the modes of mass loss explored in this paper.
Parameters α, β, γ, δ, ε, and A are defined in Eqs. (7), (8), (35), (37),
and (14), respectively. The factor A in the fast mode is typically unity

Name of Mode Type − ∂mmode
∂m2

µhloss/L

Jeans/Fast Isotropic wind α A
(1+q)2

— Isotropic Re-emission — β q
(1+q)2

Intermediate Ring δ γ
Slow Accretion ε 0

In the following sections, formulae for the orbital evolution
of a binary under different modes of mass loss are presented and
integrated to give expressions for the change in orbital parame-
ters with mass transfer. The different modes are summarised in
Table (1).

Due to the formality of the following section and the cumber-
some nature of the formulae derived, one should try to develop
some kind of intuitition, and understanding of the results. The
two sets of results (i.e.: one for a combination of winds, the other
for ring formation) are examined in the limits of extreme mass
ratios, compared to one another, and their differences reconciled
in the first Appendix.

2.1. Unified wind model

Consider first a model of mass loss which includes isotropic
wind, isotropic re-emission, and accretion, in varying strengths.
Conservative mass transfer, as well as pure forms of the two
isotropic winds described above, can then be recovered as lim-
iting cases by adjusting two parameters of this model:

α = −∂mwind

∂m2

, (7)

β = −∂miso−r
∂m2

. (8)

Here, ∂mwind is an infinitesimal mass of wind from star 2
(isotropic wind), and ∂miso−r an infinitesimal mass of wind
from star 1 (isotropic re-emission). Both amounts are expressed
in terms of the differential mass ∂m2, lost from star 2. A sign
convention is chosen such that ∂mstar is positive if the star’s
mass increases, and∂mflow is positive if removing matter (from
m2). Given the above, one can write formulae for the variation
of all the masses in the problem:

εw ≡ 1− α− β (9)

∂ lnm1 = −qεw ∂ lnm2 (10)

∂ lnMT =
q

1 + q
(α + β) ∂ lnm2 (11)

∂ ln q = (1 + εwq) ∂ lnm2 (12)

∂ ln µ = ∂ lnm2 − q

1 + q
∂ ln q . (13)

Neglecting accretion onto the stars from the ISM and mass
currents originating directly from the accretor, all transferred

mass comes from the mass donating star (m2) and α, β, and the
accreted fraction εw all lie between 0 and 1, with the condition
of mass conservation α+β+εw = 1, imposed by Eq. (9). For the
remainder of this section, the subscript on εw will be eschewed.

If mass is lost isotropically from a nonrotating star, it carries
no angular momentum in that star’s rest frame. In the center of
mass frame, orbital angular momentum L will be removed at a
rate L̇ = h ṁ, where ṁ is the mass loss rate and h the specific
angular momentum of the orbit.

If a wind-emitting star is rotating, then it loses spin angular
momentum S at a rate Ṡ = R2

WΩ∗ṁ, where Ω∗ is that star’s
rotation rate andR2

W the average of the square of the perpendic-
ular radius at which the wind decouples from the star. Strongly
magnetised stars with ionised winds will have a wind decou-
pling radius similar to their Alfvén radius, and spin angular
momentum may be removed at a substantially enhanced rate.

The above consideration becomes important in the case of
a tidally locked star, such as a Roche lobe filling red giant. In
this case, if magnetic braking removes spin angular momentum
from the star at some enhanced rate, that star will begin to spin
asynchronously to the orbit and the companion will establish
tides to enforce corotation. These tides are of the same form as
those between the oceans and the Moon, which are forcing the
length of the day to tend towards that of the month.

Strong spin-orbit coupling changes the evolution of orbital
angular momentum in two ways. First, for a given orbital fre-
quency, there is an extra store of angular momentum, due to
the inertia of the star. Thus, for a given torque, L evolves more
slowly, by a factor L/(L+S). The second is from the enhanced
rate of loss of total angular momentum, due to the loss of spin
angular momentum from the star. Extreme values of RW /R∗
allow the timescale for loss of spin angular momentum to be
much less than that for orbital angular momentum. Thus, the
second effect will either compensate for or dominate over the
first, and there will be an overall increase in the torque due to
this wind.

This enhancement will be treated formally, by taking the
angular momentum loss due to the fast mode to occur at a rate
A times greater than what would be obtained neglecting the
effects of the finite sized companion.

Keeping the above discussion in mind, the angular momen-
tum lost from the system, due to winds is as follows:

∂L = (Aαh2 + βh1)∂m2 , (14)

which can be simplified by substituting in expressions for the
hi:

hi = Li/mi

= (L/µ)
MT −mi

MT

µ

mi
(15)

h1 =
q2

1 + q

L

m2

(16)

h2 =
1

1 + q

L

m2

(17)
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∂L =
Aα + βq2

1 + q

L

m2

∂m2 (18)

∂ lnL =
Aα + βq2

1 + q
∂ lnm2 . (19)

So far, the equations have been completely general; α, β,
and A may be any functions of the orbital elements and stellar
properties. Restricting these functions to certain forms leads to
simple integrable models of orbital evolution. If constant frac-
tions of the transferred mass pass through each channel (α, β
constant), then the masses are expressable as simple functions
of the mass ratio q:

m2

m2,0

=

(
q

q0

)(
1 + εq0

1 + εq

)
(20)

m1

m1,0

=

(
1 + εq0

1 + εq

)
(21)

MT

MT,0

=

(
1 + q

1 + q0

)(
1 + εq0

1 + εq

)
(22)

µ

µ0
=

(
q

q0

)(
1 + q0

1 + q

)(
1 + εq0

1 + εq

)
(23)

Furthermore, if the enhancement factorA is also constant2, then
the angular momentum is an integrable function of q, as well:

L

L0
=

(
q

q0

)Aw
(

1 + q0

1 + q

)Bw
(

1 + εq

1 + εq0

)Cw

, (24)

where the exponents3 are given by:

Aw = Aα , (25)

Bw =
Aα + β

1− ε
, (26)

Cw =
Aαε

1− ε
+

β

ε(1− ε)
. (27)

Finally, substitution of Eqs. (22), (23), and (24) into Eqs. (3)
and (4) gives expressions for the evolution of the semimajor axis
and orbital period in terms of the changing mass ratio q:

a

a0
=

(
q

q0

)2Aw−2( 1 + q

1 + q0

)1−2Bw

(
1 + εq

1 + εq0

)3+2Cw

, (28)

P

P0
=

(
q

q0

)3Aw−3( 1 + q

1 + q0

)1−3Bw

(
1 + εq

1 + εq0

)5+3Cw

. (29)

2 This may not be the best approximation, if the orbit widens or
narrows significantly and the torque is dominated by magnetic braking.
3 There is no problem when the denominator 1 − ε → 0, as the
numerator vanishes at the same rate. For Cw, the power laws become
exponentials in the absence of accretion (ε = 0).

The derivatives of these functions may be evaluated either by
logarithmic differentiation of the above expressions (Eqs. (28)
and (29)), or by substitution of Eqs. (11), (12), (13), and (19)
into Eqs. (5) and (6). Either way, the results are:

∂ ln a
∂ ln q

= 2(Aw − 1) + (1− 2Bw)
q

1 + q

+(3 + 2Cw)
q

1 + εq
, (30)

∂ lnP
∂ ln q

= 3(Aw − 1) + (1− 3Bw)
q

1 + q

+(5 + 3Cw)
q

1 + εq
. (31)

The reader should be convinced that the above equations
are correct. First, and by fiat, they combine to give Kepler’s law.
Second, they reduce to the familiar conservative results:

a

a0
=

(
q0

q

)2( 1 + q

1 + q0

)4

, (32)

P

P0
=

(
q0

q

)3( 1 + q

1 + q0

)6

, (33)

in the ε = 1 limit. Finally, and again by construction, the
formulae are composable. Ratios such as P/P0 are all of the
functional form f (q)/f (q0), so if one forms e.g.: (P2/P0) =
(P2/P1)(P1/P0), the result is immediately independent of the
arbitrarily chosen intermediate point P1 = P (q1).

Note that the results for isotropic re-emission obtained by
Bhattacharya & van den Heuvel (1991, Eq. (A.6)), and again
by van den Heuvel (1994, Eq. (40)) are not composable, in the
sense described above. The correct expression for (a/a0) in the
case of isotropic re-emission may be obtained by setting α = 0:

a

a0
=

(
q0

q

)2(1 + q0

1 + q

)(
1 + (1− β)q
1 + (1− β)q0

)5+ 2β
1−β

. (34)

Also note that Eq. (A.7) of Bhattacharya & van den Heuvel
(1991) should have its exponential in the numerator, as opposed
to the denominator. In van den Heuvel (1994), Eq. (37) should

read ∂ ln J = βq2

1+q
∂ ln q

1+(1−β)q . In Eq. (38), an equals sign should
replace the plus. (These corrections were also found by Tauris
(1996)).

Thus, if there is mass loss from one star, with constant frac-
tions of the mass going into isotropic winds from the donor
and its companion, one can express the variation in the binary
parameters, MT , a, and P , in terms of their initial values, the
initial and final values of the ratio of masses, and these mass
fractions.

2.2. Formation of a coplanar ring

Now consider a model in which mass is transferred by accretion
and ring formation, as described above. For concreteness, follow
a standard prescription (cf: van den Heuvel (1994)) and take
the ring’s radius, ar to be a constant multiple γ2 of the binary
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semimajor axis. This effectively sets the angular momentum of
the ring material, since for a light ring,

hr = Lr/mr =
√
GMTar = γL/µ . (35)

Formulae describing orbital evolution can be obtained
acording to the prescription of the previous section. If a fraction
δ of the mass lost from m2 is used in the formation of a ring,
then Eqs. (9) and (19) should be replaced as follows:

εr ≡ 1− δ (36)

∂L = δhr ∂m2

= γδL/µ ∂m2

= γδ(1 + q)L/m2 ∂m2 (37)

∂ lnL = γδ(1 + q) ∂ lnm2 . (38)

Following the procedure used in Sect. (2.1), and with δ = 1
(εr = 0):

MT

MT,0

=

(
1 + q

1 + q0

)
, (39)

L

L0
=

(
q

q0

)γ

exp(γ(q − q0)) , (40)

a

a0
=

(
q

q0

)2(γ−1)( 1 + q

1 + q0

)
exp (2γ(q − q0)) , (41)

P

P0
=

(
q

q0

)3(γ−1)( 1 + q

1 + q0

)
exp(3γ(q − q0)) . (42)

∂ ln a
∂ ln q

= 2γ(1 + q)− 2 +
q

1 + q
, (43)

∂ lnP
∂ ln q

= 3γ(1 + q)− 3 +
q

1 + q
. (44)

Unless the ring is sufficiently wide (ar/a >∼ 2), it will orbit
in a rather uneven potential, with time-dependant tidal forces
which are comparable to the central force. In such a potential,
it would likely fragment, and could fall back upon the binary.
Consequently, stability probably requires the ring to be at a
radius of at least a few times a. A ‘bare-minimum’ for the ring
radius is the radius of gyration of the outermost Lagrange point
of the binary. This is between a and 1.25a, depending on the
mass ratio of the binary (Pennington 1985). The ring should not
sample the potential at this radius. For most of what follows,
we will work with a slightly wider ring: ar/a = γ2 = 2.25 and
δ = 1.

3. Linear stability analysis of the mass transfer

Mass transfer will proceed on a timescale which depends criti-
cally on the changes in the radius of the donor star and that of
its Roche lobe in response to the mass loss. The mass transfer
might proceed on the timescale at which the mass transfer was

initially driven (e.g.: nuclear, or orbital evolutionary), or at one
of two much higher rates: dynamical and thermal.

If a star is perturbed by removal of mass, it will fall out of
hydrostatic and thermal equilibria, which will be re-established
on sound crossing (dynamical) and heat diffusion (Kelvin-
Helmholtz, or thermal) timescales, respectively. As part of the
process of returning to equilibrium, the star will either grow or
shrink, first on the dynamical, and then on the (slower) ther-
mal timescale. At the same time, the Roche lobe also grows
or shrinks around the star in response to the mass loss. If af-
ter a transfer of a small amount of mass, the star’s Roche lobe
continues to enclose the star, then the mass transfer is stable,
and proceeds on the original driving timescale. Otherwise, it is
unstable and proceeds on the fastest unstable timescale.

In stability analysis, one starts with the equilibrium situation
and examines the small perturbations about it. In this case, the
question is whether or not a star is contained by its Roche lobe.
Thus, one studies the behaviour of the quantity

∆ζ =
m

R

δ∆R

δm
, (45)

which is the (dimensionless) variation in the difference in radius
between the star and its Roche lobe, in response to change in
that star’s mass. Here ∆R is the difference between the stellar
radius R∗ and the volume-equivalent Roche radius rL. The star
responds to this loss of mass on two widely separated different
timescales, so this analysis must be performed on both of these
timescales.

The linear stability analysis then amounts to a comparison
of the exponents in power-law fits of radius to mass, R ∼ mζ :

ζs ≡ ∂ lnR∗
∂ lnm

∣∣∣∣
s

, (46)

ζeq ≡ ∂ lnR∗
∂ lnm

∣∣∣∣
eq

, (47)

ζL ≡ ∂ ln rL
∂ lnm

∣∣∣∣
bin.evol.

, (48)

where R∗ and m refer to the mass-losing, secondary star. Thus,
R∗ = r2 and m = m2. Stability requires that after mass loss
(δm2 < 0) the star is still contained by its Roche lobe. Assuming
∆R2 = 0 prior to mass loss, the stability condition then becomes
δ∆R2 < 0, or ζL < (ζs, ζeq). If this is not satisfied, then mass
transfer runs to the fastest, unstable timescale.

Each of the exponents is evaluated in a manner consistent
with the physical process involved. For ζs, chemical abundance
and entropy profiles are assumed constant and mass is removed
from the outside of the star. For ζeq, mass is still removed from
the outside of the star, but the star is assumed to be in the thermal
equilibrium state for the given chemical profile. In calculating
ζL, derivatives are to be taken along the assumed evolutionary
path of the binary system.

In the following subsections these exponents are described
a bit further and computed in the case of mass loss from a bi-
nary containing a neutron star and a Roche lobe-filling red giant.
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Such systems are thought to be the progenitors of the wide orbit,
millisecond pulsar, helium white dwarf binaries. They are inter-
esting, both by themselves, and as a way of explaining the fossil
data found in white dwarf – neutron star binaries. The problem
has been treated by various authors, including Webbink et al.
(1983), who evolved such systems in the case of conservative
mass transfer from the red giant to the neutron star.

3.1. Adiabatic exponent: ζs

The adiabatic response of a star to mass loss has long been un-
derstood (see, for example, Webbink (1985) or Hjellming &
Webbink (1987) for an overview), and on a simplistic level, is
as follows. Stars with radiative envelopes (upper-main sequence
stars) contract in response to mass loss, and stars with convec-
tive envelopes (lower-main sequence and Hayashi track stars)
expand in response to mass loss. The physics is as follows.

A star with a radiative envelope has a positive entropy gra-
dient near its surface. The density of the envelope material, if
measured at a constant pressure, decreases as one samples the
envelope at ever-increasing radii. Thus, upon loss of the outer
portion of the envelope, the underlying material brought out of
pressure equilibrium expands, without quite filling the region
from which material was removed. The star contracts on its
dynamical timescale, in response to mass loss.

A star with a convective envelope has a nearly constant en-
tropy profile, so the preceding analysis does not apply. Instead,
the adiabatic response of a star with a convective envelope is
determined by the scalings among mass, radius, density, and
pressure of the isentropic material. For most interesting cases,
the star is both energetically bound, and expands in response to
mass loss.

Given the above physical arguements, the standard expla-
nation of mass-transfer stability is as follows. A radiative star
contracts with mass loss and a convective star expands. If a
convective star loses mass by Roche lobe overflow, it will ex-
pand with possible instability if the Roche lobe does not expand
fast enough. If a Roche lobe-filling radiative star loses mass, it
will shrink inside its lobe (detach) and the mass transfer will be
stable.

This analysis “is of only a meagre and unsatisfactory kind”
(Kelvin 1894), as it treats stellar structure in only the most sim-
plistic way: convective vs. radiative envelope.

One can quantify the response of a convective star by adopt-
ing some analytic model for its structure, the simplest being an
isentropic polytrope. This is a model in which the pressure P
and density ρ vary as

P (r) = Kρ(r)1+1/n (49)

and the constituent gas has an adiabatic exponent related to the
polytropic index through γ = 1 + 1/n. Other slightly more real-
istic cases include those with γ 6= 1+1/n, applicable to radiative
stars; composite polytropes, with different polytropic indices for
core and envelope; and centrally condensed polytropes, which
are polytropes with a point mass at the center. These are all con-
sidered in a paper by Hjellming & Webbink (1987). We use the

condensed polytropes, as they are simple, fairly realistic models
of red giant stars, which tend in the limit of low envelope mass
to (pointlike) proto-white dwarfs which are the secondaries in
the low mass-binary pulsar systems.

What follows is a brief treatmant of standard and condensed
polytropes, as applicable to the adiabatic response to mass loss.

Scaling arguements give ζs for standard polytropes. The
pressure is an energy density and consequently scales as
GM 2R−4; density scales as MR−3. The polytropic relation
(Eq. (49)) immediately gives the scaling between R and M .
Since the material is isentropic, the variation of radius with
mass loss is the same as that given by the radius-mass relation
of stars along this sequence. Consequently, for polytropic stars
of index n,

ζs =
n− 1
n− 3

. (50)

In particular, ζs = −1/3 when n = 3/2 (γ = 5/3).4

The above approximation is fine towards the base of the red
giant branch, where the helium core is only a small fraction
of the star’s mass. It becomes increasingly poor as the core
makes up increasingly larger fractions of the star’s mass, which
happens when the star climbs the red giant branch or loses its
envelope to RLOF. Mathematically speaking, the scaling law
that lead to the formula for ζs is broken by the presence of
another dimensionless variable, the core mass fraction.

A far better approximation to red giant structure, and only
slightly more complex, is made by condensed polytropes, which
model the helium core as a central point mass (see, e.g.: Hjellm-
ing & Webbink (1987)). Admittedly, this is a poor approxima-
tion, as concerns the core. However, the star’s radius is much
greater than that of the core, so this is a good first-order treat-
ment. Furthermore, differences between this approximation and
the actual structure occur primarily deep inside the star, while
the star responds to mass loss primarily near the surface, where
the fractional change in pressure is high. Overlap between the
two effects is negligible.

Analysis of the condensed polytropes requires integrating
the equation of stellar structure for isentropic matter (Lane-
Emden equation), to get a function R(S,Mc,M ), and differen-
tiating R at constant specific entropy S (adiabatic requirement)
and core mass Mc (no nuclear evolution over one sound cross-
ing time). In general, the Lane-Emden equation is non-linear,
and calculations must be performed numerically. The cases of
n = 0 and n = 1 are linear and analytic. The case of n = 1
is presented below, as a nontrivial, analytic example, both for
understanding, and because it can be used as a check of numeric
calculations of ζs.

The n = 1 Lane-Emden equation is (cf.: Clayton (1968)):

x−2 d

dx
x2 d

dx
φ(x) = −φ(x) . (51)

4 This formula also reproduces the two following results. The gas
giant planets (n = 1) all have approximately the same radius. Massive
white dwarfs (n = 3) are dynamically unstable.
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Here, x = r
√

2πG/K = r/` is the scaled radial coordinate
and φ = ρ/ρc is the density, scaled to its central value5. The
substitution φ(x) = x−1u(x) allows solution by inspection:

φ(x) =
sin(x)
x

x ∈ [0, π] . (52)

The polytropic radius is set by the position of the first root of
φ and is therefore at R = π`. Similarly, M = 4π2ρc`

3. Eq. (51)
shows that the density (φ) may be rescaled, without affecting
the length scale, so R is independent of M , and ζs = 0.

Alternately, the n = 1 polytrope admits a length scale, `
which depends only on specific entropy, so the polytrope’s ra-
dius is independent of the mass.

Generalising to condensed polytropes, Eq. (52) suggests the
extension:

φ(x) =
sin(x + x0)

x
x ∈ [0, π − x0] . (53)

For this model, the stellar radius, stellar mass, and core mass
are

R = (π − x0)R0 , (54)

M = (π − x0)M0 , (55)

Mc = M (x→ 0)

= M0 sin(x0) , (56)

for some M0 and R0. The core mass fraction

m =
Mc

M
=

sin(x0)
π − x0

(57)

is a monotonic function in x0, and increases from 0 to 1 as
x0 increases from 0 to π. As the core mass fraction increases
towards 1, the polytrope’s radius decreases from πR0 to 0, so
the more condensed stars are also the smaller ones.

The adiabatic R −M exponent ζs should be evaluated at
constant core mass, as opposed to mass fraction. Thus, for con-
densed n = 1 polytropes,

ζs =
sin(x0)

sin(x0) + (π − x0) cos(x0)
, (58)

where x0 is chosen to solve Eq. (57). This solution matches that
given by Eq. (50) when there is no core. Furthermore, ζs is an
increasing function of the core mass fraction, which diverges,
as m = Mc/M tends towards unity. These are general features
of the condensed polytropes, and hold for polytropic indices
n < 3.

The procedure for calculating ζs is described in detail in
Hjellming & Webbink (1987). Results for a variety of core mass
fractions of n = 3/2 polytropes are given, both in Table 2 and
graphically, in Figs. 1 and 3.

The function ζs(n = 3
2 ;m) can be reasonably well fit by the

function:

ζHW =
2
3

m

1−m
− 1

3
(59)

5 In general, ρ = ρcφ
n.

Table 2. Adiabatic R − M relation vs. core mass fraction mc, as
in Hjellming & Webbink (1987), Table 3. Columns two and four are
the core-mass fraction and mass-radius exponent, respectively. The
parameter E in columns one and three is an alternate description of
the degree of condensation of the polytrope, used by Hjellming and
Webbink. The data presented here are in regions where the residuals
of the fit formula Eq. (61) are in excess of 0.001

E mc 100 dmc
dE

ζs

1.0 0.95144 -4.7468 13.0293
2.0 0.90503 -4.5372 6.31568
3.0 0.86066 -4.3379 4.07567
4.0 0.81824 -4.1484 2.95400
5.0 0.77766 -3.9682 2.27964
6.0 0.73884 -3.7967 1.82889
7.0 0.70170 -3.6335 1.50588
32.0 0.13962 -1.3079 -0.11093
34.0 0.11442 -1.2137 -0.14849
36.0 0.09101 -1.1279 -0.18390
38.0 0.06925 -1.0497 -0.21759
40.0 0.04898 -0.9785 -0.24991

(Hjellming & Webbink 1987), and to better than a percent by
either of the functions (in order of increasing accuracy):

ζSPH1 =
2
3

(
m

1−m

)
− 1

3

(
1−m

1 + 2m

)
, (60)

ζSPH = ζSPH1 − 0.03m + 0.2

[
m

1 + (1−m)−6

]
, (61)

as shown graphically in Fig. 2.

3.2. Thermal equilibrium exponent: ζeq

Analytic and numeric modeling of red giants have shown
that the luminosity and radius depend almost entirely on the
mass of the star’s helium core (Refsdal & Weigert 1970; cf.:
Verbunt (1993)). Since the core mass changes on the nuclear
timescale, and we are interested in changes in the radius on the
(much shorter) thermal timescale, the radius may be taken as
fixed, giving ζeq = 0.

3.3. Roche radius exponent: ζL

Since the exponent ζL must be computed according to the evo-
lution of the binary with mass transfer, it is sensitive to mass
transfer mode, as are MT , a, and P . The results for the various
modes of nonconservative mass transfer are both interesting, and
sometimes counterintuitive. It therefore makes sense to discuss
them systematically and at some length.

We rewrite ζL, in a form which depends explicitly on previ-
ously calculated quantities:

ζL =
∂ ln rL
∂ lnm2

=
∂ ln a
∂ lnm2

+
∂ ln (rL/a)
∂ ln q

∂ ln q
∂ lnm2

. (62)
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Fig. 1. Plot of ζs versus core mass fraction, of an isentropic,n = 3/2 red
giant star. As the fraction of mass in the core grows, the star becomes
less like a standard polytrope. Important to note is the crossing of the
ζs and ζeq curves near mc/mg = 0.2

The derivatives ∂ ln a
∂ lnm2

and ∂ ln q
∂ lnm2

appear in Sect. (2), both for
the unified model, and for the ring; as well as in a tabulated
form in Appendix A. All that remains is ∂ ln (rL/a)

∂ ln q , which will
be calculated using Eggleton’s (1983) formula for the volume-
equivalent Roche radius:

rL/a =
0.49q2/3

0.6q2/3 + ln(1 + q1/3)
, (63)

∂ ln (rL/a)
∂ ln q

=
q1/3

3
×(

2
q1/3

−
1.2q1/3 + 1

1+q1/3

0.6q2/3 + ln(1 + q1/3)

)
. (64)

To get an idea of how changing the mode of mass transfer
effects stability, ζL has been plotted vs. q, for various models,
in Figs. 4, 5, 6, and 7.

One notices several things in these graphs. Fig. 4 shows the
extreme variation in ζL(q) with changes in mode of mass trans-
fer. Each of the three curves ‘ring’, ‘wind’, and ‘iso-r’ differs
greatly from the conservative case. At least as important is the
extent to which they differ from one another, based only on
the way in which these three modes account for the variation
of angular momentum with mass loss. When angular momen-
tum is lost at an enhanced rate, as when it is lost to a ring or a
wind from the less massive star (direct wind, at low-q; isotropic
re-emission at high-q), the orbit quickly shrinks in response to
mass loss and ζL is high. By contrast, in the case of the isotropic
wind in the high-q limit, angular momentum is retained despite

Fig. 2. Differences between various fit formulae and the func-
tion ζs(n = 3

2 ;m). The labeled curves are as follows:
ZHW = 0.01(ζHW − ζs), Z1 = 0.1(ζSPH1 − ζs), and Z = ζSPH − ζs

mass loss and the orbit stays wide, so ζL is lower than it is in
the conservative case and the mass transfer is stabilised.

Second, Fig. 4 shows that ring formation leads to rather high
ζL, even for modest γ2 = ar/a = 2.25. The formation of a
ring will usually lead to instability on the dynamical timescale
(ζs < ζL,ring). The slower thermal timescale instability will
occur only if the giant is rather evolved and has a high coremass
fraction (with its high ζs).

Delivery of mass to a ring would imply either a substantially
larger, simultaneous flow of mass through the stabler of the two
Jeans’s channels, or else orbital decay, leading to dynamical
timescale mass transfer.

Fig. 6 shows the variation of ζL due only to the differences
between the isotropic wind and isotropic re-emission, in a family
of curves with α + β = 0.8. At q = 1, stability is passed from
the mostly isotropic re-emission modes at low q to mostly wind
modes at high q. The q = 1 crossing of all these curves is an
artifact of the model. Mass loss depends on the parameters in the
combination α + β. Angular momentum loss has a dependence
Aα + βq2. The two parameters α and β are then equivalent at
q =

√
A = 1.

For q < 1, mass transfer is stabilised by trading isotropic re-
emission for wind, so families ofα+β = const curves lie below
their respective (β = 0, α) curves in this region of the q – ζL
graph. This becomes interesting when one examines the β = 0
curves, at high α. For total wind strengths of less than about
0.85 and q < 1, ζL < 0. Thus, for modest levels of accretion
(at least∼ 15%), with the remainder of mass transfer in winds,
red giant - neutron star mass transfer is stable on the thermal
timescale, so long as q < 1. If the donor red giant has a modest
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Fig. 3. Plots of ζs versus q, assuming a fiducial and constant
m1 = 1.4M�. The three solid-line curves correspond, in ascending
order, to core masses of 0.14, 0.30, and 0.45M�. Note that this figure
is on the same scale as Figs. (4), et c., so that they may be overlaid

mass core, so that ζs > 0, then the process will be stable on he
dynamical timescale, as well.

A family of curves with one wind of fixed strength and one
wind of varying strength (as shown in Fig. 5, with β = 0, and
variable α), will also intersect at some value of q. It is easy to
understand why this happens. For concreteness, take a constant-
β family of curves. Based on the linearity of the equations in α
and β, ζL(q;α, β) = f (q;β) + αg(q), with some f and g. If one
evaluates ζL(q) at a root of g(q), then the result is independent
of α.

Notice in each case, intersections of various unified wind
model ζL(q) curves occur at q = O(1). One can understand this,
in the framework of the arguments of Sect. (A). Depending on
which side of q = 1 one lies, either m1 or m2 has the majority
of the angular momentum. When q < 1, angular momentum
will be lost predominantly by the isotropic wind and ζL will be
high. When q > 1, angular momentum losses will be modest
and ζL low. The situation is reversed for isotropic re-emission.
The two curves form a figure-X on the q – ζL diagram and must
cross when neither q, nor 1/q is too great; that is, near q = 1.

4. An example: mass transfer in red giant – neutron star
binaries

Consider a binary system composed of a neutron star and a less
evolved star. The less evolved star burns fuel, expanding and
chemically evolving. If the binary orbital period is sufficiently
short, the evolving star will eventually fill its Roche lobe and
transfer mass to its companion. We now consider this problem,
in the case where mass transfer starts while the donor is on

Fig. 4. ζL with all mass transfer through a single channel. For each
curve, all mass from the donor star is transferred according to the
indicated mode: conservative (cons); isotropic wind from donor star
(wind); isotropic re-emission of matter, from vicinity of ‘accreting’
star (iso-r); and ring formation, with γ = 1.5. Since the unified model
(winds+accretion) always has 0 ≤ α, β, α + β ≤ 1, the ζL(q) curves
labeled cons, wind, and iso-r also form an envelope around all curves
in the unified model

the red giant branch (The so-called case B. See e.g.: Iben &
Tutukov 1985.).

The global properties of an isolated star are functions of the
stellar mass and time from zero age main sequence. Alternately,
red giant structure can be parameterised by total mass and core
mass. Detailed models show that the dependence on total mass
is weak, so the radius and luminosity are nearly functions of the
core mass, only. We use the fit formulae by Webbink (1975),
who writes:

r = R� exp(
∑

cıy
ı) , (65)

L = L� exp(
∑

aıy
ı) (66)

= XεCNOṁc . (67)

Here y = ln(4mc/M�), and the parameters aı, and cı are the
result of fits to the red giant models (See Table 3.). Eq. (67)
assumes that the red giant’s luminosity comes solely from shell
hydrogen burning by the CNO cycle, which produces energy
at a rate εCNO = 5.987 · 1018erg g−1 (Webbink et al. 1983).

The red giant eventually fills its Roche lobe, transferring
mass to the other star. If mass transfer is stable, according to the
criteria in Sect. 3, then one can manipulate the time derivatives
of r and rL to solve for the rate of mass loss from the giant. The
stellar and Roche radii vary as:

ṙ =
∂r

∂t

∣∣∣∣
mg

+ r ζeq
ṁg

mg

, (68)
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Fig. 5. This illustrates the effect of an increasing fraction of the mass
lost from the donor star (m2) into a fast wind from that star. Solid lines
correspond to α ∈ 0.0(0.2)1.0 from top to bottom on the graph’s right
side; α = 0 corresponds to conservative mass transfer. Note that at
q ∼ 0.72, ζL(β = 0) is independent of q

ṙL =
∂rL
∂t

∣∣∣∣
mg

+ rLζL
ṁg

mg

. (69)

So long as the star remains in contact with its Roche lobe,

ṁg

mg

=
1

ζL − ζeq

(
∂ ln r
∂t

− ∂ ln rL
∂t

)
mg

, (70)

ṙ

r
=

ṙL
rL

,

ṙ

r
=

∂r

∂t

∣∣∣∣
mg

(
ζL

ζL − ζeq

)
+
∂rL
∂t

∣∣∣∣
mg

(
ζeq

ζL − ζeq

)
. (71)

The first term in Eq. (69) takes into account changes in the Roche
radius not due to mass transfer, such as tidal locking of a diffuse
star or orbital decay by gravitational wave radiation. For the
models considered here, the Roche lobe evolves only due to
mass transfer. Eqs. (69), (70), and (71) then reduce to the two
equations:

ṙL = rLζL
ṁg

mg

. (72)

ṁg

mg

=
1

ζL − ζeq

(
∂ ln r
∂t

)
mg

. (73)

The additional relation:

∂ ln r
∂t

=
∂ ln r
∂ lnmc

∂ lnmc

∂t
(74)

is a consequence of the star being a red giant.

Fig. 6. The change in ζL(q) for all mass lost to isotropic winds, with
varying fractions in isotropic wind and isotropically re-emiiited wind.
From top to bottom on the right side, the solid curves are for (α, β) of
(0.0, 0.8), (0.2, 0.6), (0.4, 0.4), (0.6, 0.2), and (0.8, 0.0). Note that all
curves cross at q = 1. Any set of curves α + β = const. will intersect
at q = 1, as at this point, α and β have the same coefficients in ζL

Table 3. Parameters fitted to a series of red giant models, both for
Pop I (Z = 0.02, X = 0.7) and Pop II (Z = 10−4, X = 0.7). Data
are transcribed from Webbink et al. (1983), and are applicable over
the ranges y ∈ (−0.4, 0.6) and y ∈ (−0.2, 0.4) for Pop I and Pop II,
respectively. Pop I figures due to Webbink (1975); Pop II from Sweigart
& Gross (1978)

Z a0 a1 a2 a3

0.02 3.50 8.11 -0.61 -2.13
10−4 3.27 5.15 4.03 -7.06

Z c0 c1 c2 c3

0.02 2.53 5.10 -0.05 -1.71
10−4 2.02 2.94 2.39 -3.89

The equations for the evolution of the core mass, red giant
mass, neutron star mass, orbital period, and semimajor axis (ob-
tainable from Eqs. (67), (73), (74), (11), (31), and (30)), form
a complete system of first order differential equations, govern-
ing the evolution of the red giant and the binary. The core mass
grows, as burned hydrogen is added from above. This causes the
star’s radius to increase, which forces mass transfer, increasing
a and P , at rL = rg .
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Fig. 7. ζL for various α and β, so that most transferred mass is ejected
as winds. From top to bottom on the right side, the solid curves are for
(α, β) of (0.6, 0.2), (0.6, 0.4), (0.8, 0.0), (0.8, 0.2), and (1.0, 0.0)

4.1. The code

The program used to generate the numbers presented here fol-
lows the prescription outlined by Webbink et al. 1983, in the
treatment of initial values, numeric integration of the evolu-
tion, and prescription for termination of mass transfer. The solar
mass, radius, and luminosity are taken from Stix (1991).

Initial values were provided for the masses of the neutron
star, the red giant, and its core at the start of the contact phase
(red giant filling its Roche lobe):mX ,mg, andmc, respectively,
as well as for the parameters (α, β, γ...) of the mass transfer
model. A tidally-locked system was assumed and spin angular
momentum of the stars neglected. The program then solved for
the orbital period P and separation, a, using relations (2), (63),
and (65).

Integration of Eqs. (10), (6), (67), and (73) was performed
numerically by a fourth-order Runge-Kutta scheme (cf.: Press et
al. 1986) with time steps limited by ∆mg ≤ 0.003mg, ∆mc ≤
0.001mc, and ∆me ≤ 0.003me. The first two criteria are those
used by WRS; the last was added to this code, to insure that care
is taken when the envelope mass,me, becomes small toward the
end of the integration.

Detailed numeric calculations (Taam 1983) show that a red
giant cannot support its envelope if me/mg < 0.02. The code
described here follows that of WRS and terminates mass transfer
at this point.

An overdetermined system ofmc,mg,mX , and P was inte-
grated numerically by the code, allowing for consistancy checks
of the program. Tests performed at the end of the evolution in-
cluded tests of Kepler’s law (Eq. (2)), angular momentum evo-
lution (Eq. (29) or (42)), and a check of the semi-detatched re-

Fig. 8. This figure shows conservative evolution in three different red
giant neutron star binaries, initial with mX = 1.4M�, mg = 1.0M�,
and Pi = 1, 10, 100 days. Red giant coremass increases monotoni-
cally as the system evolves and has been chosen as the independent
variable. The lower right hand panel shows the evolution of the two
stars’ masses, with increasing mc(t); the neutron star’s mass (m1) in-
creases, with complementary a decrease in the mass of the giant (m2).
Orbital period evolution is shown in the lower left hand panel. The mass
transfer decreases the mass of the lower mass star, and consequently
widens the orbit (P increases, at constant MT and L; Eq. (29)). The
upper right hand panel shows the evolution of semimajor axis (upper,
solid curves) and red giant Roche radius (lower, dashed curves). The
low and high coremass ends of each segment in this panel are indi-
cated by a circle and crossbar, for clarity. While transferring mass,
the red giant fills its Roche lobe, so the dashed segments shown here
are consistent with the giant’s coremass radius relation (Eq. (65)). Fi-
nally, the upper left hand panel shows the red giant mass loss rate.
The dotted line labeled ‘Edd’ is the Eddington limit accretion rate of
the neutron star (ṁX = 4πRXc/κTh, with an assumed neutron star
radius RX = 10 km and XH = 0.70. General relativistic effects and
the variation of neutron star mass and radius with accretion have been
ignored.). At high coremasses, where the red giant’s evolution is rapid,
the mass loss rate can be far in excess of the neutron star’s Eddington
rate, implying that mass transfer is not always conservative

quirement r2 = rL = a·(rL/a). Plots of various quantities versus
red giant core mass show the evolutionary histories of binary
systems, in Figs. 8, 9, and 10. Population I stars were used in
all calculations (see Table 3; Z = 0.02).

Another interesting case of mass transfer is isotropic re-
emission at the minimum level necessary to ensure Eddington
limited accretion:

β = max(0, ṁg/ṁX,Edd − 1) . (75)

Re-emission would presumably be in the form of propeller
ejecta (Ghosh & Lamb (1978) or a bipolar outflow, such as the
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Fig. 9. Mass transfer by isotropic re-emission (α = 0, β = 1); details
as in Fig. 8

jets seen in the galactic superluminal sources. The evoution of a
binary, subject to this constraint, is shown in Fig. 11. Comparing
Fig. 11 with Figs. 8 and 9, one sees that the low core mass sys-
tems, with their corresponding low mass transfer rates, mimic
conservative systems. The faster evolving systems behave more
like systems with pure isotropic re-emission.

Almost all ring-forming systems are unstable to thermal
and/or dynamical timescale runaway of mass transfer, and are
not displayed.

5. Conclusion

Previous works in the field of mass transfer in close binaries
usually centered on conservative mass transfer, even when ob-
servation directs us to consider mass loss from the system, as
is the case with white dwarf neutron star binaries. If these sys-
tems form from mass transfer in red giant neutron star systems,
then one must find a way to start with a secondary star suffi-
ciently massive to evolve off the main sequence in a Hubble
time, (m2 > 1M�), in a binary with a mX > 1.3M� neutron
star and reduce the secondary’s mass by≈ 0.6M�, while keep-
ing the neutron star below ∼ 1.45M�. To do this, some 3/4 of
the mass from the secondary must be ejected from the system.
Results here indicate that it is possible to remove this much mass
in winds, while maintaining stable mass transfer on the nuclear
timescale.

For the most part, nonconservative mass transfer, in which
mass is lost in fast winds, mimics the conservative case. For the
typical initial mass ratios (q ≈ 0.7), ζL ranges from about -0.7
to -0.2. The rate of mass transfer is given by Eq. (73), and is
lowest at the start of mass transfer, when mc is low. The total

Fig. 10. Mass transfer by a combination of accretion and wind (α = 0.8,
β = 0). The pure wind gives similar results for initial periods of 10
and 100 days, but leads to instability for short initial periods. This
instability in low core mass systems is easily understood, since shorter
period systems can evolve towards lower mass ratio systems, where
ζL(α = 1, β = 0) > ζeq . See also Fig. 8 for details

time is therefore set almost entirely by mc(0) and ζL(0), and so
differs by maybe a factor of 3, over all possible wind models.

It is worth repeating that changes in MT arising from non-
conservative evolution do not alter the relationship between
white dwarf mass and binary period by more than a couple of
percent. This is true, by the following arguement. The final red
giant and core masses differ only at the few percent level. Ap-
proximately, then, the red giant mass sets the red giant radius
and therefore the Roche radius. In the (low q) approximation
used by Paczyński (1971), orbital period is a function of rL and
m2, only. P vs. mc is a function of the final state, alone. Us-
ing Eggleton’s formula instead of Paczyński’s introduces only
a very weak dependence on the mass of the other (neutron) star.
In the end, the theoretical motivation for the existence of a P –
mc relation is significantly more solid than, say, our knowledge
of the red giant R – mc relation, on which the exact P – mc

curve depends.
The exact mode of mass transfer will effect P/P0, as is evi-

dent from Eq. (29). This could be important, in statistical studies
of white dwarf neutron star binaries, and trying to predict the
distribution of P from the initial mass function, and distribu-
tion of initial orbital periods. This is dependent, of course, on
the development of a quantitative understanding of the common
envelope phase.

Finally, and probably the most useful thing, is that if one
assumes only accretion and wind-like mass transfer, then most
binaries in which mass is transferred from the less massive star
are stable on both dynamical and thermal timescales. If the mass
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Fig. 11. Mass transfer with isotropic re-emission only so strong as to
insure ṁX ≤ ṁX,Edd. For details, see Fig. 8

donor has a radiative envelope (not treated here), it will shrink
in response to mass loss, and lose mass in a stable way. If the
donor has a convective envelope, a modestly sized core will
stabilize it sufficiently to prevent mass loss on the dynamical
timescale. Only if one has a very low mass (or no) core, will
the mass transfer be unstable on the dynamical timescale, and
then, only for α→ 1. High values of α, and low core mass in a
convective star may lead to instability on the thermal timescale,
if the mass ratio, q is sufficiently low (see Fig. 5).
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Appendix A: mass transfer models with extreme mass ratios

The results of Sects. 2.1 and 2.2 are examined here in the lim-
iting cases of q tending toward zero and infinity, to explore the
relations between the different modes, and the connections to
well-known toy models. This is done to develop an intuition
which may be used in comparing the stability of mass transfer
by the various modes.

In considering extreme values of the mass ratio, one makes
the reduced mass approximation, regarding all the mass as resid-
ing in one star of fixed position and all the angular momentum
in the other, orbiting star. Errors are only of order q (or 1/q, if
this is small). One might keep the Solar System in mind as a
concrete example. The Sun has all the mass, and the total angu-
lar momentum is well approximated by Jupiter’s orbital angular
momentum. The total mass MT ∼ M� and the reduced mass
µ ∼MJ , with fractional errors ∼MJ/M� ∼ 10−3.

Retention of the factorsA (Eqs. (19), et seq. of Sect. 2.1) and
δ (Eq. (38), of Sect. 2.2) allow for broader comparisons between

Table 4. Formulae describing orbital evolution in the limits of extreme
mass ratios, q = m2/m1 � 1 and q � 1

Winds Ring
q → 0 q →∞ q → 0 q →∞

∂ ln q
∂ lnm2

1 q(1− α− β) 1 q(1− δ)
∂ lnMT
∂ lnm2

0 α + β 0 δ

∂ lnL/µ
∂ lnm2

Aα− 1 q(1− α) γδ − 1 q(γδ + (1− δ))

∂ lnP
∂ ln q 3(Aα− 1) 3 1−α

1−α−β 3(γδ − 1) 3 γδ+(1−δ)
1−δ

∂ ln a
∂ ln q 2(Aα− 1) 2 1−α

1−α−β 2(γδ − 1) 2 γδ+(1−δ)
1−δ

q
q0

m2
m2,0

MT,0
MT

m2
m2,0

MT,0
MT

MT
MT,0

1 q0
q

1 q0
q

(L/µ)
(L/µ)0

(
q
q0

)Aα−1 (
q
q0

) Aα−1
1−α−β

(
q
q0

)γδ−1 (
q
q0

) (γδ+(1−δ)
1−δ

P
P0

(
(L/µ)

(L/µ)0

)3

a
a0

(
(L/µ)

(L/µ)0

)2

the two models. Formulae appropriate to the two extreme limits
are in Table 4. Columns 2 and 3 pertain to the wind models; 4
and 5 to ring models.

It is now straightforward to compare the two models of mass
transfer and loss in the extreme limits where they should be
equivalent. Comparisons will be made first in the limit where
the donor is a test-mass, where the unified and ring models cor-
respond exactly. Second will be a treatment of the opposite limit,
where the two models give different but reconcilable results.

First, the wind and ring models are equivalent in the q =
0 limit, upon identification of α with δ and A with γ6. This
symmetry is not difficult to understand. In the q = 0 limit, only
the direct isotropic wind and ring remove angular momentum.
In this case, isotropic re-emission is an isotropic wind from a
stationary source, and accretion is always conservative of both
mass and angular momentum. In each torquing case (direct wind
and ring), the ejected mass removes specific angular momentum
at an enhanced rate — A in the winds model, γ in the ring
model. Thus, it makes sense that wherever A and γ appear in
the equations, they are in the products Aα and γδ, the rate of
angular momentum loss per unit mass lost from m2.

More interesting is that, in the strict q = 0 limit, the param-
eters α and δ are found only in the combinations Aα and γδ.

6 Actually, one must only identify the products of mass fraction lost
and relative specific angular momenta: Aα and γδ.
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The independence from other combinations of parameters can
be understood by examining the ratio

η =
∂ lnMT

∂ ln (L/µ)

∣∣∣∣
ev

, (A1)

which tells the relative importance of angular momentum and
mass losses in the orbit’s evolution. For small donor mass, η is
small and mass loss without angular momentum loss is unim-
portant. The strict mass loss term will be important only when
the coefficient of the ∂ ln (L/µ) term, Aα − 1 or γδ − 1, is of
order q or less. This happens, for example, in the Jeans’ mode
of mass loss (q � 1, A = α = 1), discussed below.

Even neglecting the questions of stability important to
tidally induced mass transfer, the situation is different when
the mass–losing star has all the mass and almost no angular mo-
mentum. In this case, both mass and angular momentum loss
are important. Since the more massive body is the mass donor,
a non-negligible fraction of the total mass of the system may be
ejected. Furthermore, the angular momentum per reduced mass
changes via isotropic re-emission and ring formation. There-
fore, both mass and angular momentum loss play a rôle in the
dynamics. A measure of relative importance is η, which in the
limit of large q, goes as 1/q. Again, in the case of extreme mass
ratios, changes in L/µ dominate the course of evolution. As
before, there are times when the coefficient of the ∂ ln (L/µ)
term, 1 − α or γδ + (1 − δ), is of order q, or less. In this case,
the above arguments fail and the strict mass loss term ∂ lnMT

must be included.
The evolution of the angular momentum per reduced mass

shows a significant difference the winds and ring models in
their q � 1 limit. In the wind case, one may write q(1 − α) =
q(1−α−β) + qβ. The first part is the fractional rate of increase
of µ, with loss of mass from the donor star. The second is the
rate at which angular momentum is lost from the system, by
isotropic re-emission. Since q � 1, the mass losing star is
nearly stationary and mass lost in a direct wind removes no
angular momentum.

The ring + accretion case is slightly different, but may be in-
terpreted similarly. The term q(1−δ) replaces q(1−α−β) as the
fraction of mass accreted onto the first star; i.e.: ∂ ln µ/∂ lnm2.
The term qβ is replaced by qγδ, as the rate of loss of angular
momentum. Although the donor star is stationary in this q � 1
ring case, angular momentum is still lost. This is due to the
particular construction of the ring model, in which the angular
momentum removed is proportional to the system’s L/µ, not
to the specific angular momentum of either body. Thus, in the
ring model, even as h2 tends towards zero with increasing q,
ejected mass will carry away angular momentum. This is the
final caveat: the ring model is just a mechanism for the rapid
removal of angular momentum from a binary system, and one
should keep this in mind, particularly when q � 1.

One might also notice for both models, that if angular mo-
mentum loss is not overly efficient (A andγ not too much greater
than 1), then mass loss from the test mass widens the orbit and
mass loss from the more massive star shrinks the orbit, just like
in conservative mass transfer. Also, η is not everywhere small.

In particular, when q is of order unity, η is also and the ∂ lnMT

term becomes as important as ∂ ln (L/µ) in the equations of
motion.

5.1. Jeans’s modes

Often, one talks of the Jeans’s mode of mass loss from a binary,
in which there is a fast, sperically symmetric loss of mass. The
Jeans’ mode has two limits. One is a catastrophic and instanta-
neous loss of mass, as in a supernova event (see van den Heuvel
(1994), for a discussion). In this case, if the orbit is initially cir-
cular and more than half the total mass is lost in the explosion,
the system unbinds. This can be explained by the energetics.
Initially, the system is virialised with < T >= −1/2 < V >.
The loss of mass does not change the orbital velocities, so the
kinetic energy per unit mass remains the same. The potential en-
ergy per unit mass is proportional to the total mass, so if more
than half the mass is lost, E = T + V > 0 and the orbit is
unbound. A more detailed analysis may be done, and will give
ratios of initial to final orbital periods and semi-major axes, for
given initial to final mass ratios (Blaauw (1961); Flannery &
van den Heuvel (1975)).

The equations in this paper will not give the ‘standard’ Jeans
solution and unbound orbits. Unbinding the orbit from elliptical
to hyperbolic requires e > 1, where e = 0 has been assumed
from the outset. The argument used in the preceding paragraph
seemingly necessitates the unbinding of the orbit with sufficient
mass loss, but it is not applicable here, as it also assumes a
conservation of mechanical energy. Mechanical energy is not
conserved in the above calculations (Sect. (2.1), for example),
as the presence of dissipative forces to damp e to 0 have been
assumed.

The other limit of Jeans’s mode is mass loss by a fast wind,
on a timescale slow compared to the orbital period. In this case,
there is no preferred orientation for the Runge-Lenz vector (di-
rection of semimajor axis in an eccentric orbit), and the orbit
remains circular throughout the mass loss, with MTa = const.
This is the limit of the Jeans mode which our calculations repro-
duce. Jeans’s mode is an example of a degenerate case (men-
tioned above; here,Aα = 1), where ∂ ln (L/µ) = 0. In this case,
one may simply apply Eq. (3), and see that GMTa = (L/µ)2 =
const.

Appendix B: extensions to models considered above

In the interest of completeness, a five-parameter model of mass
transfer, combining winds from both stars, ring formation, and
accretion is presented. The treatment in Sects. 2 and 3.3 is fol-
lowed. Modifications necessary for inclusion of other forms of
angular momentum loss, such as L̇GR, due to gravitational ra-
diation reaction, are also discussed.

Construction of this model is straightforward, and results
from the inclusion of the various sinks of mass and angular
momentum, due to various processes. The nonconservative part
of each model makes its own contribution to the logarithmic
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derivatives of MT and L:

ε ≡ 1− α− β − δ , (B1)

∂ lnMT = (1− ε)
q

1 + q
∂ lnm2 , (B2)

∂ lnL =

(
Aα + βq2

1 + q
+ γδ(1 + q)

)
∂ lnm2 , (B3)

where each of the variables retains its old meaning. Replac-
ing the old definition of ε in Eq. (9) with the new definition in
Eq. (B1) makes Eqs. (10) - (13) applicable to this model, as well.
Contributions from other evolutionary processes, such as grav-
itational wave radiation reaction; realistically prescribed stellar
winds; tidal evolution, et c. can also be added. Each will make
its own contribution to the angular momentum and total mass
loss. For example, orbital decay by gravitational radiation reac-
tion (Landau & Lifshitz, 1951) can be included as an other sink
of angular momentum:

− ∂L

∂t GR
=

32Gµ
5c5

(GMT )6(L/µ)−8 . (B4)

In most cases, this type of physics can be modelled as an in-
trinsic ṙL (the second term in Eq. (69)). Like the intrinsic stellar
expansion term of Eq. (68), this kind of evolution occurs even in
the absence of mass transfer. Therefore, the convenient change
of variables from t to q used in Sect. (2) introduces singularities
when evolution takes place in the absence of mass transfer. The
equations of Sect. (2) still hold, but only for those phases of the
binary’s evolution durring which tidally-driven mass transfer
takes place.

We temporarily neglect these complications and consider
mass transfer via isotropic wind, isotropic re-emission, and for-
mation of a ring, with mass fractions α, β, and δ respectively.
The remainder of the mass transfer (the fraction ε = 1−α−β−δ)
goes into accretion. The ratio hr/hbin is γ, where γ2 = ar/a.
Note that δ, γ, β, and α are all used as before; ε should still be
regarded as the accreted fraction.

MT

MT,0

=

(
1 + q

1 + q0

)(
1 + εq0

1 + εq

)
, (B5)

a

a0
=

(
q

q0

)2A−2( 1 + q

1 + q0

)1−2B

(
1 + εq

1 + εq0

)3+2C

(B6)

P

P0
=

(
q

q0

)3A−3( 1 + q

1 + q0

)1−3B

(
1 + εq

1 + εq0

)5+3C

(B7)

A5 = Aα + γδ (B8)

B5 =
Aα + β

1− ε
(B9)

C5 =
γδ(1− ε)

ε
+
Aαε

1− ε
+

β

ε(1− ε)
(B10)

Taking α, β = 0, gives formulae for a ring of strength δ:

a

a0
=

(
q0

q

)2(1−Ar)( 1 + q

1 + q0

)
×
(

1 + (1− δ)q
1 + (1− δ)q0

)3+2Cr

(B11)

P

P0
=

(
q0

q

)3(1−Ar)( 1 + q

1 + q0

)
×
(

1 + (1− δ)q
1 + (1− δ)q0

)5+3Cr

(B12)

∂ ln a
∂ ln q

= 2(Ar − 1) + (1− 2Br)
q

1 + q

+(3 + 2Cr)
q

1 + εq
, (B13)

∂ lnP
∂ ln q

= 3(Ar − 1) + (1− 3Br)
q

1 + q

+(5 + 3Cr)
q

1 + εq
. (B14)

Where the relevant exponents are functions of the parameters γ
and δ:

Ar = γδ (B15)

Br = 0 (B16)

Cr =
γδ2

1− δ
(B17)

εr = 1− δ . (B18)

It is also instructive to examine the model in the degenerate
cases of ε = 0 and ε = 1, where the functional forms change.
When there is no accretion (ε = 0), the standard C5 becomes sin-
gular, while the term 1 + εq approaches 1. Defining the singular
part of C5:

Csing = lim
ε→0

εC5

= β + γδ , (B19)

the equations governing binary evolution can be rewritten, for
the case when no material is accreted:

L

L0
=

(
q

q0

)A5
(

1 + q0

1 + q

)B5

exp [(q − q0)Csing] , (B20)

a

a0
=

(
q

q0

)2(A5−1)(1 + q0

1 + q

)1−2B5

exp [2Csing(q − q0)] , (B21)

P

P0
=

(
q

q0

)3(A5−1)(1 + q0

1 + q

)1−3B5

exp [3Csing(q − q0)] , (B22)
∂ ln a
∂ ln q

= 2(A5 − 1) + (1− 2B5)
q

1 + q

+(3 + 2Csing)q , (B23)
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Table 5. This reference table is divided into three parts. First are the
model parameter definitions. An index of equations for the coeficients
A, B , and C , relevant to each particular model, follows. Last are the
various formulae of orbital evolution derived in this paper

winds ring combined

− ∂mmode
∂m2

α, β δ α, β, δ

ε = − ∂m1
∂m2

1− α− β 1− δ 1− α− β − δ

A Eq. (25) Eq. (B15) Eq. (B8)
B Eq. (26) Eq. (B16) Eq. (B9)
C Eq. (27) Eq. (B17) Eq. (B10)

MT
MT,0

=
(

1+q
1+q0

)(
1+εq
1+εq0

)−1

(Eq. (22))

L/µ
L0/µ0

=
(
q
q0

)A−1 (
1+q
1+q0

)1−B (
1+εq
1+εq0

)C +1

P
P0

=
(
q
q0

)3A−3 (
1+q
1+q0

)1−3B (
1+εq
1+εq0

)3C +5

a
a0

=
(
q
q0

)2A−2 (
1+q
1+q0

)1−2B (
1+εq
1+εq0

)2C +3

∂ ln a
∂ ln q = 2(A− 1) + (1− 2B ) q

1+q + (2C + 3) εq
1+εq

∂ lnP
∂ ln q = 3(A− 1) + (1− 3B ) q

1+q + (3C + 5) εq
1+εq

∂ lnP
∂ ln q

= 3(A5 − 1) + (1− 3B5)
q

1 + q

+(5 + 3Csing)q . (B24)

It might be worth noting that the above considerations are
irrelevant for the pure α = 1 models, where β, δ, and ε vanish.
There is no profound reason for this.

In the case where all material is accreted (ε = 1), there
are seeming singularities in the coeficients B5 and C5. Proper
solution of the equations of evolution in this case, or setting
εq → q before taking limiting values of the coeficients B5

and C5, shows that there is no problem at all. In this case, the
equations reduce to Eqs. (32), (33), and:

MT = MT,0 , (B25)

L = L0 , (B26)
∂ ln a
∂ ln q

= 4
q

1 + q
− 2 , (B27)

∂ lnP
∂ ln q

= 6
q

1 + q
− 3 . (B28)
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