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Abstract. We study the heating of 2-D coronal arcades by linear
resonant Alfvén waves that are excited by photospheric foot-
point motions of the magnetic field lines. The analysis is re-
stricted to toroidally polarised footpoint motions so that Alfvén
waves are excited directly. At the magnetic surfaces where
Alfvén waves, travelling back and forth along the loop-like
magnetic field lines, are in phase with the footpoint motions,
the oscillations grow unbounded in ideal linear MHD. Inclu-
sion of dissipation prevents singular growth and we can look at
the steady state in which the energy input at the photospheric
base of the arcade is balanced by the energy dissipated at the
resonance layer.

In the present study we take the toroidal wave number to
be non-zero which means that also fast waves, including quasi-
modes, can be excited by the purely toroidally polarised foot-
point motions. In this case resonant Alfvén waves are not only
excited directly by the footpoint motions but also indirectly
through coupling to the fast waves. Our results confirm the phe-
nomena previous found by Berghmans & Tirry (1997) for a
coronal loop model : for some footpoint motions the direct and
indirect contributions to the resonance counteract each other
leading to virtually no heating (anti-resonance) while, for values
of the driving frequency and the toroidal wave number corre-
sponding to a quasi-mode, the two contributions act in concert
leading to enhanced heating.
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1. Introduction

The solar corona consists of highly inhomogeneous plasma with
a temperature of roughly 2 − 3 × 106 K. This temperature is a
few orders higher than the underlying photospheric temperature,

Send offprint requests to: W.J. Tirry
? Research Assistant of the F.W.O.-Vlaanderen
?? Research Associate of the F.W.O.-Vlaanderen

indicating the presence of heating mechanisms. Since Skylab it
is known that the largest contribution to the X-ray emission
and to the heating of the solar corona comes from loop-like
structures in the solar atmosphere. These magnetic loops and
arcade structures are viewed as the basic building blocks of the
solar corona. For example, Acton et al. (1992) show an X-ray
image in which a magnetic arcade is present with following
length scales : half a solar radius high, 400,000 km wide and
500,000 km long. A large variety of similar structures, with
various heights, widths and lengths, can be seen in many Yohkoh
pictures (McAllister et al. 1992; Watari et al. 1996; Weiss et al.
1996).

The high conductivity and the relatively high mass density of
the photospheric plasma provide an effective photospheric an-
choring of the magnetic field lines. The photospheric footpoints
of the magnetic field lines are forced to follow the convective
motions. If these footpoint motions are slow (in comparison with
the Alfvénic transit time along the loop or arcade), the coronal
flux tubes are twisted and braided, which builds up magnetic
stresses and leads to the formation of small length scale by the
creation of field discontinuities (Parker 1972) or by cascade of
magnetic energy to very small length scales (Van Ballegooijen
1985). These mechanisms to generate small length scales, and
hence heating, are usually classified as DC heating mechanisms
(Zirker 1993).

In contrast, footpoint motions which are ’fast’ in compari-
son with the Alfvénic transit time, generate magnetosonic waves
and Alfvén waves. Due to the steep density gradients at the pho-
tospheric edges these MHD waves reflect back and forth along
the length of the loop. The loop is then expected to act as a leak-
ing, resonant cavity for MHD waves (Hollweg 1984), in which
dissipation is enhanced by means of turbulence, resonant ab-
sorption and/or phase-mixing. These mechanisms are classified
as AC heating mechanisms.

Observations suggest that periodic and quasi-periodic os-
cillations commonly occur in the corona. Oscillations are de-
tected by measuring the temporal variation in intensity, line
width and Doppler velocity of coronal emission lines. A thor-
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ough review of this observational background can be found in
Tsubaki (1988). Many of the observed periods are of the order of
five minutes understood as an evidence of the propagation of the
5-min oscillation into the chromosphere and corona. Pasachoff
& Landman (1984), Pasachoff & Ladd (1987) and Pasachoff
(1991) however detected intensity variations of the green coro-
nal line with enhanced power in the 0.25-2 Hz range. Recent
studies of soft X-ray lines indicate nonthermal motions of 30-40
km/s above active regions (Saba & Strong 1991).

Recent observations by Falconer et al. (1996) suggest that
the different heating mechanisms may co-operate : microflaring
in the chromospheric magnetic network might both directly heat
the coronal plasma in the sheared local core field and generate
waves that propagate into extended loops and dissipate there
to produce the enhanced coronal heating in the bodies of these
larger structures.

An important property of MHD waves in an inhomogeneous
plasma is that individual magnetic surfaces can oscillate with
their own Alfvén frequencies. In ideal linear MHD this can hap-
pen without interaction with neighbouring magnetic surfaces.
These local Alfvén oscillations are polarised in the magnetic
surfaces and perpendicular to the magnetic field lines. Dissi-
pative effects produce coupling to neighbouring surfaces. For
large values of the viscous and magnetic Reynolds numbers,
such as in the solar corona the local Alfvén oscillations are still
characterized by steep gradients across the magnetic surfaces.
Resonant excitation of these local Alfvén oscillations provides
a way to dissipate wave energy efficiently.

Berghmans & Tirry (1997) studied the heating of 1-D coro-
nal loops by these linear resonant Alfvén waves that are ex-
cited by photospheric footpoint motions of the magnetic field
lines. The analysis was restricted to azimuthally polarised foot-
point motions so that Alfvén waves are excited directly. At the
radii where Alfvén waves, travelling back and forth along the
loop, are in phase with the footpoint motions the oscillations
grow unbounded in ideal MHD. They included dissipation and
looked at the steady state in which the energy input at the pho-
tosphere is balanced by the energy dissipated at the resonance.
In contrast to previous studies on this subject (Heyvaerts &
Priest 1983; Berghmans & De Bruyne 1995; Poedts & Boyn-
ton 1996; Ruderman et al. 1997a) the toroidal wave number was
taken to be non-zero which means that also fast waves, including
quasi-modes, can be excited by the purely toroidally polarised
footpoint motions. In this case resonant Alfvén waves are not
only excited directly by the footpoint motions but also indirectly
through coupling to fast waves. Berghmans & Tirry found that
for some footpoint motions these contributions counteract each
other leading to virtually no heating (anti-resonance) while for
values of the driving frequency and the azimuthal wave num-
ber corresponding to a quasi-mode the two contributions act in
concert leading to enhanced heating. These results were con-
firmed in a companion paper (Tirry & Berghmans 1997) where
the same system was studied time dependently in linear ideal
MHD.

Ruderman et al. (1997b) extended the analysis to 2-D coro-
nal arcades driven by footpoint motions, however with the

toroidal wave number equal to zero so that no coupling to fast
waves is involved.

The main objective of this paper is to extend the above men-
tioned investigations of wave heating to 2-D coronal arcades
where the toroidal wave number is taken non-zero and to find
out whether the anti-resonance line in (ωd, ky) space found by
Berghmans & Tirry (1997) is not an artefact of their 1-D coronal
loop model.

Few authors already have explored the modes of oscilla-
tion of coronal magnetic arcade structures. Poedts & Goossens
(1991) have studied the continuous spectrum in linear ideal
MHD of 2-D solar loops and arcades in different cases. Oliver
et al. (1993, 1996) investigated the magnetoacoustic modes of
potential and non-potential coronal arcades. By looking at the
perturbed restoring forces responsible for the oscillatory modes
they could still classify the modes as modes with fast wave
properties or with slow wave properties. Čadež & Ballester
(1996) considered an isolated isothermal potential arcade with a
thick boundary layer of non-potential magnetic field. For large
enough wavelengths surface waves on this structure may reso-
nantly couple to localised slow modes. Smith et al. (1997) ex-
amined the effect of curvature on fast magnetoacoustic waves in
dense coronal loops situated in a potential coronal arcade. Čadež
& Ballester (1995a,b) obtained analytically the time-dependent
solution for fast magnetoacoustic waves generated by a distinct
periodic perturber or impulsively excited by a localised per-
turber in a potential coronal arcade.

The present paper is organized as follows. In the next section
the coronal arcade model, the relevant equations, the bound-
ary conditions and the underlying assumptions are discussed.
In Sect. 3 we derive an analytical solution which describes the
wave motion in the dissipative layer embracing the resonant
magnetic surface. We describe shortly in Sect. 4 the numeri-
cal procedure to find the steady state solution, in which we use
the analytical solution from Sect. 3 to cross the dissipative res-
onance layers while integrating the ideal MHD equations. In
Sect. 5 we derive an expression for the Poynting flux through
the photosphere as a function of the steady state wave amplitude.
This turns out to be a valuable tool when interpreting the results
in Sect. 6. Finally in Sect. 7 we give a summary and discussion.

2. Physical model

We consider a two-dimensional (x, z) coronal arcade with width
2L which is invariant in the y-direction, modelled with a poten-
tial equilibrium magnetic field satisfying

∇×B = 0 and By = 0,

i.e. the toroidal component of the magnetic field vanishes. From
the solenoidal constraint ∇ · B = 0, the poloidal equilibrium
magnetic field B can be written as

B = ∇× ψ(x, z)êy,

where the magnetic flux function ψ satisfies ∇2ψ = 0. Under
the conditions that ψ vanishes at infinite height and that the z-
component of the magnetic field is zero at the centre (x = 0) of
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Fig. 1. The form of the potential coronal arcade in the cartesian coor-
dinates (x, z).

the arcade, the following particular solution for the flux function
is taken

ψ(x, z) = B0λBcos(
x

λB
)exp(

−z
λB

), (1)

where B0 is the magnetic field strength at the base z = 0 of
the corona and λB = 2L/π is the magnetic scale height. The
magnetic surfaces are given by ψ(x, z) = const. Fig. 1 shows
the form of the potential coronal arcade in the (x, z) plane. The
surface z = 0 models the boundary between the hot rarified
corona and the dense photosphere. We assume that the magnetic
field lines are frozen into the highly dense photosphere.

We consider small amplitude motions of a resistive plasma
which can be described by the linearized gravitationless MHD
equations

ρ
∂2ξ

∂t2
=

1
µ

(∇× b)×B, (2)

∂b

∂t
= ∇× (

∂ξ

∂t
×B)−∇× (η∇× b), (3)

where ξ is the Lagrangian displacement and b the magnetic
field perturbation. The gas pressure is neglected in comparison
with the magnetic pressure in the zero-β approximation for the
solar corona. Although we did not include the gravity force in
the momentum equation (because of the extreme low density
in the solar corona), density stratification is taken into account
(see expression (13)). The spatial dependence of the magnetic
diffusivity η will be specified later on the basis of mathematical
tractability.

Now we introduce the function χ(x, z) which satifies the
equation

∂χ

∂x

∂ψ

∂x
+
∂χ

∂z

∂ψ

∂z
= 0.

Hence the functionχ andψ constitute an orthogonal curvilinear
coordinate system in the (x, z) plane. For the flux function ψ
given by (1), the function χ can be taken to be

χ(x, z) = B0λBsin(
x

λB
)exp(

−z
λB

). (4)

At the left footpoint of the magnetic surface ψ = const the
poloidal coordinate χ takes the value χ1(ψ), while at the right
footpoint it takes the value χ2(ψ). At χ = χ1(ψ) we impose a
given footpoint motion whereas at χ = χ2(ψ) we assume the
arcade to be held immovable. This can be done without any
loss of generality because of the principle of superposition for
solutions of linear equations. For the present paper in which we
focus on excitation by toroidally polarised footpoint motions
(i.e. in the y-direction), this means that we impose the following
boundary conditions at χ = χ1 :

ξχ(χ = χ1(ψ), ψ, y, t) = 0,

ξψ(χ = χ1(ψ), ψ, y, t) = 0,

ξy(χ = χ1(ψ), ψ, y, t) = Ry(ψ, y, t),

and at χ = χ2 (for this symmetric model χ2 = −χ1) :

ξχ(χ = χ2(ψ), ψ, y, t) = 0,

ξψ(χ = χ2(ψ), ψ, y, t) = 0,

ξy(χ = χ2(ψ), ψ, y, t) = 0.

Since we consider only the steady state of the driven oscilla-
tions, the perturbed quantities are taken to be proportional to
exp(−iωt) with real ω given. Because the equilibrium state is
invariant in the y-direction, we can Fourier analyse with respect
to y and study the Fourier components corresponding to differ-
ent ky separately (as they do not couple).

For high magnetic Reynolds numbers such as in the solar
corona, the ideal counterparts of Eqs. (2-3) are valid everywhere
except in regions where the solution has steep gradients (e.g. in
resonance layers). In these dissipative resonance layers gradi-
ents of perturbations in the ψ-direction are by far larger than
gradients in the χ-direction. These considerations enable us to
reduce the resistive equations for the Fourier component corre-
sponding to the wave number ky in the following form

{ρJω2 +
∂

∂χ

1
J

∂

∂χ
− iηωρ

∂2

∂ψ2
}ξy = ikyP, (5)

{ρJω2 +
1
J

∂2

∂χ2
− iηωρ

∂2

∂ψ2
}ξ̄ψ =

1
J

∂P

∂ψ
, (6)

P = −∂ξ̄ψ
∂ψ

− ikyξy, (7)

where P = JBχbχ, ξ̄ψ = Bχξψ and J is the jacobian of the
transformation. For mathematical tractability we have assumed
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in the derivation of Eqs. (5) and (6) that the quantity η/J is a
constant. Note that slow waves are absent (ξχ = 0) because the
plasma pressure is neglected.

In order to get homogeneous boundary conditions we intro-
duce a new variable

φ(χ, ψ) = ξy(χ, ψ)− χ− χ2(ψ)
χ1(ψ)− χ2(ψ)

Ry(ψ). (8)

Substituting (8) into (5-7) we obtain under the condition that the
characteristic scale of the variation of the driver is much larger
than the thickness of the dissipative layer :

{ρJω2 +
∂

∂χ

1
J

∂

∂χ
− iηωρ

∂2

∂ψ2
}φ = ikyP

′ + Dy, (9)

{ρJω2 +
1
J

∂2

∂χ2
− iηωρ

∂2

∂ψ2
}ξ̄ψ =

1
J

∂P ′

∂ψ
+ Dψ, (10)

P ′ = −∂ξ̄ψ
∂ψ

− ikyφ, (11)

where

Dy(χ, ψ) =
χ− χ2

χ1 − χ2
(k2
y − ρJω2)Ry

− ∂

∂χ

(
1
J

∂

∂χ

(
χ− χ2

χ1 − χ2

))
Ry,

Dψ(χ, ψ) = − iky
J

∂

∂ψ

((
χ− χ2

χ1 − χ2

)
Ry

)
.

Since we have neglected the pressure and gravity terms in the
momentum equation, we are able to impose the density or the
Alfvén speed profile arbitrarily. Oliver et al. (1993) investigated
the normal modes of the present magnetic structure for a variety
of density profiles and found that whenever the Alfvén speed
decreases or remains constant with height, the solutions for ξψ
diverge as z tends to infinity. Therefore we choose a vA(x, z)
that exponentially increases with height, taking

vA(x, z) = vA0exp(
z

2λB
), (12)

where vA0 is the Alfvén speed at the base of the coronal arcade.
The density is then determined by (1) and (12) as

ρ(x, z) = ρ0exp(
−3z
λB

). (13)

For the rest of the paper length, speed, density and magnetic
field strength are non-dimensionalized with respect to λB , vA0,
ρ0 and B0 respectively.

3. Analytical solution

Eqs. (9-11) show that, when ky = 0, the Alfvén (ξy component)
and fast (ξψ component) waves are decoupled. Hence when the
footpoint motions are purely toroidal, only Alfvén waves are
generated and propagate along the magnetic field lines with the
local Alfvén speed. As the local Alfvén speed varies across

the magnetic surfaces (and along the magnetic field lines), the
Alfvén waves on different surfaces become out of phase. This
phase-mixing creates small length scales necessary for dissipa-
tion to become effective in the solar corona.

Due to the high conductivity and the relatively high mass
density of the photosphere the Alfvén waves reflect back and
forth along the length of the arcade at the photospheric edges.
When the driving frequency matches the local Alfvén eigenfre-
quency, a resonance is built up. In ideal MHD the amplitude
at the resonant magnetic surface grows linearly in time. On the
non-resonant surfaces beat phenomena are seen (Berghmans &
De Bruyne 1995). Ruderman et al. (1997b) included viscosity
and resistivity and looked at the steady state solution in which
the energy input at the photosphere is balanced by the energy
dissipated at the resonance layer. They found that the distribu-
tion of the dissipated energy along the dissipative layer strongly
depends on the ratio of the viscosity and the resistivity. How-
ever the total amount of dissipated energy is independent of this
ratio.

When ky /= 0, the Alfvén and fast waves do not exist any
longer independently. The purely toroidal footpoint motions
now also generates indirectly a ξψ component through coupling
with the directly excited ξy component. Since this coupling has
its influence on the resonantly excited Alfvén waves, it is in-
structive, not only to examine the Alfvén wave spectrum but
also the fast mode spectrum. This is done in the following first
subsection.

In the second subsection we derive an analytical solution
in the dissipative layer around the resonant magnetic surface,
so that the required numerical effort to find the steady state
solution is limited to the integration of the ideal MHD equations
in regions away from any singularity. Hence this approach saves
a lot of memory and CPU time, and allows for a straightforward
parametric study.

3.1. The eigenvalue problem

ForRy = 0 andky = 0 Eqs. (9-11) form two separate eigenvalue
problems for the Alfvén and fast modes. The fast magnetosonic
spectrum is governed by

{ρJω2 +
1
J

∂2

∂χ2
+

1
J

∂2

∂ψ2
}ξ̄ψ = 0,

supplied with the necessary boundary conditions inχ andψ. The
effects of curvature (present in the jacobian 1/J) on these fast
magnetoacoustic eigenmodes are, for example, studied by Smith
et al. (1997) for dense coronal loops situated in the potential
arcade. On the other hand, the Alfvén spectrum is governed by

{ρJω2 +
∂

∂χ

1
J

∂

∂χ
}ξy = 0.

Here ψ shows up as a parameter in the equation : for each value
of ψ the equation forms a Sturm Liouville eigenvalue prob-
lem. When one varies ψ the corresponding discrete spectrum
{ω(n)

A (ψ)} is smeared out in a discrete set of continua. For every
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Fig. 2. The first 5 Alfvén continua together with the first 3 fast mode
eigenfrequencies (indicated as horizontal gray dashed lines).

fixed ψ0 the corresponding eigenfunctions {wn(χ, ψ0)} con-
stitute a complete orthonormal set of functions in the interval
χ1(ψ0) ≤ χ ≤ χ2(ψ0). The Alfvén eigenfunctions are orthonor-
mal in the sense that

〈wnρJwn′〉 =
∫ χ2

χ1

wnρJwn′dχ = δnn′ . (14)

Since the potential arcade is symmetric with respect to χ = 0,
the eigenfunctions (for both the fast as the Alfvén spectrum)
split up in a set of even functions and a set of odd functions
with respect to χ = 0. Fig. 2 shows the first 5 Alfvén continua
together with the first three fast mode eigenfrequencies (which
are indicated in the picture as horizontal gray dashed lines).

For the case that ky /= 0 the Alfvén and fast modes do not
exist any longer independently. At certain magnetic surfaces
the fast mode can be resonantly coupled to local Alfvén waves.
Hence the corresponding eigenvalue problem transforms into
the eigenvalue problem for the quasi-modes (see e.g. Tirry &
Goossens 1996).

3.2. Solution in the resonance layer

Since the Alfvén eigenfunctions form a complete orthonormal
set of functions in the interval χ1(ψ) ≤ χ ≤ χ2(ψ), it is conve-
nient to expand φ, ξ̄ψ and P ′ with respect to the eigenfunctions
{wn(χ, ψ)} :

φ(χ, ψ) =
∞∑
n=1

Yn(ψ)wn(χ, ψ),

ξ̄ψ(χ, ψ) =
∞∑
n=1

Xn(ψ)wn(χ, ψ),

P ′(χ, ψ) =
∞∑
n=1

Pn(ψ)wn(χ, ψ).

Substituting these expansions into the ideal counterparts of (9-
11) and using the orthonormality relationship (14), we get for

each n :

(ω2 − ω(n)2
A )Yn = iky

∞∑
m=1

Pm〈wmwn〉 + 〈Dywn〉, (15)

ω2Xn +
∞∑
m=1

Xm〈 1
J

∂2wm

∂χ2
wn〉 =

∞∑
m=1

{∂Pm
∂ψ

〈 1
J
wmwn〉

+Pm〈 1
J

∂wm

∂ψ
wn〉} + 〈Dψwn〉, (16)

Pn = −∂Xn

∂ψ
−

∞∑
m=1

Xm〈ρJ ∂wm

∂ψ
wn〉 − ikyYn. (17)

After truncating the series at certain value of m this set of equa-
tions can easily be integrated numerically, unless a singularity
is encountered. From Eq. (15) we see that a singularity occurs
at the magnetic surface where the driving frequency ω equals
the local Alfvén frequencyω(n)

A . In what follows we assume that
the resonance occurs at ψ = ψA for n = r.
First of all, when we substitute Eq. (11) into (10) and use the fact
that in the dissipative layer gradients of ξψ in theψ-direction are
by far larger than gradients in the χ-direction, we can deduce
that P ′ (related to the magnetic pressure) varies approximately
linearly across the resonant magnetic surface ψ = ψA :

P ′ ≈ PA(χ) + J(χ, ψA)Dψ(χ, ψA)(ψ − ψA).

This results enables us to approximate the solution close to the
resonance for Yn with n /= r as

Yn =
1

ω2 − ω(n)2
A

{iky
∞∑
m=1

PA
m〈wmwn〉

+iky〈JDψwn〉(ψ − ψA) + 〈Dywn〉}. (18)

However for the resonant harmonic Yr(ψ) the inversion as in
Eq. (18) is not possible : dissipation is important in the res-
onance layer and thus the resistive term in Eq. (9) has to be
included. In the dissipative layer we can make the following
approximation for the resonant harmonic :

∂2

∂ψ2
(Yrwr) ≈ wr

∂2Yr
∂ψ2

.

Hence the resistive counterpart of Eq. (15) for the resonant har-
monic Yr yields close to the resonant magnetic surface

{(ω2 − ω(r)2
A (ψ))− i

ηω

J

∂2

∂ψ2
}Yr =

iky

∞∑
m=1

PA
m〈wmwr〉 + 〈Dywr〉. (19)

Now we define sA such that ω2−ω(r)2
A (ψ) can be represented in

the interval [ψA − sA, ψA + sA] by the first term of the Taylor
expansion :

ω2 − ω(r)2
A (ψ) = ∆(ψ − ψA), (20)
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where

∆ =
d

dψ
(ω2 − ω(r)2

A )|ψ=ψA .

In Eq. (19) the highest derivative term is multiplied with the
magnetic diffusivity. Thus, for very high Reynolds numbers
Eq. (19) represents a singular perturbation problem. Dissipation
is only important in a thin layer embracing the resonant mag-
netic surface where the first term in the lefthandside of Eq. (19)
is of the order of the second term. Comparison of these two
terms results in a thickness of the dissipative layer δA given by

δA = (
ωη

J |∆| )
1
3 .

Due to the very large Reynolds numbers in the solar corona, the
thickness of the resonant layer δA is in general much smaller
than the range of validity of the Taylor expansion (20). This
is important since it implies that in addition to the dissipative
layer there are two overlap regions to the left and the right of the
dissipative layer contained in the interval [ψA − sA, ψA + sA]
where ideal MHD is valid too.

Then it is convenient to introduce a new scaled variable
τ = (ψ − ψA)/δA which is of the order 1 in the dissipative
layer. In this new variable Eq. (19) transforms to

{ d2

dτ 2
+ isign(∆)τ}Yr =

i

δA|∆| {iky
∞∑
m=1

PA
m〈wmwr〉 + 〈Dywr〉}. (21)

The solution to this equation which is bounded as |τ | → ∞ is
given by (see e.g. Goossens, Ruderman & Hollweg 1995)

Yr =
−iF (τ )
δA|∆| {iky

∞∑
m=1

PA
m〈wmwr〉 + 〈Dywr〉} (22)

where F (τ ) is the universal function which was first introduced
by Boris (1968)

F (τ ) =
∫ ∞

0
exp(iτsign(∆)k − k3

3
)dk.

From Eq. (17) the solution for the resonant harmonic in the ex-
pansions of ξ̄ψ close to the resonant magnetic surface becomes

Xr =
ikyG(τ )

∆
(iky

∞∑
m=1

PA
m〈wmwr〉 + 〈Dywr〉)

−PrδAτ + CX (23)

where

G(τ ) =
∫ ∞

0
exp(

k3

3
)
exp(iτsign(∆)k)− 1

k
dk

and CX is a constant of integration.

4. Numerical procedure

This section is devoted to a short description of the numerical
approach to solve Eqs. (9-11) for φ, ξ̄ψ and P ′. Since in the or-
thogonal curvilinear coordinates (χ, ψ), as described in Sect. 2,
the boundariesχ1 andχ2 are dependent onψ, we prefer to trans-
form to a new pair of flux coordinates, however non-orthogonal,

ψ′ = ψ; 0 ≤ ψ′ ≤ 1

χ′ = (1− ψ2)−
1
2 χ; −1 ≤ χ′ ≤ 1

With these coordinates, field lines become straight lines with
ψ′ = const and have length 2, which is achieved through the
normalisation factor (1−ψ2)−

1
2 . The photosphere (z = 0) corre-

sponds toχ′ = 1 for 0 ≤ x ≤ 1 and toχ′ = −1 for−1 ≤ x ≤ 0.
The line ψ′ = 0 is the field line in the (x, z) system that orig-
inates at (−L, 0), extending up to infinity and terminating at
(L, 0). The line ψ′ = 1 corresponds to the point (x = 0, z = 0)
(Oliver et al. 1996).

The Eqs. (9-11) can be rewritten with these new flux coor-
dinates into

{ρJω2 + (1− ψ′2)−1 ∂

∂χ′
1
J

∂

∂χ′
− iηωρ

∂2

∂ψ′2
}φ =

ikyP
′ + Dy(χ′, ψ′), (24)

{ρJω2 +
(1− ψ′2)−1

J

∂2

∂χ′2
− iηωρ

∂2

∂ψ′2
}ξ̄ψ =

1
J

(
∂

∂ψ′
+ ψ′(1− ψ′2)−1χ′

∂

∂χ′
)P ′ + Dψ(χ′, ψ′), (25)

P ′ = −(
∂

∂ψ′
+ ψ′(1− ψ′2)−1χ′

∂

∂χ′
)ξ̄ψ − ikyφ, (26)

where

Dy(χ′, ψ′) =
1− χ′

2
(k2
y − ρJω2)Ry

+
(1− ψ′2)−1

2
∂

∂χ′
(

1
J

)Ry,

Dψ(χ′, ψ′) = − iky
J

1− χ′

2
∂Ry

∂ψ′

+
iky
J
ψ′(1− ψ′2)−1χ

′

2
Ry.

At the coronal base z = 0 (χ′ = ±1) all the variables φ, ξ̄ψ
and P ′ should vanish. Remember that the footpoint motions
are included as driving terms into the equations by (8). If we
assume that the arcade under consideration is taken to be isolated
in the sense that no plasma traverses the boundaries at x = ±L
(ψ′ = 0), ξ̄ψ has to be zero at ψ′ = 0.
The homogeneous boundary conditions for φ, ξ̄ψ and P ′ at χ′ =
±1 allow for the following expansions

φ(χ′, ψ′) =
∞∑
n=1

Yn(ψ′)wne(χ′, ψ′e),

ξ̄ψ(χ′, ψ′) =
∞∑
n=1

Xn(ψ′)wne(χ′, ψ′e),
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P ′(χ′, ψ′) =
∞∑
n=1

Pn(ψ′)wne(χ′, ψ′e),

where {wne(χ′, ψ′e)} form the complete set of Alfvén eigen-
functions of the magnetic surfaceψ′ = ψ′e. Note that, in contrast
to the corresponding expansions in Sect. 3.2, the expansions
are now with respect to the set of Alfvén eigenfunctions of one
particular magnetic surface. This we can do because all field
lines have the same length in the flux coordinates (χ′, ψ′). For
the numerics this means that we have to calculate the Alfvén
eigenfunctions of only one magnetic surface. With the use of
these expansions the ideal part of the coupled partial differential
Eqs. (24-26) is replaced by an infinite set of coupled ODE’s for
Xn, Yn and Pn. In contrast to a 1-D situation there is coupling
between the different Alfvén eigenfunctions (see e.g. Tirry &
Berghmans 1997) :

ω2Yn +
∞∑
m=1

YmC1mn − iky

∞∑
m=1

PmC2mn = D1n, (27)

ω2Xn +
∞∑
m=1

XmC3mn −
∞∑
m=1

∂Pm
∂ψ′

C4mn

−
∞∑
m=1

PmC5mn = D2n, (28)

Pn + ikyYn +
∂Xn

∂ψ′
+

∞∑
m=1

XmC6mn = 0 (29)

with

C1mn =
1

1− ψ′2
〈ρeJe
ρJ

∂

∂χ′
(

1
J

∂wme

∂χ′
)wne〉

C2mn = 〈ρeJe
ρJ

wmewne〉

C3mn =
1

1− ψ′2
〈ρeJe
ρJ2

∂w2
me

∂χ′2
wne〉

C4mn = 〈ρeJe
ρJ2

wmewne〉

C5mn =
ψ′

1− ψ′2
〈ρeJe
ρJ2

χ′
∂wme

∂χ′
wne〉

C6mn =
ψ′

1− ψ′2
〈ρeJeχ′ ∂wme

∂χ′
wne〉

D1n = 〈ρeJe
ρJ

Dywne〉

D2n = 〈ρeJe
ρJ

Dψwne〉

where the subscript ’e’ indicates that the quantities are evaluated
at ψ = ψe. The ideal equations are then discretised using a finite
differencing scheme (second order accuracy). After expanding
the Alfvén eigenfunctions corresponding to a resonant magnetic
surface ψ′ = ψ′A with respect to {wne(χ′, ψ′e)} we can use the
analytical solution (22-23) for the resonant variables to cross the
dissipative layer embracing the resonant magnetic surface ψ′ =
ψ′A. The non-resonant variables are linearly extrapolated across

the resonance layer. The resulting linear algebraic equations are
solved using standard NAGroutines.

5. Energetics

Once we have determined the stationary behaviour of the excited
waves inside and outside the dissipative resonance layer we can
study the resulting dissipation of the wave energy in the coronal
arcade due to the resonance. In the steady state the energy, av-
eraged over a period of the driving frequency, dissipated in the
resonant layer must be balanced by the time-averaged energy
that enters the arcade through the left foot of the arcade at z = 0.
As the z-component of the velocity is equal to zero at z = 0,
the time averaged energy flux through the left coronal base of
the arcade is given by the z-component of the time averaged
Poynting vector E × B∗ integrated over this surface

S =
∫ 0

−L
[
Re(E × B∗)z

2
]z=0 dx, (30)

where Re(.) denotes the real part of a complex quantity, and the
asterix its complex conjugate.

With the use of Ohm’s law we easily get

E × B∗ = [v|B|2 − B(v · B∗)] + η(∇× B)× B∗. (31)

Taking into account the fact that we have imposed purely
toroidally polarised footpoint motions and that the arcade under
consideration is a potential one (there is no electrical current in
the equilibrium state present), we obtain

[E × B∗]z=0 = −vyb∗yBz, (32)

where any term proportional toη is neglected because of the very
high Reynolds numbers under solar coronal conditions (see e.g.
Ruderman et al. 1997b). The z-component of the time averaged
Poynting flux S can then be written as

S = −1
2

∫ 0

−L
[Re(vyb

∗
yBz)]z=0dx. (33)

Expressing vy and by in terms of the displacement component
ξy results in

S =
ω

2

∫ 0

−π/2
[Re(iξy

(1− ψ′2)
1
2

J

∂ξ∗y
∂χ′

Bz)]z=0dx, (34)

where we wrote S now in non-dimensionalised form.
Changing the integration variable to the flux coordinate ψ′

we can rewrite expression (34) as

S =
ω

2

∫ 1

0
Re(iξy

∂ξ∗y
∂χ′

)
dψ′

J(1− ψ′2)
1
2

|χ′=−1. (35)

In terms of φ the expression for the averaged Poynting flux
through the left foot of the arcade becomes

S =
ω

2

∫ 1

0
RyIm(

∂φ

∂χ′
)

dψ′

J(1− ψ′2)
1
2

|χ′=−1. (36)
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Fig. 3. The ky-dependence of the time averaged Poynting flux S
through the left foot of the arcade for ωd = 2.5, 2.7, 2.9 in the ab-
sence of a quasi-mode.

Since in a stationary state no energy stock can be built up in
the arcade, S also equals the heating rate in the arcade. In ad-
dition, it will be interesting to examine also the Poynting flux
which enters the resonant layer directly at its photospheric base,
defined as

Sdir =
ω

2

∫
res.layer

RyIm(
∂φ

∂χ′
)

dψ′

J(1− ψ′2)
1
2

|χ′=−1. (37)

When ky = 0, Sdir equals the analytical expression for the total
amount of dissipated wave energy derived by Ruderman et al.
(1997b). The difference

Sind = S − Sdir (38)

is the energy flux that enters the arcade through the left foot of
the arcade at z = 0 plane, but outside the base of the resonant
layer. Since only the dissipative layer can act as a sink of energy
(by conversion to heat, of course), all the energy flux Sind that
goes to the non-resonant part of the arcade, has to leave it again
which it can only do sideways into the dissipative layer. As such,
Sind is the energy flux entering the dissipative layer sideways
and is referred to as the indirect energy flux. Of course, it is the
coupling to the fast waves which is responsible for the indirect
energy flux.

Note that the total energy flux S must be positive (since it
equals the ohmic dissipation which is always a positive quan-
tity), while the direct Sdir and the indirect Sind energy flux can
be negative (as long as their sum is positive).

6. Results and discussion

As already mentioned, since the arcade is symmetric with re-
spect to χ = 0, the eigenfunctions (for both the fast magne-
tosonic and the Alfvén spectrum) split up in a set of even func-
tions and a set of odd functions. For the same reason, the solution
of the footpoint driven problem can be found as the sum of a
symmetric part (as an expansion in the even Alfvén eigenfunc-
tions) and an antisymmetric part (as an expansion in the odd
Alfvén eigenfunctions) which are decoupled.
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Fig. 4. The ky-dependence of the time averaged Poynting flux S
through the left foot of the arcade for ωd = 2.5 together with its direct
and indirect components SS

dir , SA
dir , SS

ind and SA
ind in absence of a

quasi-mode.

As an instructive example to show the influence of the cou-
pling to the fast waves and the presence of a quasi-mode on
the resonant excitation of Alfvén waves, we will focus on driv-
ing frequencies in the range of [2.1, 3.1]. This means that both
fundamental symmetric and antisymmetric Alfvén modes are
excited on certain magnetic surfaces. In this range of frequen-
cies the fundamental fast mode eigenfrequency is present (see
Fig. 2). When ky /= 0, the fast mode resonantly couples to the
fundamental symmetric Alfvén mode on the magnetic surface
where the oscillation frequency matches the local Alfvén fre-
quency (see Fig. 2). However, by shifting the boundaries in the
ψ direction, we can control whether or not a quasi-mode is
present in the considered range of driving frequencies. By shift-
ing the boundaries inwards (the ψ-interval becomes smaller)
the frequency of the fundamental fast mode increases and shifts
out of the range of driving frequencies. Once the boundaries are
specified, we are left with the two free parameters, ωd and ky ,
which determine the footpoint driving with the ψ-dependence
described by Ry(ψ). In the next subsection we first focus on
the case without a quasi-mode lying in the discussed range of
driving frequencies, while in the following subsection we look
at the modifications induced by the presence of the fundamental
quasi-mode. In each case we investigate the wave heating as a
function of the footpoint parameters (ωd, ky). In the calculations
we have taken η to be of the order 10−9 and Ry to be constant
(and hence a scaling factor in our linear approach).

6.1. In the absence of a quasi-mode

We take the outer boundary ψout = 0.2 and the inner boundary
of the arcade ψin = 0.9. For these rather artificial boundary
values the fundamental fast mode frequency lies far above the
considered range of driving frequencies [2.5, 3.0].

In Fig. 3 we show the ky-dependence of the averaged Poynt-
ing fluxS through the left foot of the arcade for different driving
frequencies. They all show the same global dependency : with
increasing ky there is an increase in time averaged Poynting
flux leading to a maximum in Poynting flux (preceded by a lit-
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tle decrease for smaller values of driving frequency), followed
by a rather fast decay towards a point where the averaged en-
ergy input drops to zero. To investigate this in more detail we
have plotted the total time averaged Poynting flux S together
with the Poynting fluxesSSdir andSAdir through the photospheric
base of the resonance layers in the symmetric part and the an-
tisymmetric part of the solution, and their complements SSind
and SAind for ωd = 2.5 in Fig. 4. This picture can be understood
as follows. When ky = 0 different magnetic surfaces are per-
fectly decoupled in ideal MHD, and the dissipative layer can
only get energy input from its photospheric base resulting in
S = SSdir + SAdir and SSind = 0 = SAind. For ky /= 0 however, the
magnetic surfaces are coupled and energy can now also enter or
leave the dissipative layer sideways. As a consequence,SSdir and
SAdir decay from a global point of view (wave energy is not per-
fectly contained in the dissipative layer anymore) and |SSind| and
|SAind| grow (wave energy can enter or leave the dissipative layer
sideways). For the antisymmetric part of the solution the side-
ways contribution SAind remains small compared to SAdir. The
contribution SAind corresponds to ’fast wave’ behaviour, since
Alfvén waves propagate their energy strictly along the magnetic
field. However ’antisymmetric fast mode’ behaviour is not at all
supported at the driving frequency ωd = 2.5. This results in a
small SAind contribution. For the symmetric part of the solution
the sideways contribution SSind becomes of the same order as
SSdir. This is probably due to the presence of the fundamen-
tal symmetric quasi-mode with an nearby oscillation frequency
ω ≈ 3.7, leading to an optimal coupling for ky ≈ 1.1. However
for ky ≈ 1.75 all direct and indirect Poynting fluxes approach
zero. In the (ωd, ky) space this results in an anti-resonance line
of combination of driving frequency and wave number for which
no resonance is built up. This feature was not encountered (or
at least not mentioned) by Berghmans & Tirry (1997) in their
investigation of wave heating in their 1-D coronal loop model.

6.2. In the presence of a quasi-mode

We now take the outer boundary ψout = 0.03 and the inner
boundary ψin = 0.97. For these boundary values the funda-
mental fast mode frequency equals 2.71, lying in the considered
range of driving frequencies. In Fig. 5 we show again the ky-
dependence of the time averaged Poynting flux S through the
left foot of the arcade for different driving frequencies. From a
global point of view, we could say that the dependence on ky
of the Poynting flux S remains the same as in the previous sub-
section with the same features : with increasing ky , an optimal
combination of driving frequency and wave number followed
by an anti-resonance combination for which there is no time
averaged photospheric energy input.

However, in the neighbourhood (in (ωd, ky) space) of the
fundamental fast mode frequency, the appearance of the Poynt-
ing flux S changes dramatically. This can be seen clearly in
Fig. 5 for ωd = 2.9 and ky ≈ 0.77. For small values of ky
the oscillation frequency of the fundamental quasi mode ap-
proaches the fundamental fast mode frequency. However for
these small values of ky , the coupling is very weak, so that the

0 0.5 1 1.5 2 2.5 3
0

0.0001

0.0002

0.0003

0.0004

0.0005 ω =2.5d

ω =2.7d

ω =2.9d

ω =3.1d

S

k y

Fig. 5. The ky-dependence of the time averaged Poynting flux S
through the left foot of the arcade for ωd = 2.5, 2.7, 2.9, 3.1 in the
presence of a quasi-mode.
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Fig. 6. The ky-dependence of the time averaged Poynting flux S
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presence of the quasi-mode has almost no influence on the curve
for ωd = 2.7 in Fig. 5. As discussed in the paper by Berghmans
& Tirry (1997), the (ωd, ky) values of enhanced Poynting fluxes
correspond to the position of the fundamental quasi-mode fre-
quency (we refer by quasi-mode frequency actually to the real
part of the quasi-mode frequency. The imaginary part (damping
rate) is less important in the present discussion). Berghmans &
Tirry also found a ’valley’ of combinations of ωd and ky for
which the footpoint driving leads to only a very small Poynting
flux S, with a line in the middle of the valley where the Poynt-
ing flux S drops to zero. Although we recover a small valley
of reduced Poynting flux, no anti-resonance is present therein
(see Fig. 5 for ωd = 2.9). The reason is quite obvious and will
be explained with Fig. 6. In Fig. 6 we have drawn as in Fig. 4
the total time averaged Poynting flux together with the fluxes
SSdir and SAdir through the photospheric base of the resonance
layers and their complements SSind and SAind for ωd = 2.9. Here
we see that SAdir and SAind corresponding to the antisymmet-
ric part of the solution behave like in the case of absence of
a quasi-mode. The antisymmetric behaviour does not feel the
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presence of the symmetric fundamental quasi-mode. However
the symmetric part of the stationary state solution does. In the
neighbourhood (in (ωd, ky) space) of the fundamental quasi-
mode frequency the appearance of the Poynting fluxes SSdir and
SSind is in agreement with the behaviour found by Berghmans
& Tirry : with increasing ky , an anti-resonance point (both SSdir
and SSind goes through zero) followed by an enhanced Poynting
flux region. The anti-resonance line can be explained in terms
of being those (ωd, ky) combinations for which the resonant
Alfvén waves excited directly at the photospheric base of the
dissipative layer are in perfect anti-phase with the Alfvén waves
excited through coupling with the fast waves. The region of en-
hanced Poynting flux corresponds to combinations for which
the contributions are almost in phase. This was shown by Tirry
& Berghmans (1997) in their time-dependent approach of the
photospheric excitation of Alfvén waves in a 1-D coronal loop.

Hence our results for the photospheric excitation of Alfvén
waves in a potential coronal arcade confirm the peculiar be-
haviour found by Berghmans & Tirry that a region (in (ωd, ky)
space) of enhanced Poynting flux due to the presence of a quasi-
mode is accompanied with a region of reduced Poynting flux.

7. Summary

In this paper we investigated the excitation of resonant Alfvén
waves in coronal arcades by toroidally polarised motions of the
photospheric footpoints of the fieldlines.

Our main interest was to obtain qualitative information on
the new wave physics due to the toroidal wave number ky /=
0 and to confirm the peculiar phenomenon of anti-resonance
previous encountered by Berghmans & Tirry (1997).

We considered a potential coronal arcade of a pressureless
plasma obeying the linear resistive MHD equations. We were
able to determine analytically the 2-D solution in the dissipative
layer around the resonant magnetic surface, where the driving
frequency equals the local Alfvén frequency. Hence the only
numerical effort to find the wave solution in the stationary state
lay in the integration of the ideal MHD equation away from
any singularity. Since this saves a lot of memory and CPU time,
parametric studies can easily be done.

In addition, we derived expressions for the energy fluxes
entering the dissipative layers through its photospheric base and
the energy fluxes entering the dissipative layers sideways. The
sum of these fluxes is the total energy flux delivered by the
footpoint motions and dissipated in the coronal arcade. These
expressions turned out to be valuable tools for the investigation
of the stationary heating of the coronal arcade as a function of
the footpoint characteristics (ωd, ky).

Forky = 0, as studied by Ruderman et al. (1997b), there is no
coupling to fast waves and thus the only way for the resonance
layer to obtain energy is by direct input from its photospheric
base. In order to investigate the influence of the presence of a
quasi-mode, we first studied the case in absence of a quasi-mode.
When ky /= 0 the different magnetic surfaces are coupled. Hence
the energy is now not only entering (or leaving) the dissipative
layer from below but also sideways with a combination of ωd

and ky leading to optimal heating rate. However in contrast
to Berghmans & Tirry, there is also a combination of ωd and
ky where both the direct Poynting fluxes SSdir and SAdir and as
the indirect fluxes SSind and SAind go through zero, leading to
virtually no heating at all.

In the case of presence of a quasi-mode the dependence of
the heating on the driving frequency and the wave number is
drastically changed. For (ωd, ky) corresponding to the quasi-
mode, the heating rate is enhanced, however not by several or-
ders of magnitude as Berghmans & Tirry found in their 1-D
coronal loop model. The associated region in (ωd, ky) space of
reduced Poynting flux S is also recovered. However, no line
of anti-resonance is present therein. The reason is that the res-
onance of the antisymmetric fundamental Alfvén eigenmode
is not influenced by the presence of the symmetric fundamen-
tal quasi-mode. When considering only the direct and indirect
Poynting fluxes corresponding to the symmetric part of the so-
lution, the anti-resonance is recovered.

Hence our results for the photospheric excitation of Alfvén
waves in a potential coronal arcade confirm the peculiar be-
haviour found by Berghmans & Tirry that a region (in (ωd, ky)
space) of enhanced Poynting flux due to the presence of a quasi-
mode is accompanied with a region of reduced Poynting flux.
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Čadež, V.M., & Ballester, J.L. 1995b, A&A, 296, 550
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