Astron. Astrophys. 330, 474-479 (1998)

ASTRONOMY
AND
ASTROPHYSICS

Rotation curves for spiral galaxies and non-Newtonian gravity:

a phenomenological approach

C. Rodrigo-Blanco and J. Pérez-Mercader

Laboratorio de Astrofisica Espacial y Fisica Fundamental (LAEFF), P.O. Box 50727, E-28080 Madrid, Spain

Received 26 March 1996 / Accepted 8 November 1996

Abstract. Rotation curves of spiral galaxies are known with
reasonable precision for a large number of galaxies with simi-
lar morphologies. The data implies that non-Keplerian fall-off
is seen. This implies that (i) large amounts of dark matter must
exist at galactic scales or (ii) that Newtonian gravity must some-
how be corrected. We present a method for inverting the integral
relation between an elemental law of gravity (such as Newton’s)
and the gravitational field generated by a thin disk distribution
with exponential density. This allows us to identify, directly
from observations, extensions of Newtonian gravity with the
property of fitting a large class of rotation curves. The modifi-
cation is inferred from the observed rotation curve and is finally
written in terms of Newton’s constant or the effective poten-
tial of a test mass moving in the field generated by a point-like
particle.
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1. Introduction

When trying to understand the dynamics of large scale astro-
physical systems, for example galaxies, we assume that the dom-
inant interaction at that scale is gravity. This implies the use of
Einstein’s General theory of Relativity (GR), so that in the limit
when the speeds involved are much smaller than the speed of
light and in the weak field limit, one may legitimately apply
the Newtonian limit. For most galaxies these two conditions are
met, and therefore Newtonian considerations apply.

Both GR and its Newtonian limit, have been successfully
and directly tested at scales not much larger than the Solar Sys-
tem (See, e.g., Will 1993). However, when one tries to apply
them to galaxies or even larger systems, the predicted behavior
is usually found to be quite different from what is observed. In
fact, in order to accommodate the observations, it is customary
to assume the presence of a large amount of non-visible matter,
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the so-called dark matter. The needed amount of dark matter has
to be somewhere between 90 and 99 per cent of the total mass
of the Universe; furthermore, in order to be consistent with the
predictions derived from standard Big Bang nucleosynthesis, it
must be non-baryonic. Of course this discrepancy is commonly
known as the Dark Matter Problem.

In this paper we study the problem of the rotation curves of
spiral galaxies, a case in point. When we apply the Newtonian
approximation to these systems we find that their rotation curves
should fall for large radius as v> oc 7!, i.e., in a Keplerian fall-
off. Instead, the observed rotation velocity is typically seen to
remain constant after attaining a maximum value, as if it were to
go to some asymptotic value, different for each galaxy. This is
usually explained assuming a halo of Dark matter surrounding
the visible galaxy, with the adequate shape for accommodating
the observed rotation curve.

However, Newton’s law of gravity is just a phenomenologi-
cal law that was designed by Newton to explain gravitational dy-
namics within Solar-system scales. On the other hand, General
Relativity (GR) was developed by Einstein with the constraint in
mind of recovering the Newtonian potential in the limits of weak
fields and small (compared with the speed of light) velocities,
assuming that the phenomenological law discovered by New-
ton for the Solar system could be extrapolated to distances up to
infinity. These considerations leave open the possibility that, at
least while the Dark Matter component remains unidentified, the
possibility exists that GR, despite its conceptual beauty, would
have to be modified in some way, perhaps in the same spirit as
it was used to modify Newtonian gravity for strong fields and
large velocities or, perhaps, in other ways.

Different alternative theories have already been proposed to
solve the Dark Matter problem without dark matter, and most of
them suggest that Newton’s law must be modified either for very
small accelerations or for large distances (a good review on some
of these alternatives may be found in Sanders 1991). Milgrom’s
Modified Newtonian Dynamics (MOND) (see Milgrom 1983)
suggests that the second law of Newtonian dynamics breaks
down for very small accelerations, in such a way that, in that
limit, the acceleration is not proportional to the gravitational
force but to its square root. This phenomenological theory has
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been successfully tested in many galaxies (see Begeman et al
1991) although there is some controversy about its validity in
some dwarf galaxies (Lake 1989, Milgrom 1991 and Milgrom
1995). Even a relativistic model that recovers MOND in the
adequate limit has been proposed (see Bekenstein 1987 and
Sanders 1991). Even though this approach is not accepted by
most astrophysicists who seem reticent to assume its validity, it
is very interesting on its own right, and should not be discarded
without strong evidence against it. However, here we will focus
our attention on the possibility that Newtonian gravity could be
modified not for small accelerations but for large distances.

We have posed the following (somewhat longish) question:
“Is it possible to find a phenomenological universal Newton-like
law that can explain the observed dynamics in spiral galaxies,
without having to assume the presence of an undetected mass
component, and whose short distance limit is compatible with
the Newtonian law?” We will offer a positive answer to this
question.

This is not the first time such an approach is taken in the
literature. Work along these lines has already been done. For
example, Kuhn & Kruglyak 1987 and Tohline 1983 suggest to
add a correction proportional to 1 /r to the Newtonian force, and
the week field limit of Mannheim’s Weyl gravity (Mannheim
1989) implies that a constant correction should be added. In
all cases, a specific functional form is assumed (or derived, in
the Mannheim’s case) for the generalized force. This form is
parametrized by some free parameters, and the evaluation of
the predicted rotation curves for some known spiral galaxies
through the corresponding numerical integrals leads, when com-
pared with observations, to specific values for these parameters.
This is a very interesting and direct approach, but its success
obviously depends on a good choice for the initial form for the
“improved” force.

We will present here a procedure that follows the inverse
methodology: we will write down an equation such that, once
we know the observed rotation velocity of a galaxy we readily
obtain which is the force, if any, that is able to generate that rota-
tion curve without assuming the presence of any dark matter. In
this way we will not have to assume a form for the phenomeno-
logical law, we will infer it directly from the observational data.
The observed data is our starting point, not the final result of
some “fit”. And, what could be more interesting, the method
presented here can be, in principle, equally useful for discard-
ing a non-Newtonian law of gravity as for proving its existence.
Once we have the equation that allows us to find the force from
the observed velocity, we will apply it to a sample of spiral
galaxies and check if there exists a common phenomenological
law that works for all the galaxies in the sample. In Sect. 2 we
give the solution to the mathematical problem, in Sect. 3 we
apply it to real galaxies and we end offering some conclusions.

475

2. The analytical method

We write the gravitational field as a generalization of both, the
Newtonian potential and the Newtonian force. This we do by
introducing two functions g(r) and g (7) defined as:

o) = — S . (1)
Fry= -0 " @)
T T

where ¢(r) and F'(r) are the potential and the force experienced
by two point-like particles of masses m; and m, separated by a
distance r and G is Newton’s constant. The two functions g(r)
and g.s(r) are related through:

gert(r) = g(r) — rg'(r), 3

where the prime denotes a derivative with respect to the argu-
ment of the function.

In order to calculate the field due to a given mass distribution
Q) described by a density function p(r), we must first integrate
the microscopic field over the distribution, i.e., we must perform
the integral

_ 3 9(|R*7'|)
@(R)——Go///gdr R—r|

which gives the potential experienced by a point mass at a po-
sition R from the center of 2. For a symmetric distribution
(spherical or disk when considering the disk plane) it is conve-
nient to introduce the following notation:

p(r), “

®R) = — G(’g““ U(R). (5)
GoM,,
V2(R) = "R " Uer(R) (6)

where Vo (R) is the rotation velocity of a test particle describ-
ing circular orbits in the gravitational field generated by the
distribution 2.

It can be readily checked that the auxiliary functions W.g
and W satisfy the following functional relationship:
Peir(R) = W(R) — RY'(R). (N

The luminous matter in many spiral galaxies can be mod-
elled, as a first approximation, by a thin disk distribution with
an exponentially decaying density (this point will be discussed
in more detail in Sect. 3, when our results are applied to real
galaxies). In cylindrical coordinates this may be written as:

p(r) = po e 8(2) @®)

where « is obtained from the luminosity profile for each galaxy.

Our problem can now be paraphrased as follows: “knowing
the rotation velocity (i.e., ¥ (R) up to a normalization constant
proportional to the mass of the galaxy), what is the elemental
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law of gravity, i.e., g(r) or ges(r), capable of generating that
velocity field in a thin disk galaxy?”

This problem can be solved exactly for a spherical galaxy
with an exponentially decreasing density. Here the solution can
be summarized as:

_ 2 " 1 (iv)
gr)=V(r)— W (r)+ ,W(r). )
« «

This case will be consider in detail in a separate publica-
tion (See Rodrigo-Blanco in preparation). The line of reasoning
leading to the proof of Eq. (9) is as follows: plug Eq. (8) into (4),
and use the Fourier transform of g(r) together with the addition
theorem of Bessel functions to decouple the integration vari-
ables in the integrals. Once this is done, and after introducing
the function U(R), integration by parts yields Eq. (9).

In the thin disk case the problem cannot be solved exactly.
For this reason we will use an approximation that we call “Gaus-
sian approximation” (we will see that, in the Newtonian case,
this approximation is equivalent to using Gauss’ law for calcu-
lating the gravitational field and hence the name). It should be
noted that this approximation improves when one considers a
geft(r) which is an increasing function of r (which, of course,
is a welcome bonus for understanding the rotation curves of
galaxies).

In this approximation the appropriate g.s(7) turns out to be:

1 2
Geir () = Ve () — o2 W () + o2 Wegr(2) (10)

where Ui () has the following behavior at the origin:

Peii(0) = Weg(0) = 0. (1)

The mathematical formalism applied to obtain Egs. (10) and
(11)1s very similar to the one used for a spherical distribution. In
both cases, the use of the addition theorem of Bessel functions
leads to an infinite series of terms involving Bessel functions
of the form Jy 1/, and we truncate the series keeping only
the term with £ = 0. Actually, in the presence of spherical
symmetry this is the only term that contributes to the integrals,
and therefore the result is exact. In the thin-disk case it can
be shown that this term dominates the integrals in the cases of
interest. The mathematical details will be given in a separate
publication (See Rodrigo-Blanco in preparation). Here we give
a qualitative a posteriori justification of the goodness of the
approximation. First, it can be seen that the solution to Eq. (10),
when gegr(r) = 1, (Newtonian limit) is

GoMior (1 - (1+aR)eoF] = GoM(R)

2 —
V)= R

(12)
where M (R) is the disk mass inside a sphere' of radius R. In
order to get an idea of what happens for a growing g, let us
restrict ourselves to the case when g (1) can be parametrized

' Although this is not the exact result, it is however what we would

find if we applied Gauss’ law as an approximation for evaluating the
gravitational field. That is why we call our approximation Gaussian.
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Fig. 1. Exact rotation curves obtained by performing a numerical inte-

gration of the forces over a flat disk and obtaining the rotation velocity

(full points) and Gaussian approximation (solid line) for ge(r) o< r#

for some values of p (u = O is the Newtonian case). In every case,

for the sake of clarity, the velocities are normalized by dividing by the
Go]\lh,[a ) |/2

appropriate constant: Vy = ( oy

as a power law of the form gi’f‘f)(r) = ()" with y real and

positive. In Fig. 1 we have plotted the rotation curve obtained
from Eq. (10) versus the exact solution for six values of p. It
can be seen right away that, the faster gé’f‘f) grows, the better the

approximation.

3. Application to real galaxies

Now we move on to apply our equation (Eq. (10)) to real galax-
ies. We only can apply the results of the previous section to real
galaxies if they can be well described, at least as a first approx-
imation, by Eq. (8). We have chosen a sample of nine galaxies
(which we judge to be representative) whose luminosity pro-
files can be well fitted using a thin disk model with exponential
density, with no bulge, and without a very large amount of neu-
tral gas (See refs. Begeman 1987, Carignan 1985, Carignan et
al 1988, Persic & Salucci 1995 and Persic et al. 1995). This,
assuming a constant value of M/L for the disk, and neglecting
both the thickness of the disk and the contribution of neutral hy-
drogen (so long as it is not distributed as the stellar component),
leads to a density function simmilar to that of Eq. (8). However,
it must be remembered that these simplifications, necessary for
applying Eq. (10) and fairly good for our nine galaxies, are not
valid in general. In many spiral galaxies the bulge or the neutral
gas components are important and cannot be neglected. It has
also been shown that the scale-length 1/« in the K-band is, on
average, about 15 % shorter than in the B-band (see de Jong
1995 that has reported large colour gradients in a big sample of
face-on galaxies), which would mean that assuming a constant
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Table 1. Relevant observed properties of selected galaxies. References
to the original data: (a) Begeman 1987; (b) Carignan 1985; (c) Carignan
et al. 1988; (d) Carignan & Puche 1990; (e) Kent 1987; (f) Mathewson
et al. 1992; (g) Metcalfe & Sanks 1991; (h) Persic & Salucci 1995,
Persic et al. 1995; (i) Puche et al. 1990

Galaxy name Distance  Scale length Luminosity Rot.
(Mpc) (kpc) IOIOL@ curve
NGC 2403 32¢ 21° 0.8 a
NGC 3198 94¢° 24° 09° a
NGC 0598 099 1.89" 0.36" h
NGC 6503 59¢ 1.72¢ 0.48 @ a
NGC 0247 25° 29°% 0.24° d
NGC 0300 1.9° 20°% 0.24° i
347-33 20.97 1.46" 1.675" h
UGC 2259 9.8°¢ 1.34¢ 0.1°¢ d
NGC 7339 20.6" 19" 1.159 " h

value of M/L for the disk could be dangerous in general. In Table
1 we list the relevant observational data for these galaxies.

Once we have found a sample of galaxies whose mass distri-
butions can be approximated by that of Eq. (8), the next step for
applying Eq. (10) is to fit the rotation velocity for each galaxy
by some function, so that we can take its derivatives. In or-
der to do this it is important to notice that, in the approach we
are describing, there is no specific physical reason or prejudice
for choosing one function or another to fit the observed data:
we only need that the function fits well the observed velocities
within the error bars. Apart from this generic requirement, we
can use powers, polynomials or any other function that fits the
data so long as the corresponding velocity satisfies the follow-
ing sufficient conditions: v(r = 0) = 0, and v(r)e™*" — 0 as
r — oo (which are both natural conditions). It is also important
to notice that, since second derivatives of the rotation velocity
are involved in Eq. (10), small differences in velocities can still
lead to large differences in g.¢. This can be readily appreciated
in Fig. 2, where we have plotted different functional fits to the
rotation velocity of NGC 6503 and the corresponding gefr ’s (up
to a normalization constant).

Although all the fits are statistically acceptable, we see qual-
itative differences between the g.g’s corresponding to each fit.
These differences are more significant at short distances. In other
words, we have twelve geg’s that can generate a rotation curve
compatible with the observed one, being qualitatively different
at small radii. This implies that the exact form of g is not
constrained by the rotation curve for small distances (where the
errors in the observations are larger and small deviations from
the Newtonian behaviour are smoothed out by the integration
that leads to the macroscopic field). Thus, this region will not be
used in our calculations, since any result that could be obtained
would, at least, be artificial. We will study the behavior of ges(7)
for large r with the only restriction of being compatible with
geft = 1 at small distances.

In view of the above we use the following procedure: (i) we
fit each rotation curve by a wide family of mathematical func-
tions, (ii) we calculate the corresponding product g (1) M; for

477

140

120 © e = . i

100 -

I

h

80 - & j
r
0
i

60 i q

V,, (kms™)

40
8.0

_ 10
oo | EMe/107M. |
40 - 1
5
o0
W L s J
2.0 s /ﬂ{/*-”-
7
0.0/ 1
20 ‘ ‘ ‘ ‘
0.0 5.0 10.0 15.0 20.0 25.0

r (kpe)

Fig. 2. Fits of the rotation curve of NGC 6503 using ten different
functional forms (We have used the class of functions v;, defined in
Eq. (13), with a third-degree polynomial and twelve different values
of ¢ going from 1.0 to 2.2 (upper graph) and the gt (r) corresponding
to each fit (lower graph).

each of those functions (where i denotes the particular galaxy).
Thus we have a set of ges(r) ’s for each galaxy, each of them
capable of generating the observed rotation curve up to some
multiplicative constant. Then, (iii) we introduce all the geg(r) ’s
in a computer program that picks up a gesr (1) M; for each galaxy
in such a way that, once divided by an appropriate constant, all
the g.s(r) ’s are as similar as possible. For doing this, we choose
a standard galaxy among the ones in our sample (in this case
we have chosen NGC 6503 because the range of distances for
which its rotation curve is observed is the best one to compare
with the other galaxies in the sample). Then, for each galaxy,
we fit the mass proportionality constant for each ge (") mini-
mizing the x? of the comparison with one g.¢(r) for NGC 6503.
Finally we pick, for each galaxy, the geg(r) for which the final
x? is smallest. In this way we obtain a g.g(r) for each galaxy
that is capable of generating its observed rotation curve within
the observational accuracy, and we also obtain the total mass of
the galaxy relative to the mass of NGC 6503.

Although, as mentioned before, it is irrelevant what class
of mathematical functions are used for the fit, it is neverthe-
less interesting to mention what functions we have used here.
We have used two kinds of combinations between powers and
polynomials, labelled as v; and v,, and defined by:

Tt

Po() (13)

vi(r) =

v3(r) = 1! P (r) (14)
where, in each case, P,,(r) is a polynomial of degree m in r
and ¢ is an integer greater than or equal to one.

In Fig. 3 we show the fit to the rotation curve for each galaxy
in our sample, and in Fig. 4 we plot the corresponding ges ()
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Fig. 3. Observed rotation curve vs. the rotation curve generated by the
gefr (1) selected for each galaxy.

8.0

& = NGC 247
# + NGC 300
434733 1
o7 °© NGC 598
g 5 UGC 2259
> NGC 2403
4 NGC 3198
v NGC 6503
v NGC 7339

& gq(r)
e
[—J
%

0.0 Il Il Il Il Il
0.0 5.0 10.0 15.0 20.0 25.0

r (kpc)

30.0

Fig. 4. Normalized ges () for all the galaxies in the sample. All of them
are multiplied by a common constant factor & = Meso3/ 1010]\/[@.

for the galaxies (multiplied by the mass of NGC 6503 in units
of 10'° solar masses). In Table 2 we list the mass of each galaxy
in terms of the mass of NGC 6503 as well as the corresponding
mass to light ratio for each galaxy. This mass-to-light ratio is in
units of M¢, /Ly and M6503/1010M@. In this table we also
indicate which type of function v, or v, (See Egs. (13) and
(14)) was finally chosen to fit the observed rotation curve of
each galaxy.
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Table 2. The first column indicates which kind of function v; v, (See
text) was chosen to fit the observed rotation curve for each galaxy.
The second and third columns show the parameters ¢ and m that better
fit the data. In the fourth column the mass corresponding to the gesr ()
chosen for each galaxy is given. The last column shows the correspond-
ing mass-to-light ratio calculated using the observed value of Lg this
mass-to-light ratio is in units of M /Ly and M6503/101°M®.

Galaxy t m  M/Mesos (M/Lg)
NGC?2403 v 2.1 2 1.30 1.62
NGC 3198 v 1.1 2 1.75 1.94
NGCO0598 v 12 3 0.73 2.02
NGC6503 v 22 3 1.00 2.08
NGCO0247 v, 1.1 2 0.85 3.54
NGCO0300 v 10 3 0.62 2.58
347-g33 vy, 1.2 3 1.66 0.99
UGC2259 v, 10 2 0.39 3.9
NGC7339 v, 12 2 1.62 1.39

4. Conclusions

We have found the solution to the problem of inverting the in-
tegral relation between an elemental (two-body) law of gravity
and the gravitational field generated by a thin disk distribution
with an exponentially decaying density. This problem has been
solved in an approximation that leads to good results at large
distances, although it fails to be useful at short distances where
Many Body effects may be relevant and overshadow the physics
of few bodies. This, together with the facts that rotation curves
are, in some cases, poorly determined for small radii (and thus
they do not give enough information to constrain the exact form
of gefr in that range of distances) and that the law of gravity must
be assumed to be Newton’s at short scales, suggests that we dis-
card this range in our phenomenological study. However it is
still interesting to develope new methods that allow to study the
short distance behavior in a more accurate way, and we intend
to do so in the near future.

We have selected a sample of nine galaxies such that the
luminous matter inside them can be well described, as a first
approximation, by a thin disk with exponential density. We have
applied our equation to the rotation curve of each of these galax-
ies and have found a law of gravity that can generate the ob-
served curves without the need for dark matter (or at least, with
a moderate quantity of dark matter distributed with the same
exponential law as the luminous matter). These “nine laws” are
statistically compatible among themselves, and point in the di-
rection that a single, non-Newtonian, universal (i.e. the same for
all the galaxies) law may be at work in the realm of the galaxies.

In order to check if this phenomenological law of gravity
is a real alternative to dark matter, a more detailed study is
still necessary: (i) much smaller systems must be studied for
finding at what scale Newtonian gravity breaks down (a precise
determination of the luminous mass of NGC 6503 would also
help in this direction, eliminating the scaling factor ¢ in Fig.
4), (i1) the law must be checked, through numerical integration,
in galaxies with different morphologies (not thin disks), where
our inverse method cannot be applied, and (iii) the consequences



C. Rodrigo-Blanco & J. Pérez-Mercader: Rotation curves for spiral galaxies and non-Newtonian gravity

of a gravitational law like the one plotted in Fig. 4 for all the
dynamical problems where gravitation at large scales is involved
(spiral structure formation, disk stability, groups and clusters of
galaxies, etc.) must be considered. All these problems are out
of the scope of this paper and are left for future work.
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