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Abstract. We examine the most recent observational con-
straints arising from i) small-scale and large-scale Galactic dy-
namical properties, ii) star counts of population I and II stars at
faint magnitude and iii) microlensing experiments towards the
Large Magellanic Cloud and the Galactic centre. From these
constraints, we determine the halo and disk stellar mass func-
tions and stellar content down to the bottom of the main se-
quence, which yields the normalization of the halo/disk total
stellar population, and we infer the contributions of sub-stellar
objects to the mass budget of the various Galactic regions.

The consistent analysis of star counts and of the overall
microlensing observations in the bulge are compatible with a
small contribution of brown dwarfs to the Galactic mass budget
ρBD/ρ∗ ≤ 0.2. However the separate bulge/disk analysis based
on the bulge clump giants is compatible with a substantial pop-
ulation of disk brown dwarfs, ΣBD/Σ∗ ≤ 1. The most recent
determination of the disk surface density, that lies within one
standard deviation of all previous measurements, allows such
a maximum brown dwarf contribution at the 1σ level. More
statistics of microlensing events towards the Galactic center and
a better determination of the velocity dispersions in the bulge
should break this degeneracy of solutions.

For the halo, we show that a steep mass-function in the
dark halo is excluded and that low-mass stars and brown dwarfs
represent a negligible fraction of the halo dark matter, and thus
of the observed events towards the LMC. The nature of these
events remains a puzzle and halo white dwarfs remain the least
unlikely candidates.

Key words: stars: low-mass, brown dwarfs – Galaxy: stellar
content – Galaxy: halo – cosmology: dark matter

1. Introduction

There is compelling evidence for believing that most of the
matter in the Universe is under the form of dark, yet unob-

served components. The observed density of baryons in galaxies
Ωstar+gas ∼ 0.003h−1 (h is the Hubble constant in units of 100
km.s−1 Mpc−1) may represent only a fraction of the value pre-
dicted by primordial nucleosynthesis, ΩB ≈ 0.01h−2 (Copi,
Schramm & Turner, 1995). There is also evidence that spiral
galaxies are surrounded by a large amount of non-luminous
mass of unknown nature. These two facts suggest that bary-
onic dark matter is a possible candidate for halo dark matter. A
breakthrough in this longstanding, unsolved problem has been
accomplished recently with the developement of microlensing
experiments, by inferring the presence of dark objects through
their gravitational effect on luminous matter. The analysis of the
EROS (Aubourg et al., 1993; Ansari et al., 1996) and MACHO
(Alcock et al., 1993; 1996) observations towards the LMC, in
particular, reveal the presence of some baryonic matter in the
Galactic halo, although the inferred optical depth shows that
this dark baryonic matter probably does not provides all the
sought missing mass. On the other hand, microlensing experi-
ments towards the central regions of the Galaxy yield a mass
density of unseen star-like objects about three times larger than
the value expected from standard disk+bulge models (Udalski et
al. 1994; Alcock et al., 1997). These two results from microlens-
ing experiments - the lack of events in the halo and the excess
of events in the bulge - lead to the tempting conclusion that
more (resp. less) galactic dark matter than expected previously
resides in the disk (resp. the halo). On the other hand, severe
constraints on the amount of dark matter in the disk and in the
halo arise from the observed large-scale kinematic properties,
i.e. the rotation curve of the Galaxy at distances larger than the
observed luminous distribution, as well as from the small-scale
dynamical properties, i.e. the stellar velocity dispersion in the
solar neighborhood. This latter information is derived from the
measurement of the vertical acceleration due to the galactic po-
tential near the Sun, which yields the determination of the local
dynamic surface density. Finally, star counts have now been ob-
tained at very faint magnitudes, either from the HST or from
ground-based deep-magnitude surveys, and provide stringent
constraints on different parameters entering galactic modeling
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such as scale lengths, scale heights, and more indirectly stellar
mass functions.

These two latter type of constraints, galactic dynamics and
star counts, have usually suggested that most of the Galactic
missing mass resides in the outer so-called dark halo. There
is then an apparent conflict between the afore-mentioned mi-
crolensing results and standard astronomical observations. This
paradigm stresses the need to reconsider the standard model of
the Galaxy, where all dark matter resides in the halo, and to
derive a Galactic mass-model consistent with the three types
of observational constraints, kinematics, star counts and mi-
crolensing. This is the aim of the present study.

The calculations will be presented in two joint papers. In
the present one (Paper I), we examine in detail all observational
constraints arising from the most recent determinations of small-
scale and large-scale Galactic dynamic properties (§2), from star
counts in the Galactic disk, bulge and spheroid (§3), and from
microlensing experiments towards both the Large Magellanic
Cloud (LMC) and the Galactic center (§4). A consistent analysis
of all these observations yields the determination of the stellar
mass functions, slope, normalization and minimum mass, and
thus of the amount of mass under the form of stellar and sub-
stellar objects in the various regions of the Galaxy, disk, bulge,
spheroid and dark halo.

In Paper II, these results will be used to derive a consistent
model for the Galaxy, confronted to all types of observational
constraints. We will discuss in detail the two possibilities of
an essentially non-baryonic and a dominantly baryonic mass
model for the Galaxy (Méra, Chabrier & Schaeffer, 1997).

2. Kinematic constraints

In this section we examine the most recent observational deter-
minations of the kinematic properties of the Galaxy. We first
consider the asymptotic circular velocity, in the Milky Way and
in other spiral galaxies, and then the velocity distribution in our
Galaxy up to 60 kpc. Different determinations of the total mass
of the Galaxy, converted into equivalent circular rotation veloc-
ities v2

rot = GM (r)/r, are also examined. In the second part of
this section, we focus on the determination of the local surface
density, inferred from the measurement of the gravitational ac-
celeration of the Galactic potential near the Galactic mid-plane.
From all these observations, we derive the most likely values for
the Galactic mass, rotation velocity, and amount of dark matter
near the Sun, to be reproduced by the final galactic model.

2.1. Large scale velocities

2.1.1. Circular velocity

The most recent determinations of the circular velocity as a
function of the Galactic radius have been reviewed by Fich and
Tremaine (1991). Their compilation of the measurements of the
outer rotation curve from CO, HI and HII observations yields
the accurate determination of a velocity of about 220 km.s−1,
constant within∼10% up to 14 kpc, with extremely small error

bars (a few %). At larger distance there is a hint for a small
increase of the rotation curve, but the uncertainty in the data
does not allow any robust conclusion. In any case, there is no
sign for a significant decrease of the velocity up to about 20
kpc. More recent observations of neutral hydrogen out to 2.5
R�, whereR� ∼ 8 kpc is the galactocentric position of the Sun,
yield a slightly lower value vrot = 200 ±10 km.s−1 (Merrifield,
1992). On the other hand, Schechter et al (1989) report vrot =
248±16 km.s−1 from the kinematics of carbon stars in the outer
Galaxy. As noted by Kuijken & Tremaine (1994), a difference
between the value determined from stellar and HI tracers is
expected, because of the ellipticity of the galactic potential. This
will decrease the afore-mentioned stellar value.

The determination of the rotation curves of external galax-
ies (Casertano and Van Albada 1990) characterizes what these
authors call “bright galaxies”, with circular velocities bracket-
ted between 180 and 260 km.s−1. These rotation curves show
occasionally a slight drop beyond 20 kpc, which for all of them
remains within less than 20% at 35 or 40 kpc, almost within
the error bars. The rotation curves are thus flat within the error
bar determination (∼ 10 − 20%) up to the furthest distance at
which hydrogen is detectable, i.e more than twice the radius
of the visible stellar component. Although no rotation velocity
measurements exist for our Galaxy beyond 19 kpc, Fich and
Tremaine (1991) argue that, by comparison with other galaxies,
our rotation curve should extend similarly up to at least 35 kpc.

Note that the Galactic rotation is well confined to the disk
plane. At 1 kpc above the disk, metal-rich stars show similar
rotation velocities and are considered as belonging to the (thick)
disk population. Most of the metal-depleted stars ([Fe/H] <
−1.5), which probe essentially the halo population, rotate only
with∼ 30−40 km.s−1 assuming a rotation velocity 220 km.s−1

for the Local Standard of Rest, arguing for a non-rotating, or
slowly rotating halo (Beers and Sommer-Larsen, 1995).

2.1.2. Velocity distribution up to 60 kpc

Attempts to determine the gravitational potential of our Galaxy
at large distances, from the study of the motion of globular
clusters, require some modelling of the velocity distribution in
the Galactic halo, which enters the Jeans equation (Binney &
Tremaine 1987). The compilation of Harris and Racine (1979)
led Frenk and White (1980) to use a 66 cluster sample, with
various assumptions for the shape of the Galactic halo, to de-
termine the mass of the Galaxy within 33 kpc. These clusters
show an overall 60 ± 26 km.s−1 circular rotation (assuming
vlsr = 220 km.s−1), again advocating for a slow rotation of the
halo, but also for important non-circular motion. Translating the
dynamically measured mass of the halo within a given radius
into an effective circular rotation velocity (v2

rot = GM/R), their
results can be summarized as follows: this velocity always lies
within the range 200 ≤ v ≤ 319 km.s−1, for all models, at the
90% confidence level. With the additional constraint that the
globular cluster distribution is not more flattened in the outer
region than in the inner region, the allowed velocity-range re-
duces to 200-265 km.s−1. A second restriction stems from the
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fact that if the velocity distribution is not isotropic, the radial
rms velocity σr must be larger than the tangential velocity vt,
because of infall towards the centre of the Galaxy. This leads
to the final range 224 km.s−1 < vrot(33 kpc) < 265 km.s−1, the
uncertainty being due to systematic errors.

The more distant the constraint, the more relevant it is to
determine the dark matter content of the Galaxy, but the more
uncertain the data. The sample of 17 globular clusters and dwarf
spheroidal galaxies at galactocentric distances from 20 up to
60 kpc has been analysed by Hartwick and Sargent (1978).
They determine the mass within 60 kpc, under the two oppo-
site extreme assumptions of purely radial or purely isotropic
velocity distributions, respectively. Translated into a circular
velocity, this leads respectively to vrot = 159 ± 30 km.s−1

and vrot = 237 ± 30 km.s−1. Caldwell and Ostriker (1981)
used the more realistic geometrical mean of the two values
vrot = 192 ± 42 km.s−1. The latter finally has been scaled by
Bahcall et al (1983) to vrot(60 kpc) = 205 km.s−1 (to which
must be added a ±45 km.s−1 uncertainty) in order to take into
account more recent determinations of the local parameters
near the Sun. These results are consistent with the more re-
cent and much more precise (although requiring a modelling of
the galaxy profiles) determination of the mass of the Galaxy by
Kochanek (1996), i.e. 3.8× 1011 M� < M30 < 5.4× 1011 M�
and 4.0 × 1011 M� < M60 < 8.7 × 1011 M� at the 90% C.L.,
where M30 and M60 denote the mass within 30 and 60 kpc, re-
spectively. This yields, within the 1σ error level we have been
using all along the present analysis, vrot(30) = 257± 8 km.s−1

and vrot(60) = 210 ± 13 km.s−1.
Fich and Tremaine (1991) discuss the implications of the

velocities measured for the “Magellanic Stream”, a hydrogen
bridge between the Magellanic Clouds and the Galaxy. A de-
tailed modelling shows that the r−2 (r−1.8 fits better) halo should
extend up to at least 60 kpc. Although such a conclusion is
reached by means of several “natural” assumptions, and may
be questioned, the raw data show gas velocities around 200
km.s−1.

Peebles (1989, 1990, 1994) has examined the total mass
of the Local Group, dominated by Andromeda and the Milky
Way. He finds total masses around 4 × 1012 M�, suggesting a
total mass of about 2 × 1012 M� for our Galaxy. Moreover, a
modelling of all objects at a distance of 4 Mpc from the Galaxy
shows indeed that their velocity distribution is consistent with
the mass being attached to the objects.

In summary, all these studies lead to the conclusion that the
Milky Way has a mass MG ≈ 2× 1012 M�, with a nearly con-
stant rotation velocity vrot = 220 ± 20 km.s−1, which implies
an extension of a Galactic dark halo up to at least 100 kpc. This
undetected mass has to be compared with the mass under the
form of visible matter, ∼ 1011 M�, which sets the scale for the
amount of dark matter in the Galaxy.

2.2. Local dynamical surface density

An important constraint on the mass density of the Galactic disk
in the solar neighbourhood is obtained from the study of the

vertical acceleration Kz by means of the local stellar velocity
distribution.Kz(z) is related to the (measured) vertical velocity
dispersion 〈v2

z〉 and density of one tracer population (Binney &
Tremaine,1987) by:

Kz(z) = −1
ρ

∂ρ〈v2
z〉

∂z
(1)

By Taylor-expanding the Galactic potential above the disk,
Φ(z) ≈ Kzz + Fz2, the Poisson-Jeans equation yields (Binney
& Tremaine 1987):

Kz(z) =
∂Φ
∂z

= Kz0 + 2zF (2)

where the coefficient Kz0 depends on the mass content in the
disk (assumed to be infinitely thin, which means the above ex-
pression is good for z ∼> 300 pc only) while F = 2πGρhalo is
the halo contribution. The local surface density Σ� in the disk
is related to Kz0 by:

Σ� =
Kz0

2πG
(3)

The surface density near the Galactic mid-plane determines
the mass of the disk, for a given disk scale length Rd:

Mdisk ≈ 2πΣ�R2
d e

R�/Rd (4)

In practice,Kz(z) is measured at some height z and must be
corrected from the halo contribution 2zF to determineKz0 and
Σ�disk. Bahcall (1984a, 1984b), in agreement with Oort (1960)
found Σ� ≈ 70 M� pc−2 with a claimed small error. Bienaymé,
Robin and Crézé (1987), using a sampling extending to higher
latitudes, obtained a better determination of Kz(z) from 100 pc
to 1 kpc, based on a modelling of the disk and the halo stellar
population arising from available observations. They found a
lower surface density for the disk,

Σ� = 50 M� pc−2, (5)

with a 10 M� pc−2 uncertainty, and stressed that the uncertain-
ties in Bahcall’s extrapolation to low z were underestimated.
These authors, however, actually measure the acceleration at 1
kpc, where the surface density is essentially the total surface
density, and get Kz(1 kpc)/2πG ≈ 70 M� pc−2. The afore-
value of Σ� quoted for the disk is obtained after substracting
the standard halo contribution1 (see Eq. (2)), and thus becomes
model-dependent. Subsequently, Kuijken and Gilmore (1989,
1991), found an observed total density Σ(1.1 kpc) = 71 ± 6
M� pc−2 and argued that, after a theoretical correction for the
contribution of a standard massive halo similar to the one used

1 Throughout this paper, the standard halo is defined as a halo with a

density profile ρ(r) = v2
rot

4πG

R2
�+R2

c

r2+R2
c

, with vrot = 220 km.s−1 andRc = 5

kpc, see Paper II. Note that this halo is slightly heavier than the one
used for instance by the MACHO group, which corresponds to vrot =
204 km.s−1.



940 D. Méra et al.: Towards a consistent model of the Galaxy. I

by Bienaymé et al. (1987), the surface density of the disk should
be reduced to:

Σ� = 48± 9M� pc−2, (6)

in remarkable agreement with the afore-mentioned determina-
tion. A subsequent reanalysis of the Kuijken & Gilmore (1989)
work gives in fact Σ� = 54 ± 8 M� pc−2 (Gould, 1990). We
stress, however, that the two afore-mentioned surface densities
at 300 pc depend somehow on the assumption made for the dark
halo contribution (Eq. (2)).

More recently, Bahcall, Flynn and Gould (1992), using the
new data of Flynn and Freeman (1993), re-analyzed Bahcall’s
(1984) previous determination, and obtained

Σ� = 85± 25M� pc−2. (7)

The new lower limit weakens substantially the conflict with
the afore-mentioned values, at the price however of a large un-
certainty. The most recent analysis of these data by Flynn and
Fuchs (1994), who added a new normalization point, yields a
best fit model:

Σ� = 52 ± 13 M� pc−2 (8)

Both groups include a standard halo contribution in their deter-
mination but for the average height of their sample (∼ 300 pc),
the halo correction is small (∼ 6 M� pc−2) and the associated
uncertainty lies well within the observational error bars. The
reason why Bahcall et al. (1992) considered their value to dis-
agree significantly with the Bienaymé et al. (1987) and Kuijken
& Gilmore (1991) values is that even with a 1σ deviation, the
probability for Σ�, as given by (7), to be less than 60 M� pc−2

is only 7% and thus has only one chance in 14 to occur, as stated
by these authors. More optimistically, comforted by the recent
Flynn & Fuchs (1994) result, we note that all these determina-
tions of Σ� should rather be considered as consistent at the 1σ
level: the uncertainty-weighted average of these four different
results (5)-(8) yields:

Σ� = 51± 6 M� pc−2, (9)

very close to Eq. (8)2. We thus may consider the value (8) as
the most accurate present determination of the solar dynamical
density.

3. Star counts

3.1. Disk

The determination of the faint end of the stellar luminosity func-
tion (LF), an essential issue to infer the low-mass star and the
sub-stellar contributions to the Galactic mass budget, has also
been subject to strong debate. Wielen et al. (1983) found that,

2 Strickly speaking, the Bahcall et al. (1992) and the Flynn & Fuchs
(1994) values are not completely independent but the weight of the
Bahcall et al. value is small. In any event, the value used as a reference
all along our calculations is the most recent Flynn & Fuchs one.

whereas the LF was steadily rising up to MV = 13, there was
a dip beyond this value, leaving very little possibility for a
substantial contribution of low-mass stars to the mass of the
disk. Subsequent studies (Stobie et al. 1989, Tinney et al. 1992)
showed that the dip is even more pronounced and starts already
at MV = 12. Gould, Bahcall and Flynn (1996;1997), using HST
observations at faint magnitudes, confirm a dropping LF beyond
MV = 12, which corresponds to m ∼ 0.25 M�, although the
last bin of the HST LF clearly shows an upturn at MV > 16.
Most of these LFs are based on a photometric determination of
the distance, which thus relies on a color-absolute magnitude
relationship, up to about a few hundred pc. On the other hand,
Kroupa (1995) used a nearby LF, allowing a geometric determi-
nation of the distance. This yields larger statistical errors, due
to the number-limited sample, but better systematic corrections,
in particular the ones arising from the unresolved binary com-
panions. The nearby LF agrees with the photometric one up to
MV ∼ 12 but is essentially flat beyond this limit. Doing a careful
correction for the Malmquist bias and for the presence of un-
resolved binaries, Kroupa, Tout and Gilmore (1990; 1993) and
Kroupa (1995) have shown that the properly corrected ground-
based photometric LFs are consistent with the local geometric
LF.

The issue, however, remains unsettled for the HST LF
(Gould et al., 1996; 1997). The HST is almost not subject to
Malmquist bias since its limit magnitude allows the observa-
tion of the bottom of the main sequence up to the edge of the
disk, but it is subject to uncompleteness due to unresolved sys-
tems near the faint end3. Gould et al. (1997), however, found
that even with this correction, their LF is inconsistent with the
nearby LF. Near the end of the LF, the binary correction is, ac-
cording to these authors, at most a factor 2, whereas a factor
∼ 5 is required to reconcile the two kinds of LFs. Therefore,
unresolved binaries are certainly not the source of the discrep-
ancy between the two LF’s. An important quantity to calculate
correctly the correction due to binaries is the rate of binaries
and the mass-distribution of the secondaries. An accurate deter-
mination of such quantities require decade-long observations,
as conducted for example by Duquennoy and Mayor (1991;
DM91) for nearby F and G stars, with a fairly accurate sensi-
tivity (∼ 300 m.s−1). Note that, altough there are severe natural
observational biases toward the detection of near equal-mass
systems either from imaging or from spectroscopic surveys, the
completeness and the uniformity of the DM91 sample render it
almost without any observational selection effect, yielding an
almost unbiased mass-ratio determination for F and G star bi-
naries. The main conclusion of the DM91 study is that a fairly
large number (∼ 60 − 70%) of single stars form a multiple
system, and that the shape of the mass-distribution increases
toward small mass ratios (q = m2/m1 < 1; see their Fig. 10).

M-dwarf surveys to address the same issue are still in their
infancy and suffer from severe incompleteness and observa-
tional biases, so that it will require more years to do a similar

3 The HST is insensitive to binaries with separations ∼< 0.
′′

3 and
thus misses essentially all secondaries in late M-dwarf binary systems.
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Fig. 1. Mass functions derived from Kroupa (1995; solid line) and
Gould et al. (1997; dashed line) LFs. Also shown are the fits for both
MFs, which are identical for m > 0.35M� (dotted lines). See table 1
for the parameters of the fits. The dashed line is an overall fit given by
Eq. (10) withα = 2, which reproduces reasonably well the MF derived
from Kroupa’s LF (note that there are only 2 stars in the lowest bin of
Kroupa’s LF; see text).

analysis for M-dwarf binaries. In any case, as mentioned above,
even a full knowledge of the binary correction will not account
for all the discrepancy between photometric and geometric LFs.
For this reason, we have considered in the present paper both
(nearby and HST) LFs.

We have converted both LFs into mass-functions (MF), us-
ing low-mass star models which accurately reproduce observed
mass-MV relationships (Chabrier, Baraffe & Plez, 1996). Both
MFs are displayed in Fig. 1 in a log-log scale. The afore-
mentioned discrepancy between the two LFs is obvious on the
MF, in particular in the domain ∼ 0.1− 0.25 M�, with a factor
∼ 5 ratio at ∼ 0.1 M�.

Noting that the two lowest bins in the nearby LFs are the
least statistically significant (2 stars, see Kroupa (1995)), Méra
et al. (1996a) parametrized the disk low-mass star MF in the so-
lar neighborhood down to the vicinity of the hydrogen-burning
limit by the following form:

µ(m) ≈ 1.5± 0.4(
m

0.1 M�
)−2±0.5 M−1

� pc−3, (10)

The undetermination of the exponent reflects the fact that
this fit is a reasonnable overall power-law representation of the
true MF but is not perfect. As shown by Kroupa et al. (1993), the
MF determined from the nearby LF is better described by a series
of segment power-law fonctions µ(m) = dN/dm ∝ m−α. We
then have fitted the MFs derived from the nearby and the HST
LFs with such segmented power-laws. The characteristics of
these MFs are given in table 1 and illustrated in Fig. 1. We will
refer to these fits as MF (a) for Kroupa (1995) and MF (b) for
Gould et al. (1997).

If we exclude the last bin, the HST MF corresponds to a
slope α < 1.0 for m/M� ∼< 0.6. However, an extrapolation of

Table 1. Fit of the two MFs considered in this paper. The MF (a)
has been derived from Kroupa (1995) LF, whereas the MF (b) has
been derived from Gould et al. (1997) LF. The MFs and their fits are
displayed in Fig. 1. Each MF is considered to be a 3-segment power-law
µ(m) = dN/dm = Am−α. Both MFs are identical form > 0.35 M�.
The mass is in M�, the mass function in M−1

� pc−3. The upper mass
limit has been set arbitrarily to 10 M�, since it has almost no influence
on the mass density. Note that 0.4 should be added to the slope derived
from the HST LF for m < 0.6 M� to account for missed binaries
(Gould et al., 1997)

MF (a):
mass minf − 0.35 0.35− 0.6 0.6− 10
α 2.35 0.6 2.35
A 5.98× 10−3 3.76× 10−2 1.54× 10−2

MF (b):
mass minf − 0.11 0.11− 0.6 0.6− 10
α 4 0.6 2.35
A 2.08× 10−5 3.76× 10−2 1.54× 10−2

the MF (ignoring the last bin) all the way below 0.2 M� would
correspond to about 2 stars in the last bin whereas 10 are seen.
The probability to see 10 stars whereas 2 are expected is less
than 5× 10−5. This suggests that the last bin in the HST LF is
indeed significant, adding credibility for a rising MF near the
BD limit. As shown in Fig. 1, the fit does not reproduce exactly
the last bin. This takes into account a possible bias which tends
to overestimate the last bin and to underestimate the penultimate
one (Gould et al. 1997).

Indeed, for both MF’s (nearby and HST), there is a hint for
a rise near 0.1 Msol, suggesting the possibility for a substan-
tial amount of brown dwarfs in the disk. We will take this as a
basis for extrapolating the stellar MF into the brown dwarf do-
main. This is consistent with a recent study by Mazeh, Latham
& Stefanik (1996) on the distribution of secondary masses near
the substellar limit. Although this study relies on the detection
of 3 very-low-mass companions out of 20 F and G dwarfs and
subgiants, and thus preclude the precise determination of a sub-
stellar MF, these detections suggest that the mass distribution
(the primaries of the sample all have ∼ 1 M�) rises near the
sub-stellar limit.

In any case, whereas the precise determination of the shape
of the MF near the bottom of the main sequence, which requires
larger statistics, is of prime importance for star-formation the-
ory, the qualitative behaviour, and its overall characterization, is
what is most essential to estimate the stellar and sub-stellar mass
contributions to the disk mass budget. Both rising MF’s near the
BD limit suggest a substantial amount of substellar objects and
thus a contribution to the disk mass density. The extension into
the brown dwarf domain will be analyzed in the next section, in
connection with microlensing observations.

The integration of the nearby MF displayed in Fig. 1 gives
the local low mass star (0.07M� ≤ m ≤ 0.65M�) densi-
ties ρLMS = 2.56 ± 0.25 × 10−2 M� pc−3 in case (a), and
ρLMS = 1.43 ± 0.09 × 10−2 M� pc−3 in case (b). Since
the HST LF does not include companions of multiple systems,
we have tentatively corrected for this bias on the basis of the
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Duquennoy and Mayor (1991) observed mass ratio distribution
mentionned above. The correction is approximated by a a lin-
ear fonction, whose value is 10% at 0.6 M�, and 80% at 0.1
M�. We renormalize the HST MF to keep the same normal-
ization at 0.6 M� with this correction. The resulting density is
ρLMS = 1.88× 10−2 M� pc−3, almost in agreement with the
nearby value. An average value is then:

ρLMS = 2.2 ± 0.3× 10−2 M� pc−3

With a vertical sech2 density profile of scale heighthd ≈ 320
pc (Gould et al., 1997), the contribution of low-mass stars (LMS)
down to the bottom of the main sequence (0.1 ∼< m/M� ∼< 0.6)
to the disk surface density is then:

Σlms ≈ 14 ± 2 M� pc−2 (11)

Adding the contribution of more massive stars, obtained with the
MF and the luminosity-dependent scale height determined by
Miller & Scalo (1979), converted into a mass-dependent scale
height, yields the total contribution of main sequence stars:

Σ? = 24 ± 3 M� pc−2, (12)

Including the stellar remnants, white dwarfs (Liebert, Dahn
and Monet, 1988) and neutron stars, Σwd+ns = 2 to 4 M� pc−2,
and an estimated interstellar gas contribution Σgas = 10 to 15
M� pc−2 (Bahcall, 1984), the total surface mass density under
the form of directly detected baryonic components in the disk
is thus:

(Σ�)vis = 40 ± 4 M� pc−2 (13)

in good agreement with Gould et al. (1997). The limits are de-
rived from very conservative estimates for the errors. Using a
sech(|z|/z0)2 vertical density distribution instead of an expo-
nential profile leaves these values almost unchanged.

3.2. Bulge

The mass and the shape of the Galactic bulge will be discussed
in more details in the next section. This mass is estimated to
be ∼ 2 × 1010 M�, from dynamical considerations (Zhao et
al., 1996), with a size of about 1 kpc (Kent 1992). The faint
end of the LF in the Baade’s Window, down to MV ∼ 10, i.e.
m ≈ 0.5 M�, has been studied with the HST Wide Field Camera
(WFC) by Holtzman et al (1993). These authors find a Salpeter
slope for the MF x ≈ 2.35± 1, over the afore-mentioned mass
range. There is no indication for this MF to be different, except
for its local normalization, from the one determined for the disk,
Eq. (10).

3.3. Thick disk

A disk+bulge model does not reproduce successfully the ob-
served star counts and kinematic properties. This led Gilmore
& Reid (1983) to introduce the so-called thick disk, with a scale
height htd ≈ 1 − 1.5 kpc, which seems to be necessary for an

accurate galactic modelling. Since the stellar velocity disper-
sion 〈v2

z〉 and the oblateness of the disk are related, a thick disk,
by definition, is less elongated than the young (thin) disk, and
has a larger velocity dispersion. This yields a better agreement
with observed velocity dispersions, and with star counts in gen-
eral. As shown recently by Reid et al. (1996) and Chabrier &
Méra (1997), a thick disk with htd ≈ 1 kpc and q ≈ 0.6 is con-
sistent with the Hubble Deep Field counts at faint magnitudes.
A larger scale height and a spherically symmetric distribution
predict substantially larger star counts. In spite of the small vol-
ume density of the thick disk in the solar neighborhood, about a
few percents of the young disk at 1 kpc (Gilmore, Wyse & Kui-
jken; 1989), its contribution to the dynamics is not negligible

since its surface density Σtd(R) =
∫ +∞

−∞
ρtd(R, z)dz represents

∼ 10-20% of the young disk contribution.
Taking into account the thick disk contribution, and using

the parameters derived by Gould et al. (1997), the disk stellar
surface density is raised by ∼ 3 M� pc−2 to

Σ? = 27 ± 4 M� pc−2, (14)

so that the detected surface density (13) reads:

(Σ�)vis = 43 ± 5M� pc−2 (15)

3.4. Spheroid

The spheroid is also called in the literature the stellar halo.
It is defined by a spherical density distribution decreasing as
ρ(r) ∝ r−3 (Hubble profile) or equivalently a r1/4, de Vau-
couleurs profile. It differs from the central bulge essentially
by a lower metallicity, [M/H] ≈ −1.5 (Monet et al., 1992;
Leggett, 1992; Baraffe et al., 1995, 1997) and larger velocity
dispersions, σR ≈ 160 km.s−1, σz = σθ ≈ 90 km.s−1 (Dahn
et al. 1995; Beers & Sommer-Larsen, 1995). The mass of the
spheroid is ∼ 109 M� (Bahcall, 1986) so its contribution to the
galactic mass is not important. Its main contribution concerns
the halo star counts.

Richer and Fahlman (1992) obtained for the spheroid a
steeply rising LF down to the end of the observations whereas
Dahn et al. (1995), from observations of high-velocity (vtan >
200 km.s−1) subdwarfs in the solar neighorhood, get a LF which
decreases at the faint end (MV ∼> 12).

Méra, Chabrier & Schaeffer (1996) and Chabrier & Méra
(1997) (see also Graff & Freese, 1996) have determined the
MF of the spheroid from these observed LFs and from mass-
magnitude relationships derived from LMS models which re-
produce accurately the main sequences of metal-poor globu-
lar clusters, observed with the HST deep photometry surveys,
down to the vicinity of the hydrogen burning limit (Baraffe et
al., 1997). The spheroid MF in the solar neighborhood deduced
from the Dahn et al. (1995) subdwarf LF is reasonably well
parametrized as (Chabrier & Méra, 1997):

µ(m) = 4.0 ± 1.0 10−3

(
m

0.1 M�

)−1.7±0.2

M−1
� pc−3, (16)
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Integration of this MF gives the halo main sequence (m ≤
0.8 M� for t ≥ 10 Gyr) stellar density in the solar neighbor-
hood:

ρh? ≈ 1.0 × 10−4 M� pc−3 (17)

As shown by Chabrier & Méra (1997), star count predictions
based on this MF are in excellent agreement with the Hubble
Deep Field observations at very faint magnitudes both in the
V and I-bands. Comparison of this value with the disk main-
sequence stellar density determined in §3.1 gives the normaliza-
tion of the spheroid/disk stellar population at 0.1 M�, namely
ρ?sph/ρ?d ∼ 1/400 (Chabrier & Méra, 1997).

3.5. Dark halo

Throughout this paper, the term ”dark halo” defines what is char-
acterized by the ρ(r) ∝ r−2 density-profile, a consequence of
the flat rotation curve in the outer part of the Galaxy (see §2). The
existence of a halo in the Galactic structure is rendered necessary
i) to account for the total mass of the Galaxy (see §2.1.2), since
the disk(s), bulge and spheroid total mass amounts at most to
∼ 1011 M� and ii) for stability conditions (Ostriker and Peebles,
1973), although the presence of a central bar weakens this latter
argument. There is observational evidence that galactic dark ha-
los present some oblateness with q ∼ 0.6 (Sackett et al. 1994).
Were the mass-distribution of the dark halo 2-dimensional (i.e.
under the form of a disk), the surface density in the solar neigh-
borhood, Σ� ≈ vrot/2πGR� = 210 M� pc−2 would be a factor
3 larger than the dynamical upper limit (see §2.2) (see Méra et
al., 1997, Paper II). This condition, and the motion of galaxies
and gas in the Local Group (§2.1) are strong arguments in favor
of a large, 3-dimensional halo around the centre of the Galaxy.

The MF in the halo is presently unknown. The observation
of the bottom of the stellar main sequence, m ∼ 0.1 M�, at a
distance of 20 kpc, about the limit of the spheroid, requires sur-
veys down to apparent magnitudes I ∼> 28 (Baraffe et al. 1997).
It requires also an excellent angular resolution (< 0.1 arcsec)
to distinguish stars from galaxies. This is the reason why early
attempts using ground-based observations were never brought
to a conclusive end. The recent Hubble Deep Field star counts
(Flynn et al., 1996; Reid et al., 1996; Mendez et al., 1996) up
to I = 28 are insufficient to determine a halo LF, because of
the limited field of view, but represent a severe constraint on the
Galactic model. These faint magnitude star counts have been
shown to be entirely consistent with a thick disk + flattened
spheroid population, characterized by their respective I-(V-I) re-
lationships and mass functions (10) and (16) (Chabrier & Méra,
1997). As shown by these authors, a (even flattened) dark halo
with the afore-mentioned 1/r2 profile and MF(16) would pre-
dict at least 500 more stars than observed in the HDF field of
view. This shows that, if the dark halo LF is the same as the
spheroid one, there is a negligible stellar population in the dark
halo, less than 0.1% of the dynamical mass.

A promising technique to determine more accurately the
halo MF comes from the recent surveys of the outer parts of
nearby galaxies (Sackett et al. 1994; Lequeux et al. 1996) and

from the relation between the slope of the MF and the inferred
colors of the halo diffuse emission (Méra, 1997).

Another important indication is given by the LFs of globu-
lar clusters. The MFs of the different clusters observed with the
HST have been determined recently by Chabrier & Méra (1997).
The typical LFs, determined near the respective half-mass radii,
are rising up to Mbol ∼ 10 and drop below. This is consistent
with monotonically rising MFs down to∼ 0.1 M�, with a very
weak dependence on metallicity, well described by power-law
functions with α ∼ 0.5 − 1.5, similar to the ones determined
in the previous sections for the disk and the spheroid. Although
mass segregation effects are expected to be small near the half-
mass radius (see e.g. King et al., 1995; Chabrier & Méra, 1997),
the evolution of the clusters, and their evaporation, might lead
to initial MFs (IMF) slightly steeper that the afore-mentioned
determination. This would yield even better agreement with the
MF (16) and would be consistent with the suggestion that the
formation of spheroid field stars and globular clusters has oc-
cured in a similar manner and time frame (Fall and Rees, 1985).

Since the dark-halo stellar population is likely to be insignif-
icant, as mentioned above, Eq. (16) gives the total halo (spheroid
+ dark halo) stellar contribution to the dynamically-determined
local density ρdyn ∼ 0.01 M�.pc−3, namely ρh?/ρdyn ∼ 1%.
This puts more stringent limits than the ones obtained from the
HST counts alone (Flynn et al., 1996) and shows convincingly
that low-mass stars represent a completely negligible fraction
of the halo mass.

In summary, the star count analysis of different stellar pop-
ulations corresponding to different regions of the Galaxy, based
on accurate evolutionary models for low-mass stars (Baraffe et
al., 1997; Chabrier et al., 1996, 1997), leads to the determina-
tion, slope and normalization, of the MF in the disk, the bulge
and the spheroid, down to the bottom of the main sequence.
Surprinsingly enough, given the different metallicities in these
regions and the wide range of stellar masses considered, these
MF’s are very similar and reasonably well described by power-
law MFs dN/dm ∝ m−α withα ≈ 1.5−2. A flatter MF below
∼ 0.5 M� for the disk, as sugested by the HST LF, cannot be
excluded but a more precise determination requires better statis-
tics at the faint end of the LF. These MFs, consistent with all
observed LFs and deep-photometry counts, yield a fairly well
determined contribution of all main sequence stars to the disk
and halo mass budgets, the dark halo stellar contribution to the
Galactic mass being essentially insignificant. The determina-
tion of the amount of mass under the form of sub-stellar objects
requires the analysis of the microlensing experiments.

4. Microlensing

Within the past few years the microlensing technique has been
applied succesfully to the search for dark matter, by inferring
the presence of dark objects in the Galaxy through their grav-
itational effect on luminous matter, as proposed initially by
Paczyński (1986). Several groups worldwide have carried out
microlensing experiments to determine the amount of dark mat-
ter either in the halo of the Galaxy (EROS and MACHO experi-
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ments) or in its central parts (OGLE and MACHO experiments).
We examine below these various experiments and connect the
results with the afore-mentioned stellar MFs to determine the
contribution of sub-stellar objects to the galactic mass budget.

4.1. Disk and bulge

Numerous events have been detected in the direction of the
Galactic centre by the OGLE (Paczyński et al., 1996) and MA-
CHO (Alcock et al. 1997) surveys. We focus here on the 40
events4 obtained from the first-year analysis of the MACHO col-
laboration, whose detection efficiency ε(t) is well determined
(Alcock et al., 1997). The number of events observed by OGLE
during the first two years is too small and the attempt to use av-
erages would be dominated by small number statistics. At any
rate, adding, as an extreme value, the 9 OGLE events to the 40
MACHO ones would not improve significantly the statistics.

The interpretation of the three large-time events (te > 75
days) in the MACHO survey is still unclear and will be discussed
below. Note that there is no event with 35 < te < 75 days.

The number of observed events allows a statistical analysis
from their time distribution. The average effective time 〈te〉 can
be used to estimate the average lens mass 〈m〉 and thus the
minimum mass down to which the mass function (10) extends
(see Appendix):

〈√m〉 =
c

2
√
GL

〈te〉〈 1
v⊥
〉−1〈

√
x(1− x)〉−1 (18)

where the averages are relative to the effective probability dis-
tributions Peff for each variable (see Appendix). For a simple
gaussian velocity distribution, 〈 1

v⊥
〉−1 = σ

√
π/2, where σ is

the velocity dispersion. The geometric factor 〈√x(1− x)〉 is
approximatly 0.39 for a standard (Bahcall & Soneira, 1980 +
Kent, 1992) disk+bulge model, and is not very sensitive to the
choice of the model. The mean duration of the 40 events, taking
into account the experimental efficiency, is 〈te〉 = 16.8 days
(omiting the efficiency leads to 〈te〉 = 20 days). Then a first
estimate of the average lens mass is:

〈√m〉2 = 0.15 M� (19)

which is only a rough estimate, with a velocity dispersion
σ = 100 km.s−1 for the bulge. Excluding the three longest
events yields 〈√m〉2 = 0.09M�. These estimates introduce the
dilemma that will be discussed in detail below: in the first case,
microlensing results are compatible with essentially no brown
dwarf in the disk/bulge, whereas in the second case, the mass
function must extend significantly in the brown dwarf domain.

As mentioned in the Appendix A.2, we stress that P (te) has
a long power-law tail at large times, since te ∝ v−1

⊥ , which
yields an unphysical divergence of the moments. Therefore, the
statistics for the mass of the microlensing events can not be
evaluated correctly from the calculation of the moments, as done

4 We have excluded the two events that fail MACHO cuts (104-B and
111-B), two events suspected to be variable stars (113-C and 121-B)
and the binary event which is not accounted for by the efficiency.

sometimes in the literature, but must be evaluated accurately
by using the detailed time distribution (Note, however, that the
moments of 1/te behave correctly).

We have calculated the time distribution with a Monte-Carlo
algorithm (see Appendix), which determines the number of
events:

Nth = E ×
∫ +∞

0
ε(te)

dΓ
dte

dte (20)

whereE is the total exposure (in star-years) and ε the experimen-
tal efficiency factor (Alcock et al., 1997). Calculations have been
done for a standard disk model (Bahcall & Soneira, 1980), and
a Kent (1992) model for the bulge, for the two MFs considered
in §3.1. We have taken velocity dispersions σ ∼ 100 km.s−1

for the bulge and σ ∼ 20 km.s−1 for the disk (40 km.s−1 in the
radial direction), respectively, with a linear interpolation in the
intermediate region located between ∼ 2 and 3 kpc from the
Galactic center. As will be shown below, the uncertainty in the
velocity distribution of the stars is the main cause of uncertainty
in the present calculations.

Our calculations take into account the motion of the Sun
and of the source star in the determination of the lens veloc-
ity as well as the variation of the distance of the source stars
in the disk and the bulge (see Appendix). The distance of the
source stars in the bulge is typically 7.5 kpc from the Sun, as
determined by Holtzman et al. (1993) from the observed LF in
Baade’s Window. The time-distribution and number of events
obtained from these calculations, for a given model, are com-
pared to the MACHO observations (Alcock et al., 1997). Since
the efficiency does not include binary events, we must exclude
those events. However, only a small fraction of the events are
expected to be due to both components of a binary system (1 out
of 45 in the first year, a fraction which seems to be confirmed
by the following two years). In most cases, the Einstein disks
of the stars in a multiple system do not overlap, and can in first
approximation be treated independently. The time distribution
is therefore barely affected by the binarity. Anyway the num-
ber of events has to be corrected only slightly (typically a few
percent). In this section, we are mostly interested in the deter-
mination of the mass function in the substellar regime, which is
derived only from the time distribution of the observed events.
The consistency between models and observations is analyzed
with a Kolmogorov-Smirnov (KS) test5.

We will first assume that the mass function in the bulge is
the same as in the solar neighborhood. The mass function is
extrapolated in the brown dwarf domain down to a minimum
mass, minf , which is determined when the best agreement be-
tween theory and observation is achieved. The results are shown
in Fig. 2, for the mass functions (a) and (b) defined in §3.1, with

5 The KS test does not give a confidence level, but rather an exclusion
criterium. Its significance function has a very rapid variation between
10% (distributions most probably different) and 90% (distributions
most probably identical), and any value in between does not give a
strong conclusion. But the KS test is better than the χ2 test for low
statistics, and does not depend on any binning of the data.
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minf = 0.075 M� and minf = 0.05 M�, respectively. The KS
test gives a probability of 85% for MF (a) and only 45% for
MF (b). The value minf = 0.05 M� for MF (b), and its steeper
slope in the brown dwarf domain renders MF (b) very similar to
a Dirac delta-function. Longer timescale events are then more
difficult to reproduce. On the other hand, for MF (a), the relative
contribution of higher masses is larger, with a better fit of the
long timescale observations.

We have also computed the time distribution in case (b)
with minf = 0.1M�, which correspond to the absence of brown
dwarfs in the disk. This corresponds to the general decreasing
behaviour of the HST MF, ignoring the last bin. The time distri-
bution, also shown in Fig. 2, is incompatible with the observed
time distribution, with a KS result of 5%, as already pointed
out by Han and Gould (1995). These results suggest that brown
dwarfs are required to explain all the 40 events of the MACHO
first year bulge observations, unless the effect of amplification
bias (Alard, 1997; Han, 1997) is important enough to account
for the excess of short timescale events.

It has been suggested (Alcock et al 1997; Han and Gould,
1995) that the large time events may have another origin than
main sequence stars, and might be due to stellar remnants, white
dwarfs or neutron stars. They may be due also to rare statistical
fluctuations due to the large tail of the time distribution or, more
speculatively, to dwarf nova eruptions (Della Valle and Livio,
1996). If we exclude the 3 longest events from the present anal-
ysis, the agreement between theory and observation improves
significantly, as shown in Fig. 3 for the same MFs. This yields
minimal masses for the two mass functionsminf = 0.056 M� in
case (a), and minf = 0.047 M� in case (b). The KS significance
of the two MFs is 50% in case (a) and 40% in case (b).

The minimum masses given above depend on the model
used for the calculations, in particular the poorly-determined
velocity dispersions in the bulge population (Ibata & Gilmore,
1995). This yields the largest uncertainties in the present results,
since 〈m〉 ∝ 〈σ2〉.

These mass functions yield a brown dwarf contribution to the
surface density in the solar neighborhood, assuming the same
scale height as for the M-dwarf population, i.e. hd ∼ 300 pc:

Σbd ≈ 3± 3 M� pc−2 (21)

Therefore the brown dwarf contribution to the local surface
density is about 10% to 20% of the total stellar contribution
(14). This represents ∼ 10% of the observed baryonic mass
(15). As shown in Eq. (21), the brown dwarf contribution is also
compatible with zero. The total surface density in the form of
baryonic matter in the disk is thus (Eqs. (15) and (21)):

Σbaryon = 46 ± 6 M� pc−2 (22)

consistent with the dynamical determination (8). There is no
need for any additional dark matter. The contribution of stellar
and substellar objects to the surface density is (Eq.(14) and
Eq.(21)):

Σss = 30 ± 5 M� pc−2 (23)
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Fig. 2. Observed time distribution (histograms) for all MACHO events
compared with the distribution of two models. Solid line: MF (a) with
minf = 0.075 M�, dashed line: MF (b) with minf = 0.05 M�, and
dotted line: MF (b) withminf = 0.1 M�. The latter case is excluded by
a KS test (see text), showing that brown dwarfs are required to explain
the observed distribution.
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Fig. 3. Same as Fig. 2, without the three longest events (see text).
Models are: MF (a) with minf = 0.056 M� (solid line), MF (b) with
minf = 0.047 M� (dashed line).

This yields an optical depth (see e.g. Kiraga & Paczyński, 1994):

τdisk ≈ 2πG
3c2

ρ∗R2
�

≈ 5.5× 10−7 Σss + 50M� pc−2

50M� pc−2

≈ 9.0 ± 0.5× 10−7, (24)

i.e. τdisk ∼< 10−6, a factor ∼ 2 to 3 smaller than the observed
value τobs ∼ 2.4 ± 0.5 ×10−6 (Alcock et al., 1997). Therefore,
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although the observed time-distribution of the events is well
reproduced by the present model, the optical depth amounts
to ∼ 1/3 of the observed value. This clearly suggests a bulge
strongly elongated along the line-of-sight or, similarly, a bar
model (Zhao 1994). We have not included a bar-model in our
calculations, but from the present analysis, its contribution to
the optical depth corresponds to:

τbar ≈ 1× 10−6 Mbar/(1010M�) (25)

in good agreement with various models (Zhao, Spergel & Rich,
1995, 1996; Han & Gould, 1995; Stanek et al., 1997; Bissantz et
al., 1997). Infrared observations from DIRBE seem to constrain
the mass of the bulge within 2.4 kpc toMb ∼ 7.2−8.6×109 M�,
although this value is obtained by substracting a model-disk
contribution; a more general constraint concerns the bulge+disk
massMb+d(< 2.4 kpc) = 1.9×1010 M� (Bissantz et al., 1996).
Note however that the three long-time events contribute about
1/3 to the observed optical depth, so that the discrepancy be-
tween the value (24) and the observed one is reduced appre-
ciably if these events are removed, leading to a smaller mass
for the bulge. Moreover, as noted recently by Han (1997) and
Alard (1997), the optical depth toward the bulge might be over-
estimated by as much as a factor 1.7, because of amplification
bias due to pixel lensing.

4.1.1. Events whose source is a bulge clump giant

As mentioned by Alcock et al. (1997), there are significant un-
certainties in the estimated bulge optical depth, because essen-
tially of blending effects. For this reason, the MACHO collabo-
ration has conducted a separate analysis of the events whose
source is a bulge giant (Alcock et al. 1997). Although the
statistics are significantly diminished (1.3 × 106 source giants
and 13 events), the efficiency and the reliability of the results
are improved appreciably. The corresponding optical depth is
also substantially larger, but only at the ∼ 1σ level, than the
value obtained when including the totality of the events, namely
τgiant ∼ 3.9 × 10−6. The mean duration of these events is
〈te〉 = 33.8 days, which yields an unrealistic average mass of
0.6 M� from relation (18). This high value is confirmed by the
complete calculation, with a minimum mass minf ≈ 0.3M�.
This minimum mass is the same for both MFs (a) and (b) be-
cause they are identical for m > 0.35M�. Such a high minimal
mass is not allowed in the disk, since many stars with mass
m < 0.3 M� are observed in the solar neighbor hood. There-
fore, either the bulge mass function is different from the disk
MF, or the three long time scale events have a different origin
(most likely stellar remnants).

Without including the three afore-mentioned long-time
events, which all correspond to a bulge clump giant source,
the mean duration is te = 16.7 days, yielding an average mass
of 0.15 M�. The minimum mass derived with the complete
calculations to reproduce the time distribution in that case is
minf = 0.11 M� in case (a) and minf = 0.07 M� in case (b).
The KS test gives a result of 70% in both cases. Fig. 4 shows
the model distribution compared to observations in case (a). It

is thus possible to explain the observed time distribution with a
main sequence stellar population with the mass function (a) or
(b) plus a stellar remnant population.

4.1.2. Events whose source is a disk main sequence star

The OGLE collaboration (Pacziński et al., 1994) and the MA-
CHO collaboration (Alcock et al., 1997), have observed the
same region, near the Baade’s window, in the direction of the
bulge. The MACHO collaboration observed six events whose
source lies on the disk MS, with a magnitude V ∼< 18.5. The
sources of 3 of these 6 events lie near the very red edge of the
MS and could well be bulge blue helium core burning giants.
This could be easily verified from their spectra. However, the
remaining 3 sources are likely to be disk MS stars. These events
yield an optical depth 7.5 × 10−7, whereas the standard disk
model (with no dark population) yields ∼ 10−7 and a maximal
disk (see Paper II) yields ∼ 2 × 10−7. But the MACHO effi-
ciency used for the derivation of this optical depth is an average
over all source stars. Since we are considering only sources
with V < 18.5, the efficiency for these brighter sources must
be higher. With an extreme (unlikely) 100% efficiency, the op-
tical depth for disk sources is τ = 2× 10−7 in better agreement
with disk models. We stress that theoretical estimates depend
strongly on the disk scale length and scale height.

The average time for the corresponding 3 events is 〈te〉 = 4.4
days. Since the source stars are as bright as the bulge clump gi-
ants, the blending is expected to be negligible for these events.
The mean duration would correspond to a minimum mass
smaller than 0.005 M�, definitely in the brown dwarf domain.
However, the extrapolation of either mass function (a) or (b)
down to a minimum mass of 0.005 M� requires a moderate
power-law exponent in order not to exceed the local dynami-
cal limit (Σbd = 27 M� pc−2 if α = 2 and Σbd = 62 M� pc−2 if
α = 2.5 for MF (a)). Moreover, such a low minimum mass over-
produces short time scale events for bulge sources, especially
when only clump giant sources are considered.

Fig. 4 shows the calculated time distribution of the mi-
crolensing events obtained with the MF (a) with two different
minimum masses for the bulge and the disk, as inferred from
§4.1.1 and 4.1.2. A minimum massminf = 0.3 M� for the bulge
and minf = 0.015 M� for the disk, with both MFs (a) and (b).
The model distributions agree with a 70% KS result with the
observed one. Such a disk brown dwarf population corresponds
to a local surface density:

Σbd ≈ 20 − 30 M� pc−2 (26)

Clearly any solution between the above one and the one
where minf ∼ 0.1 M� everywhere (cf §4.1.1), i.e. no brown
dwarf, looks acceptable. The disk contribution to the bulge op-
tical depth in this model is τd ≈ 8 × 10−7, slightly larger than
the optical depth of a standard (no brown dwarf) disk (5×10−7),
but still insufficient to explain the observed τ ≈ 4× 10−6.

Whereas small number statistics and uncertainty in the dis-
tance of the sources prevent a reliable determination of the
brown dwarf contribution to the disk mass budget in this case,
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Fig. 4. Comparison of the giant bulge events (excluding the 3 longest
events) with three models. Dotted line: the MF (a) is assumed to be the
same for both the bulge and the disk, with minf = 0.11 M�. Dashed
line: the disk MF has a minf = 0.015 M� and the bulge MF has a
minf = 0.4 M�, for MF (a); the dot-dashed line is the same for MF (b).
The histogram corresponds to observations.

the present analysis corresponds to a brown dwarf and a dynam-
ical density in the disk, from (15), (21) and (26):

Σbd ≈ 0 − 30 M� pc−2 ; Σ� ≈ 40 − 70 M� pc−2, (27)

possibly larger than the value (8) determined in §2.1. A mass-
dependent scale height does not change significantly the brown
dwarf contribution, unless their scale height is larger than ∼ 1
kpc.

These results leave open the following possibility: i) the
mass functions of the disk and the bulge are different, in partic-
ular in term of minimum mass, and ii) the dynamical upper limit
for Σ� (Eq. 8) and the observed density of baryonic matter (Eq.
15) imply that 20 to 30 M� pc−2 of the solar surface density
can be in the form of brown dwarfs, in agreement with the mi-
crolensing analysis (Eq. 27). Note that the possibility for the disk
and bulge mass functions to be different has also been suggested
by Gould et al. (1997) to reconcile star counts and microlensing
observations. However, although these authors invoke a large
population of brown dwarfs in the bulge, the present analysis
suggest that they could as well be located in the disk. A more
precise determination of the amount of brown dwarfs in the disk
requires microlensing observations optimized for characteristic
timescales of a few days, corresponding to a sampling of two
observations per day. We stress the need for such microlensing
searches.

The present analysis illustrates the difficulty to reach robust
conclusions about the mass under the form of sub-stellar objects
in the central regions of the Galaxy, and more precisely in the
disk and the bulge, from present microlensing experiments. The
situation will certainly be clarified once future projects will be
operational, allowing much better statistics in both parts of the

Galaxy. In fact, the MACHO survey has now a total of more than
200 candidate microlensing events, still under analysis, which
will improve the present determinations.

The volume density of disk brown dwarfs in the solar neigh-
borhood deduced from the two types of calculations described
above, global vs separate disk/bulge analysis, correspond re-
spectively to ρBD ∼ 5 × 10−3 M� pc−3 (from Eq. 21) within
about a factor 2, and ρBD ∼ 3 − 5 × 10−2 M� pc−3 (from 3
events in the disk, Eq. (26): this is clearly to be revised in the
light of future observations), a factor 10 more. Future deep pho-
tometry and large field observational surveys might thus help
determining the present issue by direct observation of nearby
brown dwarfs, although the small density and the intrinsic faint-
ness of brown dwarfs (MV ∼> 22, Baraffe et al. 1997) renders the
observation of a statistically-significant sample of field brown
dwarfs a tremendously difficult task. Note that infrared filters are
highly recommended for these objects (MJ ∼> 12; MK ∼> 11,
Baraffe et al. 1997).

The present analysis is thus an indication that an impor-
tant amount of brown dwarfs in the disk is not excluded with
present day observations, as suggested by the rise of the disk
mass function near 0.1M� (cf. §3.1).

4.2. Spheroid

For a DeVaucouleurs spheroid, extrapolation of the MF (16)
into the brown dwarf region, even with minf = 0.01 M�, yields
a number of microlensing events towards the LMC of ∼ 0.4
and an optical depth τsph ∼ 5× 10−9 (Chabrier & Méra, 1997).
This illustrates the negligible contribution of the spheroid to
the Galactic mass, and thus to the events observed towards the
LMC.

4.3. Dark halo

The analysis of the first year of the EROS (Aubourg et al.,
1993) and MACHO (Alcock et al., 1993) microlensing obser-
vations towards the LMC had shown that the observed events
were likely to be due to halo brown dwarfs, with an average
mass 〈m〉 ≈ 0.03 M� (Méra et al. 1996b; Kerins 1995). The
inferred contribution of these objects to the missing mass was
found to be between 10 and 20% (Alcock et al. 1995; Gates et
al., 1995; Méra et al. 1996b). These calculations must now be
re-examined in the context of the second year of the MACHO
experiment.

These results yield now a total of 1 to 2 events observed
by EROS (Ansari et al., 1996; Renault et al., 1997) and 6 to 8
by MACHO (Alcock et al., 1996). The inferred optical depth
is much larger than derived previously, τobs = 2.2 ± 1× 10−7,
about 40% of the value corresponding to the standard halo. The 6
MACHO events6 yield 〈te〉 ≈ 40 days, in reasonable agreement
with the value inferred from the 2 events observed by EROS,
〈te〉 ≈ 28 days. The statistics, however, are not sufficient to

6 We have excluded the MACHO events #10, believed to be a variable
star (Alcock et al., 1996), and #9, the binary event, which probably
belongs to the LMC.
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constrain a mass function from the time distribution. As will
be shown in Paper II, the number of observed events cannot
be explained by dark objects in the LMC itself. As shown by
Chabrier & Méra (1997) and Graff & Freese (1996), extrap-
olation of the MF (16) into the brown dwarf domain yields a
negligible fraction of brown dwarfs in the Galactic halo.

A substantial amount of these objects in the halo thus implies
a significantly different, much steeper MF beyond the hydrogen-
burning limit. In order to estimate the maximum contribution of
halo substellar objects to the microlensing counts, we consider,
as in Méra et al (1996b), a halo MF dN

dm (m) ∝ m−x with x = 5,
essentially a Dirac-peaked MF. The maximum normalization of
dN
dm (m) at 0.1 M� is the observed count of halo subdwarfs in the
solar neighborhood, derived in §3.4. We thus take as the upper
limit for the dark halo substellar mass function:

dN

dm
(m) = 4.0 × 10−3

(
m

0.1M�

)−5

M−1
� pc−3 (28)

A Kolmogorov-Smirnov test done on the te distribution of
the EROS + MACHO halo events shows unambigously that
such a MF is not consistent with the observations, whatever
the value of minf . The optical depth can be reproduced only if
minf < 0.02M�, but the time distribution is in severe conflict
with the observed one, as shown by a 0.02% KS probability
(〈te〉 = 12 days).

The expected average mass of microlensing events is re-
lated to the characteristic timescale of the event and to the ve-
locity dispersion (see Appendix Eqs. A2 and A15). The av-
erage tangential velocity is proportional to the dispersion of
the Gaussian velocity distribution 〈1/v⊥〉−1 ∝ σ (see Ap-
pendix). Assuming a maximal dark halo ρh(r) = ρdyn/r

2, where
ρdyn = 8×10−3 M� pc−3 is the local dark matter density (Bah-
call 1986), this dispersion corresponds to the asymptotic rotation
velocity with the relation σ = vrot/

√
2 ≈ 150 km.s−1, where

vrot ≈ 220 km.s−1, as given by the isothermal sphere model
(Binney and Tremaine 1987). This yields an average mass, cor-
rected for blending, 〈√m〉2 ≈ 0.4 − 0.5 M�, as suggested by
the MACHO collaboration (Alcock et al., 1996). Several ob-
servations (Beers & Sommer-Larsen, 1995; Dahn et al., 1995;
Layden et al., 1996) suggest that the halo population velocity
ellipsoid is radially elongated, by a factor∼ 1.5−2. This yields
a projection effect which decreases the velocity dispersion. On
the other hand, this dispersion is bound by the velocity of the
line-of-sight toward the LMC (Eq. A19), which is (after proper
calculations), 〈1/vlos〉−1 ∼ 80 km.s−1. This corresponds to a
minimum mass minf = 0.04 M� but to a zero dispersion ve-
locity, clearly an irrealistic possibility. When considering such
a “modified” halo model, with a non-isotropic velocity disper-
sion tensor at 1σ of 80 km.s−1 and an important oblateness,
the time distribution can be reproduced with minf ∼ 0.1M�,
still above the hydrogen-burning limit. However, the number of
observed events implies a normalization for the halo MF at 0.1
M� significantly larger than the maximum value (16), inferred
from observed low-mass stars in the solar neighborhood.

These calculations show that, if the results of the recent
MACHO analysis are confirmed, the possibility for halo dark

objects to be field brown dwarfs is clearly excluded, even for
a MF substantially steeper than the ones in the disk and the
spheroid, for any halo model. This analysis, consistent with
the MACHO observations (Alcock et al., 1996) and with star
count analysis at faint magnitudes (Chabrier & Méra, 1997),
and the one conducted in §3.4 and 3.5, suggest a negligible
mass-fraction under the form of field stars and brown dwarfs in
the dark halo. Different solutions to try to reconcile star counts
and microlensing observations in the halo will be considered in
Paper II.

5. Summary and conclusions

In this paper, we have examined in detail all the observa-
tional sources that constrain the mass distribution of the Galaxy.
This includes dynamical constraints, circular rotation velocity
and vertical velocity dispersion in the solar neighborhood, star
counts in the disk, bulge and spheroid, and microlensing ob-
servations towards the Galactic halo and the Galactic center.
The star counts yield the derivation of stellar mass functions
for the disk, the bulge and the spheroid down to the bottom of
the main sequence. A substantial discrepancy, however, remains
between the MF inferred from the nearby LF and the one de-
duced from the HST LF in the range 0.09−0.35 M�. Although
the nearby MF is consistent with a steadilly rising power-law
dN/dm ∝ m−α with α ∼ 2 down to the bottom of the main
sequence, the HST MF is essentially flat below 0.6 M�. Inter-
estingly enough, the significantly rising last bin of the HST MF,
indicates an upturn of the MF near the brown dwarf domain,
so that both type of MFs, nearby and photometric, suggest the
presence of a substantial amount of brown dwarfs in the Galactic
disk.

We have determined the normalization of these mass func-
tions and shown that the ratio of the halo to disk main sequence
stellar density is about ∼ 1/400 near the bottom of the main
sequence. The presence of the spheroid is proven unambigously
by the observed star counts of high velocity stars but its con-
tribution to the Galactic mass is negligible. These calculations
yield the determination of the contribution of main sequence
stars, and thus of observed baryonic matter, to the disk and halo
mass budget. The detected (thin+thick) disk stellar surface den-
sity corresponds to Σvis ≈ 43 ± 5 M� pc−2, whereas the halo
(spheroid + dark halo) density corresponds to less than∼ 1% of
the dynamically determined dark matter, significantly less than
the limit determined by the HST (Flynn et al., 1996).

The contribution of sub-stellar objects to this mass depends
on the lower limit down to which the mass functions can be
extrapolated. This limit is fixed by the microlensing observa-
tions, in particular by the time distribution of the events. This
combined analysis of star counts for the luminous part of the
mass function, which yields the determination of the slope and
normalization near the brown dwarf limit, and of microlens-
ing experiments, which determines the minimum mass, yields
a consistent determination of the dark matter under the form of
star-like objects, low-mass stars and brown dwarfs, in different
parts of the Galaxy. Although uncertainties due to either small
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statistics or ill-constrained velocity dispersion and location of
the sources in the bulge prevent for now a precise determination,
the derived brown dwarf surface density in the solar neighbor-
hood, for a scale heighthz = 320 pc (Gould et al., 1997), is likely
to be in the range Σbd = 0− 30 M�.pc−2 so that the total local
density in the disk is Σdyn ∼ 40−70 M� pc−2. As will be shown
in Paper II (Méra et al., 1997), this is in agreement with various
observational determinations. More statistics of microlensing
events towards the bulge will allow a separate determination
of the brown dwarf contribution in the bulge and in the disk.
An attempt based on the analysis of the events whose source is
a clump giant or a disk main sequence star, respectively, yield
rather surprising results (hampered by present observational un-
certainties): most brown dwarfs would be present in the disk,
whereas the bulge would contain almost none of these objects.
This stresses the need for further observations in this region.

For the halo, we show that brown dwarfs have a negligi-
ble contribution (∼< 1%) to the halo mass. A steep (α ∼> 2)
mass function in the halo seems to be excluded both by the
microlensing analysis and by the M-dwarf LF. Therefore, the
present analysis excludes main sequence stars and brown dwarfs
as a significant contribution to the halo mass budget.

The nature of the dark events observed in the halo remains a
puzzle. Halo white dwarfs remain the least unlikely candidates,
although this scenario implies severe constraints on the age of
the halo and its initial mass function (Chabrier et al., 1996;
Adams & Laughlin, 1996). More attention will be devoted to
this problem in Paper II.

These calculations, which combine observational con-
straints arising from star counts, microlensing experiments and
kinematic properties, yield the consistent determination of the
amount of dark matter under the form of stellar and sub-stellar
objects in the differents parts of the Galaxy. This yields new
insight on the distribution of baryonic dark matter in the Galaxy
and bears important consequences for the derivation of a con-
sistent Galactic mass-model. This will be examined in the next
paper (Méra, Chabrier and Schaeffer, 1997, Paper II).

Appendix A: microlensing equations

The basic microlensing equations can be found for instance in
Griest (1991) or in Kiraga and Paczyński (1994). However, we
use some extra formulae which are given below, after a summary
of the basic equations.

The duration t of a microlensing event is defined as the
time during which the amplification of the monitored star is
larger than a given threshold amplification AT

7 (usually AT =
1.34). The event duration corresponds to the crossing time of
the Einstein disk, of radius uTRe, for the lens:

t =
2Re

v⊥

√
u2
T − u2

min = 53 days
220km.s−1

v⊥
×

7 or equivalentelly, a threshold impact parameter uT in units of the

Einstein radius, related to AT by AT =
u2
T + 2

uT
√
u2
T + 4

.

√
m

0.1M�

√
L

55 kpc

√
x(1− x)

0.5

√
u2
T − u2

min (A1)

where v⊥ is the lens transverse velocity w.r.t. the line of sight,
uT (resp. umin) is the impact parameter corresponding to the
threshold amplification (resp. maximum amplification) AT , L
is the distance to the source, xL and m denote respectively the
distance and the mass of the lens, and RE = 2

c

√
GmLx(1− x)

is the Einstein radius.
The characteristic time of an event is defined as:

te =
Re

v⊥
=

2
cv⊥

√
GLmx(1− x) =

t

2
√
u2
T − u2

min

(A2)

This effective time does not depend on the impact parame-
ter, and can be recovered from the observations with the relation
between umin and the known maximal amplification. In prac-
tice, the blending (several unresolved stars of which only one
is amplified) renders this process rather difficult. The overall
effect of blending is to underestimate the characteristic time.

The probability for a source star to be microlensed at a given
time is called the optical depth, and reads:

τ =
∫ 1

0
u2
TπR

2
e

ρ(xL)
m

L dx =

∫ 1

0
u2
Tπ

4GL2

c2
ρ(xL)x(1− x) dx (A3)

where ρ(xL) =
∫∞

0 ρm(xL)dm is the total mass-density under
the form of dark objects.

The experimental optical depth is retrieved from observa-
tions by:

τexp =

∑
tobs/ε(t)

Ns × Tobs
(A4)

where Ns and Tobs denote the number of source stars and the
total duration of the experiment, respectively whereas ε(t) is the
detection efficiency.

A.1. Event rate

The theoretical event rate for a given Galactic model, i.e. the
expected number of events per unit time, reads:

dΓ = 2uTRev⊥
ρ(xL)
m

P(m)P(v⊥) dm dv⊥ dx (A5)

where P(m) and P(v⊥) are the probability distributions respec-
tivelly of lens mass and velocity. If the velocity distribution is
independent of the position, the integration of (A5) yields:

Γ = uT
4
c

√
GL

∫ msup

minf

1√
m

P(m) dm

×
∫ L

0

√
x(1− x)ρ(xL)d(xL)

∫ +∞

0
dv⊥v⊥P(v⊥) (A6)
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For Ns source stars monitored during Tobs, the expected
number of events is:

N = Γ×NsTobs (A7)

The relation (A5) shows that the effective microlensing prob-
ability distributions are different from the model distributions,
and are given by:

Peff (x) ∝
√
x(1− x)ρ(xL) (A8)

Peff (v⊥) ∝ v⊥P(v⊥) (A9)

Peff (m) ∝ P(m)√
m

(A10)

For a Maxwellian velocity distribution, of dispersion σ, the
transverse velocity reads:

P(v) dv =
1

2πσ2
e−

v2
x+v2

y

2σ2 dvx dvy =
v

σ2
e−

v2

2σ2 dv (A11)

and

Peff (v) =
vP(v)∫ +∞

0 v′P(v′) dv′
=

√
2
π

v2

σ3
e−

v2

2σ2 (A12)

which yields:

P(te) =∫ P(m)√
m

√
x(1− x)ρ(xL)

√
2
π

R2
e

t2
eσ

3 e
− R2

e

2σ2t2
e
Re
t2
e

dx dm∫ P(m)√
m

√
x(1− x)ρ(xL) dm dx

(A13)

and (with use of Eq. (A6)):

P(te) =
32G2L3uT
c4t4eΓσ2

×
∫
mP(m) [x(1− x)]2 ρ(xL)e

− 2GLmx(1−x)

c2σ2t2
e dx dm (A14)

For a given Galactic model, we use a Monte-Carlo algorithm
to calculate the event rate, which yields a set of simulated events
whose time distribution is exactly the one given by (A14).

These equations yield the average characteristic time 〈te〉:

〈te〉 =
2
√
GL

c
〈√m〉〈 1

v⊥
〉〈
√
x(1− x)〉 (A15)

In Eq. (A15), the means are computed with the effective
probability distributions (A8-A10). When writing explicitly the
corresponding integrals, we can identify the optical depth and
the event rate, which yields:

τ = Γ× π

2
uT 〈te〉. (A16)

A given Galactic model implies a time-distribution
dΓ/dte = Γ × P (te) and the number of events predicted by
the theory is given by:

Nth = E ×
∫ +∞

0
ε(te)

dΓ
dte

dte (A17)

where E = Ns × Tobs.

A.2. Divergence of the moments

As shown in Eq. A13, the probability to observe an effective
time te behaves as:

P (te)dte ∝ 1/te P (v⊥)dv⊥ ∝ v3
⊥dv⊥ (A18)

so that P (te) has a long power-law tail at large times.
This yields the divergence of the moments of order n > 3∫
tneP (te)dte, which causes the extreme sensitivity of 〈te〉 and

τ to the rare large-time events. This long-range tail effect, which
prevents the use of the higher order moments of te, is also felt
when the central limit theorem is invoked to identify the ob-
served average time of e.g. the 45 events with the statistical av-
erage. They are equal in the large-N limit, but the convergence is
extremely slow in this case. This shortcoming is fixed by using
the average 〈 1

te
〉 instead of 〈te〉. This method is more useful to

constrain minf and 〈te〉 than Eq .A15 since 1/te ∝ v⊥ and is
thus nearly gaussian at the beginning and 1/te ∝ m−1/2 and is
thus most sensitive to the low mass end of the mass function.

A.3. Motion of the line of sight

The lens velocity w.r.t. the line-of-sight (l.o.s.) depends on the
motion of the l.o.s. itself and must include the motion of the
Sun and of the source star w.r.t. the Galactic center. The lens
velocity thus reads:

v = vlent. − xvsource − (1− x)v� (A19)

The velocity now depends on the lens distance xL, and Eqs.
(A11-A14) relative to a gaussian velocity distribution, are no
longer valid. Straightforward calculations yield the projected
velocity of the lens w.r.t. the l.o.s.:

v =
[(
vlent.,l − v�,l + x(v�,l − vs,l)

)2

+
(
vlent.,b − v�,b + x(v�,b − vs,b)

)2
]1/2

(A20)

A.4. Distance of the source star

In the case of the bulge, the elongation along the line of sight
is no longer negligible, and the afore-mentioned formulae must
include the possible variation of the distance L of the source,
which implies an extra integral on L:

τ =

∫ +∞
0 L2νs(L) dL

∫ 1
0 u

2
Tπ

4GL2

c2 ρ(xL)
√
x(1− x) dx∫ +∞

0 L2νs(L) dL
(A21)

where νs is the density of source stars visible at the distance L.
This requires a luminosity function for the source stars. Follow-
ing Kiraga and Paczyński (1994), νs ∝ ρL2β , if the number of
stars brighter than some absolute luminosity L is proportional
to Lβ . We have slightly modified νs to take into account the
fact that giant stars have more or less the same luminosity. Then
νs ∝ ρ(L2β +C) whereC is adjusted to reproduce the observed
ratio of giants.
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The event rate (A6) now reads:

Γ =
4
√
G

c
∫ +∞

0 νs(L)L2 dL

∫ +∞

0
dm

∫ L

0
dL
∫ 1

0
dx
∫ +∞

−∞
d2vlent

∫ +∞

−∞
d2vS × P(m)√

m
v⊥ νs(L)L3.5ρ(xL)

√
x(1− x) (A22)

This integral has six non-independent variables, only the mass
can be separated. The Monte-Carlo integration method (see
Press et al. 1992) does not rely on any discretization of the in-
tegration domain, and is hence suitable for this kind of integral.
Moreover, the Monte-Carlo process provides a set of simulated
microlensing events, from which the time distribution can be
recovered easily. The adjunction of the experimental efficiency
is also straightforward with a rejection algorithm.
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