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Abstract. Helioseismic inversions, carried out for several years
on various ground-based and spatial observations, have shown
that the solar rotation rate presents two principal regimes: a
quasi-rigid rotation in the radiative interior and a latitude-
dependent rotation in the whole convection zone. The thin layer,
named solar tachocline, between these two regimes is difficult to
infer through inverse techniques because of the ill-posed nature
of the problem that requires regularization techniques which, in
their global form, tend to smooth out any high gradient in the
solution. Thus, most of the previous attempts to study the rota-
tion profile of the solar tachocline have been carried out through
forward modeling. In this work we show that some appropriate
inverse techniques can also be used and we compare the ability
of three 1D inverse techniques combined with two automatic
strategies for the choice of the regularization parameter, to infer
the solar tachocline profile in the equatorial plane. Our work,
applied on LOWL (LOWL is an abbreviation for low degree
denoted by L) two years dataset, argue in favor of a very sharp
(0.05 ± 0.03R�) transition zone located at 0.695 ± 0.005R�
which is in good agreement with the previous forward analy-
sis carried out on Global Oscillations Network Group (GONG),
Big Bear Solar Observatory (BBSO) and LOWL datasets.
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1. Introduction

Helioseismic inversions of the solar p-modes frequencies split-
ted by rotation have shown that there is, at the base of the con-
vection zone, a thin transition layer separating two regimes of
rotation, a strong differential rotation in the convection zone and
a quasi rigid rotation in the radiative interior (e.g. Thompson et
al. 1996; Corbard et al. 1997). This layer, called tachocline, is
supposed to play an important role in the solar dynamo, in the
transport of angular momentum and in the mixing of chemi-
cal elements. Its position rc and thickness w give constraints
to the theories describing its structure and evolution (Spiegel
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& Zahn 1992; Gough & Sekii 1997). Different estimations of
these parameters have been obtained so far mostly by using
forward methods (Kosovichev 1996; Charbonneau et al. 1997;
Basu 1997).

The aim of this work is to test and compare the ability of
some inversion methods to infer the location and the width of
the solar tachocline, and then to apply these methods to helio-
seismic data. We compare three 1D least-squares methods. They
differ essentially by the mean used to regularize the ill-posed
inverse problem of inferring the equatorial solar rotation rate
from the observed frequency splittings. The first method is the
most commonly used Regularized Least-Squares (RLS) method
with Tikhonov regularization (Tikhonov & Arsenin 1977), the
second one is the Modified Truncated Singular Value De-
composition (MTSVD) introduced by Sekii and Shibahashi
(1988) which uses a regularization term of the same form but
with a discrete truncation parameter instead of the continuous
Tikhonov regularization parameter. The third method, intro-
duced by Hansen & Mosegaard (1996), is called Piecewise Poly-
nomials TSVD (PP-TSVD) and is a modification of the MTSVD
method that can preserve discontinuities of the solution.

In Sect. 2, we briefly recall the inverse problem and define
our parameterization of the tachocline. Sect. 3 gives the two
strategies studied in this work for inferring the rapid variation
of the rotation. We test these methods by inverting artificial
data in Sect. 4 and then, in Sect. 5, we use this study in order
to infer the location and thickness of the solar tachocline in the
equatorial plane from data observed by the LOWL instrument
(Tomczyk et al. 1995).

2. Direct analysis and parameterization of the tachocline

Frequency splittings ∆νnlm = νnlm − νnl−m between modes
with the same radial ordern and degree l but different azimuthal
orders m are induced by the solar rotation Ω(r, θ) expressed as
a function of the radius r and colatitude θ. For a slow rotation,
assumed to be symmetric about the equator, and moderate or
high degree modes, these splittings are given by:

∆νnlm= m

∫ π
2

0

∫ R�

0
Knl(r)Pm

l (cos θ)2 Ω(r, θ) sin θ dr dθ, (1)
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whereKnl(r) are the so-called rotational kernels that can be cal-
culated for each mode from a solar model (Morel et al. 1997).
In the following, they are assumed to be known exactly. There
exists additional terms that are not taken into account in Eq. (1)
but, as discussed in Corbard et al. (1997), they do not influ-
ence inversion above 0.4R�. As the aim of this work is not to
sound the rotation of the core, Eq. (1) is a good approximation.
Pm
l (cos θ) are normalized Legendre functions. Their asymp-

totic property leads, as discussed by Antia et al. (1996), to the
following expression that shows the sectoral (i.e. l = m) modes
splittings as weighted averages of the equatorial rotation rate
Ωeq(r) = Ω(r, 90◦):

∆νnll ' l

∫ R�

0
Knl(r) Ωeq(r) dr. (2)

We note that the validity of this 1D approximation is l-
dependent. Indeed, the higher the degree, the more the latitudinal
kernel P l

l (cos θ)2 sin θ is peaked at the equator.
Following Charbonneau et al. (1997), we define the location

and the width of the transition zone in the equatorial plane as the
parameters r̂c and ŵ respectively of the following erf function
which fits the rotation law in this plane:

Ωeq(r) = Ω̂0 +
1
2

(Ω̂1 − Ω̂0)

(
1 + erf

(
r − r̂c
0.5ŵ

))
. (3)

Here Ω̂0 and Ω̂1 represent the mean values of the rotation in the
radiative interior and in the convection zone respectively.

In order to compare different 1D inverse methods, we have
built several sets of theoretical sectoral frequency splittings that
correspond to different given rotation laws with fixed parameters
rc, w, Ω0, Ω1 but with a function of the colatitude in order to
mimic the latitudinal differential rotation of the convection zone:

Ω(r, θ)=Ω0+
1
2

(Ω1−Acos2θ−Bcos4θ−Ω0)

(
1+ erf

(
r − rc
0.5w

))
(4)

Evidently, for any choice of constants A and B, the searched
parameters for these rotation laws are r̂c = rc, ŵ = w, Ω̂0 = Ω0

and Ω̂1 = Ω1. We compute the splittings ∆νnll from Eq. (1) for
a set of modes corresponding to the set of LOWL data used in
Corbard et al. (1997) and we add a normally distributed noise
δνnll ∈ N (0, σnl). For each mode (n, l) the standard deviation
of the noise σnl has been taken equal to:

σnl =
σ̄nl√
kσ

, (5)

where σ̄nl is the error derived from the observers’ uncertainties
for a splitting ∆νnll, and kσ is an integer used to vary the level of
the noise that we introduce in the data. Doing this, we take into
account the fact that the error obtained on the observed splitting
varies with the frequency and the degree of the mode which is
certainly more realistic than taking the same average standard
deviation for all the modes. From those noisy splittings, the
equatorial rotation profile is obtained by inverting Eq. (2) and
this profile is then fitted by the erf function Eq. (3) leading to
the parameters r̄c, w̄, Ω̄0, Ω̄1 which will be compared to the
initial parameters.

3. Strategies for inferring rapid variations of the rotation

The three inverse methods used in this work are detailed in Ap-
pendix A. They all use a grid of 50 points in radius distributed
according to the density of turning points of observed modes.
The most important difficulty in inferring the thickness of the
tachocline from inverse methods results from the fact that the
problem of solving Eq. (2) is an ill-posed problem and this is
strengthened by the fact that rotational kernels give redundant
information about the outer part of the sun whereas they have
only low amplitude in the solar core for the observed mode
set. Numerically, this produces a high value for the condition
number (defined as the maximum singular value divided by the
smallest singular value) of the discretized problem Eq. (A5)
(typically Λmax/Λmin ' 2 × 108 in our implementation) and
the singular values decay rapidly. This high value of the con-
dition number means that the solution of the initial problem
is highly sensitive to the numerical errors and the noise con-
tained in the data. Therefore we have to introduce some a-priori
knowledge on the rotation profile. Unfortunately this regular-
ization tends to smooth out every rapid variation in the solution.
By using global regularization, we make the implicit assump-
tion that the real rotation is smooth everywhere and therefore
the information about the thickness of a rapid variation of the
rotation profile is not directly readable from the solutions ob-
tained by classic inversions. There are however several ways for
overcoming these difficulties.

3.1. Local deconvolution of the result obtained from linear in-
versions: the use of averaging kernels

The first way is to have a good understanding of the process by
which the inversion smoothes the solution: using this informa-
tion, we may be able to inverse this process and to acquire a
more realistic view of the rotation. This is what Charbonneau et
al. (1997) have done in combination with the so-called Subtrac-
tive Optimal Localized Average (SOLA) (Pijpers & Thompson
1992, 1994) method. This can be generalized for any linear in-
version as RLS method used in this work. The solution Ω̄(r0)
obtained at a target location r0 can be viewed as a weighted av-
erage of the ‘true rotation’ Ω(r), the weighting function being
the averaging kernel κ(r, r0) that can always be estimated at any
r0:

Ω̄(r0) =
∫ R�

0
κ(r, r0)Ω(r) dr. (6)

If we suppose that the averaging kernels obtained at any depth
can be approximated by a translation of the averaging kernel
obtained at the middle of the transition i.e. κ(r, r̂c), then we can
define κc by κc(r − r̂c) ≡ κ(r, r̂c) and Eq. (6) reduces to a
convolution equation:

Ω̄(r0) =
∫ R�

0
κc(r − r0)Ω(r) dr ⇔ Ω̄(r) = κc(r) ∗ Ω(r) (7)
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Finally, if the ‘true rotation’ can be well approximated by an erf
function of the form given by Eq. (3), and if we approximate
the kernel κc(r − r0) by a Gaussian function of the form:

κc(r − r0) ' exp
[−(r − r0)2/∆2

r

]
, (8)

then the inferred solution is also an erf function of the form
Eq. (3) but with a larger width w̄. A simple deconvolution gives
the following relation between the searched width ŵ and the
inferred width w̄:

ŵ = w̄c ≡
√
w̄2 − 4∆2

r, (9)

which defined the corrected inferred width w̄c.
This result is valid only under a large number of assump-

tions that may be quite distant from the reality. Especially the
reduction to a convolution form is certainly not valid because
of the extent of averaging kernels that tend to increase rapidly
toward the solar core. Moreover the profile of the rotation rate
may be much more complicated than a simple erf function.
However, the tachocline is thin and the averaging kernels have
nearly the same profile in its whole extent. Thus this is certainly
a good approach to get a quantitative idea of how the inversion
enlarges the ‘true rotation’ transition. We note that if we ob-
tain ∆r > w̄/2 this certainly means that some of the previous
assumptions are not valid. In this work, we have applied this
‘deconvolution method’ on the solutions obtained by Tikhonov
inversions computed as explained in Appendix A.1.. We esti-
mate that this cannot be made for MTSVD method because
the corresponding averaging kernels are less well peaked and
exhibit a more oscillatory behavior (see Fig. 6 hereafter).

3.2. Non linear regularization

The second way to estimate the location and thickness of the
tachocline, is to build inverse methods that are capable of pro-
ducing solutions with steep gradients. The idea is to apply a lo-
cal regularization instead of the global Tikhonov regularization
term. This leads to a non linear problem and piecewise smooth
solutions. This approach has recently found useful applications
in image processing for edge-preserving regularization (Aubert
et al. 1994) and total variation (TV) denoising (Vogel & Oman
1996, 1997). In particular, the TV of f is defined as the 1-norm
of the first derivative of f and this is the definition of smooth-
ness that we use in the PP-TSVD inverse method. Therefore,
the results obtained by this method, detailed in Appendix A.2.,
represent a first attempt to use this class of inversion with non
linear regularization on helioseismic data.

4. Tests with artificial data: results and discussion

4.1. The key: how to choose regularization parameters

Whichever regularized inverse method we use, a very impor-
tant point is the choice of the regularization parameter which
can be a discrete truncation parameter k (MTSVD, PP-TSVD,
Eq. (A12)) or a continuous parameter λ (Tikhonov, Eq. (A9)).
This choice is specially important if we want to infer a quantity

Fig. 1a–d. Inferred parameters Ω̄0, Ω̄1, r̄c, w̄ and corrected inferred
parameter w̄c against the logarithm of the Tikhonov regularization pa-
rameter λ. Error bars result from the fit of the solution by an erf func-
tion taking into account the propagation of noise through the inverse
process but not the existing correlations between the results obtained
at two different radius. The initial parameters are indicated by dashed
lines. The GCV and L-curve choices are shown by the full star and the
circle respectively. The input rotation law was not dependent on the
latitude (A = B = 0) and the level of noise was small (kσ = 10).

like the width of a zone with high gradients which is directly
affected by the regularization. Several methods for choosing
the regularization parameter have been proposed that tend to
establish a balance between the propagation of input errors and
the regularization (see e.g. Badeva & Morozov (1991), Thomp-
son & Craig (1992) and Hansen (1992, 1994) for a general
review and Thompson (1992), Barett (1993) and Stepanov &
Christensen-Dalsgaard (1996) for applications in helioseismic
inversions). In this work we test and compare the ability of
two of these automatic strategies, namely the L-curve criterion
(Hansen 1992) and the Generalized Cross Validation (GCV)
criterion (Wahba 1977; Golub et al. 1979), to reproduce a good
estimation of the tachocline profile from noisy data.

The importance of the choice of the regularization parameter
can be illustrated by the following figures (Figs. 1, 2, 3, 4 ) where
the results of the fit of the solution by an erf function are plotted
as a function of the regularization parameter.

Fig. 1 represents the variation of the four erf -parameters
Ω̄0, Ω̄1, r̄c and ω̄ deduced from a Tikhonov inversion as a
function of the logarithm of the regularization parameter. The
four initial parameters were Ω0 = 425 nHz, Ω1 = 460 nHz,
rc = 0.69R� and w = 0.05R�. In this case, called the ‘ideal
case’ in the following, the added errors were small (kσ=10)
and the initial rotation law was not dependent on the latitude
(A = B = 0). The choices designated by L-curve and GCV
strategies are shown by the full star and the circle respectively.
In addition we have plotted the corrected inferred width w̄c

given by Eq. (9) and computed by calculating systematically
the averaging kernel at r0 = r̄c (as shown on Fig. 6a for the
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Fig. 2a–d. The same as in Fig. 1 but with more realistic input errors
(kσ = 1) and an input rotation profile with latitudinal variation in the
convection zone (A = 55 nHz, B = 75 nHz).

GCV choice). The GCV criterion leads always to a lower regu-
larization than the L-curve choice and then tends to reduce the
smoothing of the solution. In most of our tests, as in Figs. 1a,
c, d, the GCV choice corresponds to a point where the errors
deduced from the fit become small whereas the L-curve crite-
rion gives a point beyond which a rapid variation of the fitted
parameters with increasing regularization occurs. The fact that
the values of the fitted parameters are nearly constant between
these two points shows that, for this level of noise, the method
is robust in that sense that the choice of the precise value of the
regularization parameter is not a crucial point: any choice that
tends to establish a balance between the propagation of input
errors and the regularization is able to produce good results.

Let us now look at the behavior of this method for a more
realistic example. For this we take a level of noise similar to
the one given by observers (kσ = 1) and we build frequency
splittings of sectoral modes by taking into account a latitudinal
variation of the rotation rate in the convection zone close to that
derived by 2D inversions. We have set A = 55 nHz and B = 75
nHz which are mean values derived from observations of the
plasma motion at the solar surface (Snodgrass & Ulrich 1990).
This choice for the input rotation law and errors is referred as
the ‘realistic case’ in the following. The Eq. (1) with m = l
has been used to compute the frequency splittings of sectoral
modes and 1D Tikhonov inversions have been performed again
in order to infer the equatorial rotation rate from Eq. (2).

Fig. 2 represents the results of these inversions in the same
form as Fig. 1 and for the same initial erf -parameters. There are
two essential points to be seen on this figure. The parameter Ω0

in Fig. 2a is systematically under-estimated of about 4 nHz. A
detailed analysis shows that this effect is strongly related to the
introduction of a latitudinal variation of the rotation rate in the
convection zone. The assumption, used in the 1D inversions, that
sectoral modes are sensitive only to the equatorial component

Fig. 3a–d. The same as in Fig. 1 (‘ideal case’) but for MTSVD (full
line) and PP-TSVD (dashed line) methods and against the truncation
parameter k. The L-curve choice for MTSVD method is outside the
plot on panel b.

of the rotation rate is not valid for low degree l modes (e.g.
Antia et al. 1996) , and these modes sound the deep interior.
This may explain some perturbation for the determination of
the parameter Ω0 that represents the mean value of the rotation
rate in the radiative interior. The difference between splittings
of sectoral modes computed from Eq. (2) and Eq. (1) is below
1 nHz for the observed modes having their turning points above
0.4R�. The large resulting difference in Ω0 is due to the fact that
high l sectoral modes see only the equatorial rotation rate and
then fix the inferred value Ω̄1 equal (or nearly equal as in Fig. 2b)
to the initial value Ω1 while lower degrees sectoral modes are
sensitive to the differential rotation of the convection zone and
this effect can only be accounted for in the inverse rotation law
by a substantial lowering in Ω̄0. Furthermore we have checked
that two rotation laws with the same Ω1 but with a difference of
4 nHz in Ω0 and two rotation laws with the same Ω0 but with
or without latitudinal variation in the convection zone, induce
a difference of the same order in the sectoral modes frequency
splittings.

The second important point is that, in Figs. 2c, d, the estima-
tion w̄ of the width of the tachocline increases rapidly between
the GCV and the L-curve points whereas its location r̄c de-
creases rapidly from 0.688R� down to 0.674R� As in Fig. 1d,
the deconvolution made by using averaging kernels tends to
correct this behavior for the estimation of the width but, in
this case, the GCV choice remains over-estimated for about
0.015R� and the L-curve choice is still very distant from the
initial value. Tests made with different input parameters show
that, as in Figs. 2c, d and for that level of noise, the GCV choice
is always better than the L-curve choice for the estimation of
the location and the width of the tachocline. This point will be
illustrated and discussed in the next section for the estimation
of widths between 0.03 and 0.11R�.
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Fig. 4a–d. The same as in Fig. 2 (‘realistic case’) but for MTSVD (full
line) and PP-TSVD (dashed line) methods and against the truncation
parameter k. The L-curve choice for MTSVD method is outside the
plot on panels b,c and d.

Similar figures (Figs. 3, 4) can be plotted for MTSVD and
PP-TSVD methods where the continuous regularization param-
eter is replaced by the discrete truncation parameter. Results
obtained in the ‘realistic case’ (Fig. 4) have again a larger dis-
persion and exhibit the same systematic deviation for the deter-
mination of Ω0. Another interesting point is that, as shown on
Figs. 3d, 4d and also in the next section, the PP-TSVD method
tends to give an under-estimation of the width whereas the
MTSVD method tends to give an over-estimation of this pa-
rameter. This may be very useful in order to give a bounded
estimation of the true width. For these two methods, the choice
of the optimal truncation parameter k through the L-curve cri-
terion needs the evaluation of the curvature of discrete L-curve.
This can be done carefully by an appropriate 2D curve fitting.
Nevertheless our experience shows that it is difficult to do this
systematically with the same fit procedure for any level of noise
and input rotation law. Furthermore, when this is done carefully,
this choice leads to results for the tachocline profile that are al-
ways worse than the ones obtained from the GCV choice. Thus,
in the following, results are shown only with the GCV criterion
for MTSVD and PP-TSVD methods.

Fig. 5 shows the solutions obtained from the three methods
with the GCV choices indicated on Figs. 2 and 4. The error bars
on the PP-TSVD method (Fig. 5c) were obtained by assuming
that the method is linear i.e. the dependence of H (defined in
Eq. (A16)) relatively to the data vectorW is neglected. This is
indeed not the case and a Monte-Carlo approach for estimating
errors may be more realistic. We note however that the two
other methods (Tikhonov and MTSVD) are linear only for a
given regularization parameter. Since this parameter is chosen
through automatic strategies, it depends also on the data. Thus,
strictly speaking, these methods are also non-linear methods.
Nevertheless, the automatic choices are built so that they are not
too much sensitive to little change in the data and that justify

Fig. 5a–c. Solutions obtained between 0.4 and 0.8R� from the three
inverse methods with the GCV choice of regularization parameters.
The input rotation law was the same as in Figs. 2, 4 (‘realistic case’).
The equatorial component of the initial law is shown by dashed line
whereas the fits of the inverse solutions are shown by full lines.

Fig. 6a and b. Averaging kernels computed at r0 = r̄c. For Tikhonov
method the dashed line represents the Gaussian approximation of the
kernel used for the local deconvolution of the solution shown on Fig. 5a.

the linear approximation. The corresponding averaging kernels
computed at r = r̄c (Fig. 6) show that whereas the Gaussian
approximation is rather good for the Tikhonov method, the large
oscillations in the convection zone obtained for the MTSVD
method make difficult the use of a local deconvolution in that
case.

4.2. Tests for width between 0.03 and 0.11 R�

An important point is to test the ability of a method to give a
good estimation of the erf -parameters for a large domain of
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Fig. 7a–c. Difference between the inferred width and the initial width
(δw = w̄ − w) against the initial width for PP-TSVD (triangles) and
MTSVD (circles) methods, both computed with the GCV choice for
the truncation parameter. Squares are for the Tikhonov method with
GCV criterion (full line) and L-curve criterion (dashed line). For this
latter method we plot the difference between the corrected inferred
width and the initial width (δw = w̄c − w). a kσ = 10, A = B = 0 as
in Figs. 1, 3 (‘ideal case’); b kσ = 1, A = B = 0; c kσ = 1, A = 55,
B = 75 as in Figs. 2, 4 (‘realistic case’)

variation of the width of the tachocline. We first study in Fig. 7
the behavior of the different methods and automatic strategies
between the ‘ideal case’ and the ‘realistic case’ for one real-
ization of input errors. Then, in Fig. 8, we have carried out a
Monte-Carlo approach in order to have a better estimation of
the errors on the widths deduced from the fit of the solutions for
the ‘realistic case’.

Fig. 7 shows the inferred width w̄ (for MTSVD and PP-
TSVD methods) and the corrected inferred width w̄c (for the
Tikhonov method) as functions of the initial width w and for
one realization of the input errors. Fig. 7a represents the same
example as Figs. 1, 3 (‘ideal case’ ), in Fig. 7b we increase the
level of noise (kσ = 1), and finally we set an input rotation law
with a latitudinal dependence in the convection zone so that the
Fig. 7c is for the same example as Figs. 2, 4 (‘realistic case’).

In Fig. 7a , the results for w̄ fit the real value within 0.02R�
except for PP-TSVD and widths above 0.9R�, and the two
regularization procedures (L-curve and GCV) give almost the
same result.

The comparison of Figs. 7a and 7b clearly indicates that the
results obtained for Tikhonov method with the L-curve criterion

Fig. 8. The same as in Fig. 7c (’realistic case’) but each points is the
mean value of the results obtained for 500 realizations of input errors.
Error bars represent a 68.3% confidence interval on w.

(dashed curves) are very sensitive to the level of noise and are not
adapted to the actual errors of observed data. The deconvolution
method using Tikhonov inversion with GCV criterion appears
to be the less sensitive to the noise level and the most stable
for widths between 0.03 and 0.11R�. We see again that the
results obtained from MTSVD and PP-TSVD lead respectively
to an over-estimation and an under-estimation of the real width.
Fig. 7c illustrates the effect of a latitudinal dependence of the
rotation in the convection zone: an increasing over-estimation of
w from the Tikhonov method with GCV criterion and a general
larger dispersion of the results.

In Fig. 8, we have performed 500 realizations of input er-
rors for each initial width and each point shown in this figure
represents the mean value of the 500 inferred or corrected in-
ferred widths for a given initial width and a given method. Error
bars represent a 68.3% confidence interval which contains the
nearest 341 inferred widths from the mean value but they are
not necessarily symmetric around this value. This study shows
that the Tikhonov and PP-TSVD methods with the GCV crite-
rion are the most reliable for estimating the width in the most
realistic case. They lead, respectively to an over-estimation and
under-estimation of the width of about 0.01R� at the maxi-
mum for initial widths between 0.03R� and 0.11R�. In that
range, the standard deviation obtained for 500 realizations of
input errors is around 0.02R� for Tikhonov method and much
larger (up to 0.05R� for w = 0.11R�) for PP-TSVD method
which then appears to be well adapted only to infer very sharp
transitions. Let ωi represent the widths deduced from Nr hypo-
thetical (non-observed) realizations of the unknown true width
ω̂. In the Monte-Carlo method we suppose that we can approxi-
mate the distribution of (ω̂−ωi, i = 1, ..Nr) by the distribution
of (ωo− ω̃i, i = 1, Nr) where ωo is the width deduced from the
observed dataset and ω̃i are the widths deduced from datasets
built by setting ω̂ = ωo in the model. As we can not insure thatωo
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Fig. 9. Equatorial tachocline profiles obtained from LOWL data by
PP-TSVD (triangles) and Tikhonov (squares) methods with GCV cri-
terion. Error bars represent the 1σ errors estimated on the solution by
assuming the linearity of the inversions. The full and dashed curves
represent respectively the fit of the PP-TSVD and Tikhonov solutions
by an erf -function between 0.4 and 0.8R�.

is very close to ω̂, the underlying assumption is that, in the range
of uncertainty concerning ω̂ (say 0.03 − 0.11R�), the way in
which errors propagate through the inverse process does not vary
rapidly (see e.g. Press et al. 1992). The fact that, in Fig. 8, error
bars grow rapidly with the initial width for PP-TSVD method
makes difficult the use of the Monte-Carlo results for estimating
the statistical behavior of this method. There are nevertheless
two factors that may introduce bias in these estimations of the
errors on the inferred widths. First, the existing correlations
between the inferred rotation values obtained at two different
radius are not taken into account in the fit of the solution by
an erf -function. Secondly, for the PP-TSVD method, the non-
linearity of the method is not taken into account in the estimation
of the propagation of noise through the inverse process. Making
the fit in the right way, i.e. taking into account correlations, may
lead to a lower dispersion of the results and then our estimation
of the error on the inferred widths may be over-estimated. Nev-
ertheless, the effects of these two approximations are not easy
to estimate a priori and need a more complete analysis in future
work.

5. Results for LOWL data

This section gives the results obtained from the two years
(2/26/94-2/25/96) observations by the LOWL instrument in
Hawaii (Tomczyk et al. 1995; Corbard et al. 1997). These data
contain 1102 modes with degrees up to l = 99 and frequen-
cies between 1200 and 3500 µHz. For each mode (n, l), in-
dividual splittings are given by, at best, five a-coefficients of
their expansion on orthogonal polynomials defined by Schou
et al. (1994). For this work, we assume that the previous sim-
ulations provide an estimation of the bias introduced by the
methods and we use these values in order to correct the inferred

Fig. 10a–d. Variation of the inferred parameters Ω̄0, Ω̄1, r̄c, w̄ and
w̄c as a function of the logarithm of the regularization parameter for
the Tikhonov inversion of LOWL data. Graph markers have the same
meaning as in Fig. 1. The L-curve choice of w̄ is outside the plot on
panel d.

tachocline parameters. This supposes the closeness of the model
used in the simulation to the reality and a good estimation of
the errors in the data. Furthermore, we use the sum of odd a-
coefficients as a first approximation for the sectoral splittings
i.e. ∆νnll ' anl1 + anl3 + anl5 . This approximation is exact for all
the rotation laws such that anl2j+1 = 0 ∀ j > 2 (which is the case
for the rotation laws Eq. 4 used in our model). When this is not
the case the latitudinal kernel associated to anl1 + anl3 + anl5 is
less peaked at the equator than the one associated to the sectoral
splittings (i.e. P l

l (cos θ)2 sin θ, see Sect. 2) and thus Ω̂1 repre-
sents a latitudinal average of the rotation in a larger domain
around the equator. However the kernel associated to the sum
of three a-coefficients is less l-dependent.

Results obtained by the three methods are summarized in
Table 1. They are in very good agreement for the location of the
tachocline and the mean values of the rotation rate in the radia-
tive interior and convection zone but more dispersive concern-
ing the determination of the width. The tests discussed above
have shown that this may be related to the level of noise con-
tained in the data. The equatorial tachocline profiles obtained
by Tikhonov and PP-TSVD methods with GCV criterion are
shown in Fig. 9. According to the previous sections, we use
the GCV choice in order to infer the location and the width of
the equatorial tachocline. Nevertheless, for Ω0 and Ω1 the L-
curve choices may be useful in order to see the amplitude of the
variation of the inferred parameters against the regularization
parameter. The errors cited in this table are just the result of
the fit of the solution by the erf -function. The variation of the
inferred erf parameters against the regularization, as shown by
Fig. 10 for the Tikhonov method, and the previous Monte-Carlo
simulations can help us to estimate error bars that may be more
realistic.
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Table 1. Inferred erf -parameters obtained from LOWL data. The L-curve criterion has not been used for methods with discrete truncation
parameters.

Methods Ω̄0 (nHz) Ω̄1 (nHz) r̄c/R� w̄(c)/R�

GCV L-curve GCV L-curve GCV GCV

Tikhonov 429.3± 0.5 427.9± 0.3 457.7± 0.3 460.4± 0.4 0.693± 0.002 0.067± 0.010
MTSVD 429.4± 0.7 - 457.0± 0.5 - 0.693± 0.003 0.062± 0.009
PP-TSVD 429.6± 0.2 - 456.4± 0.3 - 0.693± 0.009 0.031± 0.017

Fig. 10a shows that the evaluation of the mean value of the
rotation rate in the radiative interior (Ω̂0) is not much sensitive
to the regularization. Nevertheless, we have shown in Sect. 4.1
that this parameter tends to be systematically under-estimated
of about 4 nHz because of the influence of the latitudinal varia-
tion of the rotation in the convection zone on the low l sectoral
splittings. For the sum anl1 + anl3 + anl5 the latitudinal kernel is
less l-dependent so that this systematic offset may be smaller
than 4 nHz. We take this effect into account by increasing the
estimation of the error and our final interval for this parameter
becomes: 427.5 ≤ Ω̂0 ≤ 434.5 nHz. The mean value of the
equatorial rotation rate in the convection zone is less subject
to systematic errors but may be under-estimated by the GCV
choice (cf. Figs. 2b, 4b, 5). The difference between the GCV
choice and the L-curve choice is about 3 nHz on Fig. 10. Thus
we estimate that Ω̂1 = 459.0 ± 1.5 nHz. We note that we do
not attempt to use the points of the solution found under 0.4R�
or above 0.8R� (cf. Fig. 9). Therefore Ω̂1 does not take into
account the eventual rapid variation of the rotation near the sur-
face or at 0.9R� (Antia et al. 1996) and Ω̂0 is not sensitive to
the core rotation. The ratio q = Ω̂0/Ω̂1 obtained from helioseis-
mic data is an important test for the theories of the tachocline
dynamics. Spiegel and Zahn’s (1992) theory leads to q = 0.90
whereas Gough’s (1985) one leads to q = 0.96. Our results give
0.93 < q < 0.95 which is intermediate between the two theo-
retical estimates. Similar results have already been pointed out
by Gough & Sekii (1997).

For the estimation of r̂c, we find in Fig. 10 that the L-curve
criterion leads to a lower value than the GCV criterion as we
had found in Fig. 2. As discussed in Sect. 4.1, we think that the
GCV choice is more reliable but may lead to an under-estimation
of about 0.002R�. Therefore our final estimation for the loca-
tion of the center of the tachocline in the equatorial plane is:
r̂c = 0.695± 0.005R�. This value, estimated in the equatorial
plane, is intermediate between the two values previously ob-
tained by forward methods (cf. Table 2). We note however that
whereas our work just look for the equatorial component of the
tachocline, the previous works assume that the solar tachocline
presents the same profile at any latitude. This may lead to bias
if, as suggested by Charbonneau et al. (1997) from LOWL data,
the tachocline is prolate i.e. is located deeper at the equator than
at higher latitudes.

The tests discussed in the previous sections show that the L-
curve choice is not reliable for the estimation of the width and

suggest three ways for estimating the width of the tachocline
from GCV criterion:

First, the true value is supposed to lie between the MTSVD
and PP-TSVD estimations. That gives 0.031R� ≤ ŵ ≤
0.062R�.

Secondly, for the Tikhonov method, since the error bars have
roughly of the same amplitude in the whole range 0.03−0.11R�
of initial widths (Fig. 8) , we can use the Monte-Carlo simula-
tion. Near w = 0.07R� (the inferred value reported in Table 1
being w̄ = 0.067), Fig. 8 shows that the Tikhonov method leads
in mean to a systematic over-estimation of about 0.005R� with
a 68.3% confidence interval around ±0.02R�. Thus we obtain
by this way ŵ ' 0.062± 0.020R�.

Thirdly, the PP-TSVD method is though to produce, in
mean, an under-estimation of the width of about 0.01R� but
with a larger dispersion of the results for the large widths so that
we are not allowed to use straightforwardly our Monte-Carlo
simulation. The 68.3% confidence intervals plotted in Fig. 8 in-
dicate that the PP-TSVD method can lead to an inferred width
around 0.03R� (which is the value obtained from LOWL data)
for initial widths up to 0.08R�. Therefore the interpretation of
the result obtained by this method is not easy. This may indicate
that the method is better suited to the search of transition zones
known a priori to be very thin (searching for a width lower than
0.05R� for example). Nevertheless, all the above discussions
indicate 0.020 ≤ ŵ ≤ 0.070R� as a reasonable interval for the
true width, deduced from PP-TSVD method.

All these approaches are globally consistent but lead to a
relatively large dispersion of the results. Therefore our final
estimation of the width of the solar tachocline in the equatorial
plane is: ŵ = 0.05 ± 0.03R�. This estimation is in very good
agreement with the result obtained by Charbonneau et al. (1997)
and remains compatible with the value given by Kosovichev
(1996) (cf. Table 2).

6. Conclusions

This work presents an analysis of the determination of the char-
acteristics of the tachocline at the equator by three different in-
verse methods. They are applied to the inversion of the splittings
of the sectoral modes estimated as the sum of the three first odd
coefficients of the expansion of the splittings in orthogonal poly-
nomials defined by Schou et al. (1994). Two different choices of
regularization parameters, the GCV and L-curve criteria, have
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Table 2. Comparison of our results with previous forward analysis.
Charbonneau et al. (1997) and our work are for the same LOWL dataset
(2/26/94-2/25/96) whereas Kosovichev (1996) has used the 1986-90
BBSO datasets.

r̂c/R� ŵ/R�

This work 0.695± 0.005 0.05 ± 0.03
Charbonneau et al. 0.704± 0.003 0.050± 0.012
Kosovichev 0.692± 0.005 0.09 ± 0.04

been compared. Tests with artificial rotation laws have shown
that in all cases the GCV criterion is less sensitive to the er-
ror level than the L-curve one and gives better results with low
bias and dispersions in the range 0.03 − 0.011R� of searched
widths. This choice of the GCV criterion is in agreement with
Barett (1993) and Thompson(1992) in another context. Hansen
(1992) has shown that the GCV criterion is less adapted to highly
correlated errors than the L-curve one. Our work may indicate
in turn that we can neglect, as it has been done, the unknown
correlation in LOWL data.

Concerning the thickness of the tachocline, it appears that
the MTSVD and PP-TSVD inversions give respectively an up-
per and lower estimate while the Tikhonov method corrected by
deconvolution gives the most reliable determination. We have
estimated the systematic effect of the latitudinal dependence of
the rotation in the convection zone on the determination of the
thickness of the tachocline and the rotation in the radiative inte-
rior. We have shown how the performance of the methods will
be improved by lowering the level of noise in the data.

The methods have been applied to the LOWL two years
dataset leading to an estimation of the position r̂c = 0.695 ±
0.005R� and the thickness ŵ = 0.05±0.03R� of the equatorial
tachocline. In addition, we have obtained an estimation of the
equatorial rotation Ω̂0 below the convection zone and above
0.4R� such that: 427.5 ≤ Ω̂0 ≤ 434.5 nHz and Ω̂1 from the
top of the convection zone up to 0.8R� such that Ω̂1 = 459.0±
1.5 nHz. Assuming that the rotation in the radiative interior
is independent of latitude, this leads to a ratio Ω̂0/Ω̂1 between
0.93 and 0.95 which is intermediate between the two theoretical
predictions.

Our results for the location and thickness of the equatorial
tachocline are in agreement with the forward analysis of Char-
bonneau et al. (1997) and with those of Basu applied on BBSO
and GONG datasets (Basu 1997) using a different parameter-
ization of the tachocline. The forward analysis can be viewed
as non-linear least-squares methods (least-squares methods be-
cause of the use of the χ2 criterion and non linear because of the
models used for the rotation profile) but using only a very few
number of parameters (Charbonneau et al. (1997) use six pa-
rameters, Basu (1997) three and Kosovichev (1996) only two).
This kind of methods depend thus strongly on our knowledge
of the global rotation profile which can be reached only by in-
version techniques. In particular, in the above-cited works the
latitudinal dependence of the rotation is fixed (as in 1.5D inver-

sions). In this work, we have tried to investigate the amount of
informations about the tachocline that we can extract directly
from the global inversions without a-priori knowledge (except
for the regularization) on the rotation profile. There are less as-
sumptions in this approach, and thus the tachocline parameters
may be less constrained. The fact that the two approaches lead
to similar results indicates in turn that the hypothesis used in
the forward analysis are probably not too strong and are well
adapted to the problem of inferring the tachocline from actual
data.

One of the interest of this work was our first attempt to use
an inverse method with non-linear regularization in helioseismic
case. The PP-TSVD method leads to a very large dispersion of
the results for widths above 0.05R� and then is difficult to
interpret with actual data. Some efforts, in future work, should
be useful to improve this kind of methods and the interpretation
of their results taking into account their non-linearity.
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Appendix A: details of the three inverse methods used

We discretize Eq. (2) by:

W = RΩ (A1)

where we have defined:

W ≡ (Wi)i=1,N Wi = ∆νnll + δνnll, i ≡ (n, l), (A2)

N being the number of modes (n, l) (N = 1102 for LOWL data)
and δνnll a normally distributed noise with a standard deviation
defined in Eq. (5). We search the solution Ω̄(r) as a piecewise
linear function of the radius by setting:

Ω̄(r) =
Np∑
p=1

ωpϕp(r) Ω ≡ (ωp)p=1,Np (A3)

where ϕp(r), p = 1, Np are piecewise straight lines (Np = 50 in
this work) such that:

∀p = 1..Np, ∃ rp ∈ [0., 1.] / Ω̄(rp) = ωp (A4)

where rp, p = 1..Np are fixed break points distributed according
to the density of turning points of modes (Corbard et al., 1997).
The matrixR is then defined by:

R ≡ (Rip) i=1,N
p=1,Np

Rip =
∫

Knl(r)ϕp(r)dr (A5)

For all the inverse methods discussed in this work, the aim
is to find a solution that is able to produce a good fit of the data
in chi-square sense. Unfortunately, the solution of this prob-
lem is not unique and allows oscillatory solutions that are not
physically acceptable. So, we have to define a quantity that mea-
sures the smoothness of the solution and to insure that the final
solution is sufficiently smooth to be acceptable.
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For any solution Ω, we define the χ2 value by:

χ2(Ω) = ‖P (RΩ−W )‖2
2 (A6)

where P = diag(1/σnl) and we define two measures of the
smoothness of the solution Ω by:

βi(Ω) = ‖LΩ‖i, i = 1, 2 (A7)

where the vector i-norms ‖.‖i are defined by ‖x‖i =
(
∑

p |xp|i)1/i and L is a discrete approximation of the first
derivative operator such that:

β1 ∝
∫ ∣∣∣∣∂Ω(r)

∂r

∣∣∣∣ dr β2
2 ∝

∫ (
∂Ω(r)
∂r

)2

dr (A8)

A.1. Tikhonov solution

The so called Tikhonov solution Ωλ solves the problem:

min
Ω

(χ2(Ω) + λβ2
2 (Ω)), (A9)

where λ > 0 is the continuous regularization parameter. In
order to compare this method to the two other ones, it may
be interesting to reformulate the problem as follow: For any λ
we can show that there exist a value α(λ) for which Ωλ is the
solution of the problem:

min
Ω∈Sλ

β2(Ω); Sλ = {Ω / ‖P (RΩ−W )‖2 ≤ α(λ)} (A10)

The computation of these solutions for different regularization
parameters have been carried out by using a generalized sin-
gular value decomposition of the pair (R,L) as explained and
discussed extensively in Christensen-Dalsgaard et al. (1993).

A.2. MTSVD and PP-TSVD solutions

These methods are based on the SVD of theN ×Np (N > Np)
matrixR which can be written:

R =
r∑
i=1

uiΛiv
>
i (A11)

where r ≤ Np is the rank of R. The singular vectors are or-
thonormal, u>i uj = v>i vj = δij for i, j = 1, r, and the sin-
gular values Λi are such that: Λ1 ≥ Λ2 ≥ ... ≥ Λr > 0,
Λr+1, ..,ΛNp = 0.We then define the the TSVD ofR as the ma-
trixRk built from Eq. (A11) but neglecting theNp−k smallest
singular values.

Rk =
k∑
i=1

uiΛiv
>
i (A12)

The integer k < r is called the truncation parameter. It acts
as a regularization parameter by eliminating the oscillatory be-
havior of the singular vectors associated with the smallest sin-
gular values. According to Eq. (A12), the rank of the matrix

Rk is k < r and then the problem of minimizing the quan-
tity ‖P (RkΩ−W )‖2 has not an unique solution and we have
to use our smoothness criteria to select a physically acceptable
solution among the set of solutions defined by:

Sk = {Ω / ‖P (RkΩ−W )‖2 = minimum} (A13)

With these notations, the so-called MTSVD solution Ωm
k is de-

fined by:

Ωm
k = arg min

Ω∈Sk
β2(Ω) (A14)

whereas the so-called PP-TSVD solution Ωp
k is defined by:

Ωp
k = arg min

Ω∈Sk
β1(Ω) (A15)

The algorithms for computing these solutions are presented in
Hansen et al. (1992) and Hansen & Mosegaard (1996) respec-
tively.

We just recall some important properties of the PP-TSVD
solution: For any k < r the vector LΩp

k has at the most k − 1
non zero elements. As the matrixL is a discrete approximation
of the first derivative, this means that the solution vector Ωp

k

consists on kb ≤ k constant blocks. From Eq. (A3) it follows
that the inferred rotation Ω̄(r) itself is obtained as a piecewise
constant functions with a maximum of k pieces. The kb − 1
break points of this solution are selected by the procedure among
the Np initials break points rp. Therefore this inversion is able
to produce a discontinuous solution without fixing a-priori the
location of the discontinuity. Finally, we note that the solution
Ωp
k obtained by this non-linear method can always be computed

by applying a matrix H , to the data but this matrix is also a
function of the data i.e.H = H(W ). Thus we have:

Ωp
k = H(W )W . (A16)
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