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Abstract. Surface and space distributions of samples of super-
clusters of galaxies in the catalog of superclusters of Kalinkov &
Kuneva (1995) – Paper I, is investigated. Galactic latitude selec-
tion and declination selection functions are found. The wavelet
transform technique is used for the surface distribution. It is es-
tablished that the structures of superclusters with highest density
are in fact noise fluctuations. Gaussian smoothing and filtering
is also used with the same result. Space distribution is presented
and distance selection functions are estimated. We have found
that the voids among superclusters of galaxies follow Poisson
distributions in the 2D as well as in the 3D case. Two-point space
correlation functions do not differ significantly from zero, but
the crosscorrelation functions supercluster-cluster are well de-
fined. Attempts are made to verify the conclusions. The main
result is that superclusters located in galactic polar caps for the
distance interval 100 ≤ Rh−1 Mpc ≤ 627 are distributed ran-
domly. There are no structures consisting of superclusters of
galaxies.

Key words: (cosmology:) large-scale structure of Universe –
galaxies: clusters: general – methods: statistical

1. Introduction

The space distribution of galaxies reveals the existence of a large
diversity of structures – pairs, multiplets and groups, also loose
and rich, compact and open clusters, as well as filaments, chains,
sheets, walls, likewise voids (at least among galaxies and clus-
ters). From the observational point of view, a current paradigm
is that the superclusters of galaxies are the highest order of clus-
tering, although some assumptions of huge structures have been
made – Batuski & Burns (1985a,b), Tully (1987), Chamaraux
et al. (1990), despite that there is no definitive evidence for such
structures (e.g. Postman et al. 1989).
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It is not clear now what is the distribution of the super-
clusters. The distance and galactic selection functions are also
unknown. The reason is the small number of superclusters in
the existing lists and catalogs (Rood 1976, Murray et al. 1978,
Karachentsev & Shcherbanovski 1978, Thuan 1980, Kalinkov
et al. 1983, Bahcall & Soneira 1984, Batuski & Burns 1985a,
West 1989, Postman et al. 1992, Zucca et al. 1993, Einasto et al.
1994), insufficient to draw any conclusion. Only the last catalog
of Einasto et al. (1997) contains 220 superclusters.

The study of the surface and space distribution of the super-
clusters is the main motivation for this paper, which is the second
in a series. The first one (Kalinkov & Kuneva 1995, hereafter
KK) contains the largest catalog of superclusters found among
A- and ACO-clusters of galaxies (Abell 1958, Abell et al. 1989)
with superclusters defined for local density enhancements f =
10, 20, 40, 100, 200 and 400.

The second motivation is connected with the existence of a
transition scale to an isotropic and homogeneous Universe. The
power spectrum P (k) ∝ kn, where k is the wavenumber, gives
an idea for the distribution of galaxies and clusters of galaxies
as a function of scale. The spectral index is −2 < n < −1 for
a few tens of Mpc (e.g. Peacock 1991, Peacock & Nicholson
1991). When the scale increases, the spectrum flattens (Peacock
& West 1992, Vogeley et al. 1992, Vogeley 1995, Fisher et al.
1993). The transition from negative to positive spectral index is
somewhere between 100 and 400 h−1 Mpc. Einasto & Gramann
(1993) give for the correlation transition scale 130 ± 10h−1

Mpc, while the spectral transition scale is 175 ± 15h−1 Mpc.
This is in accordance with the detection of fluctuations of the
cosmic microwave background radiation on scales about 1000
h−1 Mpc, consistent with the Harrison-Zeldovich spectrum of
perturbations with n = 1 (Smooth et al. 1992). Is there any
transition scale for superclusters?

Sect. 2 concerns the redshift estimates used for the A-
clusters without any measured redshift. The surface distribution
of the superclusters is studied in Sect. 3, where galactic latitude
selection and declination selection functions are found, while
the space distribution is examined in Sect. 4, where distance- de-
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pendent densities, connected with distance selection functions
are given.

In Sect. 5, existence of voids among superclusters of galax-
ies is investigated. Estimates of the 2-point space correlation
function of superclusters are presented in Sect. 6. The reliabil-
ity of the conclusions is studied in Sect. 7.

The third paper in the series will examine the kinematics
and dynamics of superclusters – elongation, shape, radii and
crossing times, mass and statistics of their characteristics.

All cosmologically-dependent values are given for H0 =
100 km s−1Mpc−1 and q0 = 0.5. Luminosity distance is used.
Note that some authors use proper motion or parallax distance.

2. Redshift estimates for clusters of galaxies

The distances to most of the clusters used in KK are not mea-
sured but estimated. The necessary formulae for multiple re-
gression redshift estimates are given by Kalinkov et al. (1994).
Some considerations for uncertainty of the distance estimates
are presented by Kalinkov & Kuneva (1995).

Here we adduce some figures to afford an opportunity for
comparison between measured and estimated redshift.

Our attempts to find common acceptable multiple regres-
sions for “northern” clusters from Abell (1958) catalog, A1 –
A2712, as well as for “southern” (Abell et al. 1989), A2713
– A4076, failed. Moreover, different cluster characteristics re-
quire various regressions.

Northern clusters. Fig. 1 is the Hubble diagram for the tenth-
rank galaxies (n = 961 clusters) and for the first-rank galaxies.
Diagrams (ẑ, z) and (ẑ − z, z) where ẑ is the redshift estimate
are given in Fig. 2. Apparently ẑ to z correspondence is linear
up to z ≈ 0.2.

Southern clusters. Other multiple regressions lead to dia-
grams (ẑ, z) and (ẑ − z, r) for n = 186 clusters, presented in
Fig. 3.

Finally, the multiple regression redshift estimates are consis-
tent for northern clusters, but the estimates for southern clusters
should be treated with caution.

3. Surface distribution of superclusters

The first surface presentation of the groups of clusters of galaxies
found by Rood (1976) is given by him (Rood 1979). A more
refined surface distribution of superclusters, defined at various
density enhancements from a complete sample of Abell clusters
is examined by Bahcall & Soneira (1984). Up to now there are
no definitive conclusions for the 2D distribution of superclusters
of galaxies.

We have studied some samples from the KK catalog of su-
perclusters in the distance range 100 ≤ RMpc ≤ 627. The
sample, including superclusters having multiplicity ν = 2 from
the entire catalog, are denoted in Table 1, where sample sizes
are given. Designations 2 and 3 indicate multiplicity ν ≥ 2 and
ν ≥ 3 respectively; N and S stand for north and south polar
cap, and 30 and 40 are the low limits of the galactic latitude
(degrees). Thus 3N30 means the samples consisting of all su-

Table 1. Sample sizes of superclusters in distance interval
100 ≤ R Mpc ≤ 627

Density contrast
Sample 10 20 40 100 200 400

2N30 292 319 295 237 179 132
2S30 350 377 334 239 183 134
2N30z 124 131 130 104 84 58
2S30z 105 103 90 71 57 40
2N40 230 242 229 186 143 105
2S40 302 320 284 204 155 113
2N40z 101 104 104 84 71 47
2S40z 87 85 73 60 48 33
3N30 126 94 68 38 20 11
3S30 131 95 65 31 16 10
3N30z 64 49 38 21 13 5
3S30z 49 30 17 8 2 1
3N40 102 75 53 26 13 6
3S40 113 83 53 25 11 6
3N40z 52 40 29 13 9 3
3S40z 41 29 14 7 2 1

perclusters having ν ≥ 3 and b ≥ +30◦, disregarding whether
the distance to a member cluster is defined from measured or
estimated redshift. In the other case, the 3N30z sample consists
of those superclusters which have at least one cluster member
at the lowest density enhancement with measured redshift. All
superclusters with member clusters having estimated redshift
only are disregarded. When needed the density enhancement is
added as an extension – 3N30.100.

We regard samples 3N30 and 3S30 as the most represen-
tative ones, especially to search for a dependence on galactic
latitude. The problem of the galactic latitude selection func-
tion for superclusters is untouched for the small sample sizes of
previous catalogs.

Dividing the galactic caps |b| ≥ 30◦ into belts (bins) defined
by parallels and denoting withn0 the number of superclusters in
any belt and with nr – the corresponding number of randomly
distributed points, we have

K =
n0

nr
= dex

[
α
(
1− cosec|b|) + β

]
. (1)

We have experimented with 3, 4, 5 and 6 equal area belts
as well as in (non-equal area) belts with equal numbers of su-
perclusters. The results are more stable when equal area belts
are used, and there is no need to generate random objects in this
case. Thus, the linear regression is

logK = α
(
1− cosec|b|) + β, (2)

whereα is the parameter representing the galactic absorption. In
fact, α, β and their errors vary strongly with the number of bins.
We have computed many regressions and chosen those which
have the smallest standard deviation of the regression and the
highest correlation coefficient r between “observed” and fitted
values of logK.
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Fig. 1. Hubble diagram for northern
(Abell) clusters of galaxies: left panel
for tenth, right panel for first-ranked
galaxy

Fig. 2. Relations between estimated ẑ
and measured z redshift for northern
clusters: diagrams (ẑ, z) and (ẑ − z, z)

Fig. 3. Southern (ACO) clusters of
galaxies: diagrams (ẑ, z) and (ẑ− z, z)

The results for samples 3N30, 3N30z, 3S30 and 3S30z are
presented in Table 2, which contains the density enhancement
f , fitting parameters α and β together with their standard devi-
ations, the correlation coefficient r, st. dev. of the regression s
and the number of bins.

For sample 3N30.10 of superclusters, we have α = 0.45 ±
0.04. According to Bahcall & Soneira (1983), this coefficient
for northern clusters is 0.3. Postman et al. (1992) worked with
α = 0.32 for A-clusters with m10 ≤ 16.5. Romani & Maoz
(1992) found a larger coefficient, namely 0.53 for the Abell
statistical sample.

We have estimated α for northern clusters (n = 1055 with
richness group R ≥ 1) from the Abell statistical sample and

found α = 0.32 ± 0.14 (just the Bahcall & Soneira value!),
r = 0.79 and s = 0.08. But for all clusters having b ≥ 30◦, n =
1719, we get α = 0.26± 0.05, r = 0.97, s = 0.02.

For sample 3S30.10, the coefficient is α = 0.72 ± 0.02.
Bahcall et al. (1988) and Batuski et al. (1989) defined α = 0.2
for the southern clusters of galaxies. But keeping in mind that
our supercluster catalog is based on Abell and ACO clusters
of galaxies, we have estimated α for all clusters having b ≤
−30◦ (n = 1893). The result is α = 0.52 ± 0.02 with r = 1.0
and s = 0.01.

The galactic latitude selection is stronger for superclusters
than for clusters of galaxies. It seems that galactic absorption
influences southern superclusters more than northern ones.
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Table 2. Galactic latitude selections

Sample f α ∆α β ∆β r s Bins
3N30 10 0.45 0.04 0.16 0.02 0.99 0.02 3

20 0.49 0.04 0.17 0.02 0.99 0.02 4

3N30z 10 0.43 0.07 0.15 0.03 0.97 0.04 4
20 0.53 0.11 0.18 0.05 0.98 0.05 3

3S30 10 0.72 0.02 0.24 0.01 1.00 0.01 3
20 0.56 0.07 0.19 0.03 0.99 0.03 3

3S30z 10 0.70 0.09 0.23 0.04 0.99 0.04 3
20 1.53 0.31 0.44 0.14 0.98 0.14 3

Therefore the galactic latitude selection function for north-
ern and southern superclusters is

P (b) = 10α(1−cosec|b|) (3)

with α = 0.47 and 0.64 for north and south, respectively (aver-
aged for f = 10 and 20). We give the results for samples 3N30z
and 3S30z only for comparison. They are not so reliable (in this
case!), as the sample size is smaller. Nevertheless, they show
that samples with and without measured z do not differ signif-
icantly (with the exception of 3S30z.20 where the sample size
is only 30).

Another selection effect is recognized by Olowin et al.
(1987) – dependence on declination. According to Bahcall et
al. (1988) and Batuski et al. (1989), the declination selection is
very clearly pronounced for ACO-clusters. For −75◦ < δ <
−20◦, they found P (δ) = 100.6(cos |δ|−1), while for the northern
hemisphere of the Abell sample P (δ) = 0.675 + 0.0112δ for
−27◦ < δ < 24◦ and P (δ) = 1 for 24◦ < δ < 90◦. The total
Abell sample shows no significant declination dependence.

Postman et al. (1992) did not find any declination selection
for the A-clusters with m10 ≤ 16.5. A declination bias for
fainter clusters from the ACO catalog is more evident.

In our case, to study the declination effect, we have the
difficulty of having some A- and ACO-clusters in one and the
same supercluster.

We have applied the idea of Scaramella et al. (1991b) and
found

K ′ =
n0

nr
= 10α

′(1−sec ζ)+β′
, (4)

where ζ = |ϕ−δ|withϕ – the latitude of the observatory where
plates are taken.

Our results show no declination selection for sample
3N30.10, where members of superclusters are presumably A-
clusters. When 5 superclusters containing ACO-clusters are ex-
cluded K ′ ≈ 1 again. However there is an excess of 25% of
observed over random superclusters for 0◦ < ζ < 10◦.

For sample 3S30.10, no declination selection is found when
all superclusters are used. But for 59 superclusters with only
ACO-clusters, we got α′ = 1.99 ± 0.11, β′ = 0.31 ± 0.2, r =
1.00 and s = 0.03 for 3 bins. There are 60 superclusters with
only A-clusters as members. The corresponding K ′ ≈ 1.

We conclude that superclusters with A-clusters only are
not subject to declination selection. Contrarily, for the ACO-
superclusters there is strong declination selection. This confirms
the result of Batuski et al. (1989) for ACO-clusters.

The search for declination selection is made with mock cat-
alogs generated with our galactic latitude selections P (b), using
the rejection method (Press et al. 1992).

The apparent distribution of superclusters (circles) for sam-
ples 3N30.10 and 3S30.10 is presented in Fig. 4. The centers
are the galactic poles and the outside circles are at |b| = 30◦.
Galactic latitude, right ascension and declination are also de-
noted. This is the equal area azimuthal Lambert projection. In
such a projection Lambert coordinates could be defined:

x = 2 sin l sin
[(

90◦ − |b|) /2
]

y = 2 cos l sin
[(

90◦ − |b|) /2
] (5)

with polar distance r = 2 sin
[(

90◦ − |b|) /2
]
. We use this pro-

jection to study the apparent distribution of superclusters in
more detail.

We generated a grid in Lambert coordinates so that the grid
is inscribed to the parallel |b| = 30◦. Thus −√2/2 ≤ x, y ≤√

2/2. The orientation of the axes with respect to galactic coor-
dinates is given in Figs. 5–6. The circle indicate |b| = 60◦, while
0◦ and 90◦ refer to galactic longitude.

Now it is simple to apply the wavelet transform introduced
by Morlet (Gaupllaud et al. 1984). The wavelet analysis is de-
scribed in detail for investigation of clustering and subclustering
of galaxies elsewhere, e.g. Slezak et al. (1990, 1993, 1994), Es-
calera & Mazure (1992), Escalera et al. (1992), Grebenev et al.
(1995), Escalera & MacGillivray (1995, 1996), Biviano et al.
(1996). That is why we present no formulae here. It is enough to
say that we use a Mexican hat on a grid of 64× 64 with a com-
plete set of scales a, 2a, 4a, 6a, . . . 16a. An elementary cell of
the grid is 1.266◦×1.266◦ = 1.6ut◦. Thus we have computed 9
images of the wavelet coefficients for each sample investigated.
In our case, when galactic latitude selection is established, it is
impossible to use any periodic boundary conditions. We hope
the edge effects do not substantially alter our results.

The wavelet image at 16a = 20.2◦ for sample 3N30.10 is
presented in Fig. 5. Dotted lines show negative wavelet coef-
ficients. It is evident that the highest isolines of the wavelet
coefficients are not centered on the NGP. There are two factors
influencing isoline positions – a deficiency of clusters of galax-
ies in the second quadrant (hence deficiency of superclusters)
and an excess of clusters (and excess of superclusters) in the
fourth quadrant. However more discussion is needed.

Abell (1958) remarked that there is a significant shortage of
clusters of galaxies around l ≈ 330◦ up to latitude 60◦, indi-
cating the presence of considerable galactic obscuration. Shane
& Wirtanen (1954) obtained low galaxy counts (cf. Shane &
Wirtanen 1967) in this region. Concerning the fourth quadrant,
Bahcall & Soneira (1982) found a void in the distribution of
nearby (distant groups D ≤ 4), rich (R ≥ 1) Abell clus-
ters. The void extends to (∼ 300) × (>∼ 60) × (∼ 150) Mpc3.
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Fig. 4. Distribution of superclusters on equal area projection. The outside circle is for |b| = 30◦. Galactic longitudes, RA and DEC are denoted:
left panel for 3N30.10, right panel for 3S30.10

Fig. 5. Wavelet images. Dotted lines show negative wavelet coefficients: left panel for 3N30.10 at 16a = 20.2◦, right panel at 8a = 10.1◦

In this region, a huge concentration of distant Abell clusters is
found, which coincides with a similar one of Zwicky clusters
(Kalinkov 1977). According to the map of Holmberg (1974),
his Fig. 3, for deviations from a standard galactic absorption
law with α = 0.25, there is an exceptionally low absorption. In
the light of the study of Nichol & Connoly (1996), based on
the HI radio map of Stark et al. (1992), it “is extremely difficult
to separate extinction-induced clustering from real large-scale
structure”.

The wavelet image for 3N30.10 at 8a = 10.1◦ is given in
Fig. 5. Fig. 6 contains images for 3S30.10 at 16a = 20.2◦ and
8a = 10.1◦, respectively. The highest apparent density of the
south superclusters is more or less close to the SGP.

The presence of an apparent superstructuring in Figs. 5–6 re-
quires a discussion of the question whether they are significant.
That is why we have to test the significance of maxima of the

wavelet coefficients. Two methods were proposed – by Slezak et
al. (1990) and by Escalera & Mazure (1992). We use a method
closely resembling that of Escalera & Mazure (1992). We gen-
erate 3000 simulated “random” supercluster catalogs with the
corresponding galactic latitude selection functions, while lon-
gitudes are randomly distributed. (We did not find any signif-
icant difference using randomly distributed longitudes or ran-
domly drawing out longitudes from the “real” catalog – boot-
strap method). Of course, the number of superclusters in mock
catalogs is equal to the number of real superclusters. We com-
puted wavelet coefficients for each simulation and counted the
number of cases Nest when max csim > max csample. Thus the
probability P that the highest wavelet coefficients in the real
fields are fluctuations is

P = Nest/3000. (6)
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Fig. 6. Wavelet images for sample 3S30.10: left panel at 16a = 20.2◦, right panel at 8a = 10.1◦

Fig. 7. Responses of smoothing and unnormalized filtering functions

The difference between the procedure of Escalera & Mazure
(1992) and ours is that we examine only the highest coefficient
in each simulation.

Results for samples 3N30.10 and 3S30.10 are given in Ta-
ble 3. The probabilities are in striking disagreement with those
obtained by Escalera & Mazure (1992) – they have found for a
substructure (in A754) P < 1/3000(!). Table 3 shows that the
configurations responding to the highest density peaks are not
physical groupings, since they often appear in mock catalogs.
This is not a serious argument against any grouping in the exam-
ined fields of superclusters. We were not able to investigate all
single peaks, and therefore some of them could be a real ones,
which do not appear in the simulated catalogs.

Table 3. ProbabilityP that superstructures in Figs. 5–6 are fluctuations

a Probability P
Cells Deg 3N30.10 3S30.10

1 1.27 0.97 0.44
2 2.53 0.83 0.71
4 5.06 0.99 0.81
6 7.60 0.97 0.98
8 10.1 0.95 0.95

10 12.7 0.80 0.85
12 15.2 0.68 0.79
14 17.7 0.57 0.51
16 20.2 0.52 0.19

Another way to present the apparent distribution of super-
clusters of galaxies is to apply simple Gaussian smoothing.
We sketch very briefly the technique, described by Kalinkov
(1973), Kalinkov et al. (1976, 1987) and applied for searching
of sub- and superstructures of galaxies and clusters of galaxies
(Kalinkov 1974, 1976, 1977; Kalinkov et al. 1978, 1987).

Let us circumscribe a square again in Lambert coordinates,
around the parallel |b| = 30◦. We construct a grid 114 × 114
with cells 1.◦27×1.◦27, roughly equal to the cells in the previous
grid 64×64. Using the technique (Kalinkov et al. 1987) to avoid
edge effects, we smooth supercluster fields inside the parallel
|b| = 30◦.

We use Gaussian smoothing functions denoted by [a], [b],
[c], [d], [e] and corresponding filters [a-b], [b-c] . . . [a-c],. . . [a-
e]. These functions are part of a complete set whose responses
are given by Ri(L) = exp

(−2ia/L2
)
, where a = π2/8, while

L = 1/f is the characteristic scale length, and i = 6 for [a],. . . ,
i = 10 for [e]. This means that the principal cell of the smoothing
function contains 0.5 σ for [a], 0.5/

√
2σ for [b],. . . , 0.125σ for

[e], where σ is the standard deviation of the normal distribution
N (0, 1). Fig. 7 presents responses R of smoothing functions
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Table 4. Maximum passing L◦
max of the filters

Filter L◦
max

[a-b] 13.6
[b-c] 19.2
[c-d] 27.8
[d-e] 38.4

[a-c] 16.6
[b-d] 23.5
[c-e] 33.3

[a-d] 20.8
[b-e] 29.4

[a-e] 26.3

[a], [c], [d] and of filters [a-b], [a-c], [a-d], [a-e]. The filters are
not normalized, but their normalization offers no difficulty. Note
that the Nyquist frequency is 1/2 · 1.27◦, so the characteristic
scale length is defined for L ≥ 2.6◦.

Table 4 contains the maximum passing of the filters.
Smoothed and filtered maps are given in Figs. 8–9. The iso-

pleths are in scl/100 ut◦. The squares represent HBW of the
corresponding smoothing functions.

All figures definitely show that the boundary effects are very
small and extend to a few degrees only above |b| = 30◦. In
fact, the method of smoothing and filtering of discrete fields
as described by Kalinkov et al. (1987) is applicable to a broad
spectrum of problems.

It is interesting to compare wavelet with smoothed maps.
Sample 3N30.10. Fig. 5 (right panel) resembles Fig. 8 (left

panel), but Fig. 5 (left panel) is more smoothed than Fig. 8 (right
panel).

The same conclusion can be drawn from the other samples.
The wavelet coefficient maps and smoothed (and filtered)

maps allow to present structures at almost one and the same
way. But as one could see in Figs. 8–9, the smoothing and fil-
tering afford an opportunity to work on one and the same grid
with an exceptionally large variety of responses, which might be
constructed in advance. This means that smoothing and filtering
enables us to search structures at any characteristic scale.

We have smoothed all the samples with sufficient size from
Table 1. There are no significant distinctions between corre-
sponding samples for ν ≥ 2 and ν ≥ 3 for f = 10, but samples
at f = 400 differ from samples at f = 10.

There is a considerable substructuring in all the maps. It is
quite natural to ask whether the highest peaks are real or if they
are fluctuations. This problem may be solved similarly to the
way in which the highest wavelet coefficients are tested. We
simulate 3000 catalogs of superclusters of galaxies following
all selections in the real catalog and count how many times the
maximum density in the smoothed simulated fields exceeds the
corresponding maximum density in the smoothed real field. It
should be mentioned that only the highest density in each field
is counted.

The results for two samples are given in Table 5.

Table 5. Probability that substructures are fluctuations

Smoothed Half-beam Probability P
function width, ut◦ 3N30.10 3S30.10

[b] 57 1.00 0.65
[c] 114 1.00 0.70
[d] 227 0.94 0.60
[e] 454 0.74 0.38

We have to conclude that at least the highest density peaks
among beautiful substructures are real fluctuations. Some of
the substructures may be real configurations but their number,
if any, is not large.

4. Space distribution

Examples of variation of the supercluster space density
D scl Mpc−3 with distance R for |b| ≥ 40◦ are presented in
Figs. 10–11, together with Poisson errors and linear fits. The
linear regression coefficients, corresponding correlation coeffi-
cients and st. dev. of regressions are given in Table 6. Generally
the regression is

logD = a + b R. (7)

Merged samples for both galactic caps are denoted with
(N+S).

The coefficient a defines the supercluster space density D0

at redshift z = 0. Denoting D0 = 10−a whence D/D0 =
dex (−b R), which is connected with the distance selection
function and could be used to generate mock catalogs of su-
perclusters.

Thus D0 = 1.2+0.6
−0.3 · 10−6 scl Mpc−3 for 3N40.10, D0 =

1.2+0.5
−0.4 · 10−5 scl Mpc−3 for 3S40.10, and the mean density

(N+S) is D0 = 4.06 · 10−6 scl Mpc−3.
Correspondingly for f = 20, we have D0 = 1.3 ·10−6, 8.1 ·

10−6 and 3.53 · 10−6scl Mpc−3 for N, S and (N+S).
For f = 40, we have mean density D0 = 1.9 · 10−6 and for

f = 100 – D0 = 8.9 · 10−7scl Mpc−3.
Samples 3(N+S)40 (Fig. 10) demonstrate the decrease ofD0

when density contrast increases. The slope b, however does not
depend on density contrast. A test with sample 3(N+S)40z.10
definitely shows that if we exclude superclusters with members
whose redshift is estimated, then the distance selection will be
stronger. Samples 3N40 and 3S40 (Fig. 11) allows us to estab-
lish the difference between north and south caps. Obviously the
distance selection for the south cap is stronger and the space
density D0 is unrealistically high. Since the number of super-
clusters in the south cap are presumably found among ACO-
clusters of galaxies, one has to conclude that the superclusters
found among A-clusters form a more representative sample.
The mean coefficient < b >= −0.00094 for samples 3N40.10-
40, while < b >= −0.0031 for S samples. The conclusion is
supported by samples 3N40.10 and 3S40.10.

It is curious to look at the space density variation of super-
clusters with multiplicity ν ≥ 2. Keeping in mind the superclus-
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Fig. 8. Smoothed sample 3N30.10. Half-beam widths of smoothing functions are denoted: left panel with [d], right panel with [e]

Fig. 9. Sample 3N30.10, processed with normalized filters. Dotted lines present negative densities: left panel with [c-d], right panel with [a–e]

Fig. 10. Space density of superclusters from sample 3(N+S)40: left panel density enhancement 10, right panel 100
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Fig. 11. Space density of superclusters from samples 3N40 and 3S40: left panel density enhancement 10, right panel 40

Table 6. Linear regressions logD = a + b R

Sample −a ∆a −b.103 ∆b.103 −r s

3(N+S)40.10 5.392 0.045 1.89 0.10 0.99 0.040
3(N+S)40.20 5.452 0.070 2.07 0.16 0.99 0.063
3(N+S)40.40 5.72 0.15 1.82 0.34 0.94 0.13
3(N+S)40.100 6.05 0.16 1.78 0.36 0.93 0.14
3(N+S)40z.10 5.32 0.12 3.02 0.28 0.98 0.11

3N40.10 5.92 0.13 0.72 0.30 0.77 0.12
3S40.10 4.92 0.16 3.20 0.37 0.97 0.14

3N40.20 5.89 0.20 1.12 0.45 0.78 0.18
3S40.20 5.09 0.12 3.06 0.27 0.98 0.11

3N40.40 6.08 0.28 0.98 0.64 0.61 0.25
3S40.40 5.29 0.16 3.07 0.36 0.97 0.14

3N40z.10 5.692 0.096 1.91 0.22 0.97 0.086
3S40z.10 4.82 0.51 4.9 1.3 0.90 0.41

2(N+S)40.10 5.056 0.093 1.81 0.22 0.97 0.083

2N40.10 5.661 0.060 0.52 0.14 0.88 0.054
2S40.10 4.59 0.20 2.97 0.46 0.96 0.18

2N40.400 5.81 0.22 0.92 0.50 0.68 0.20
2S40.400 5.33 0.16 2.05 0.36 0.94 0.14

ter searching procedure, we could assume that many doublets
are illusory superclusters. But this is not the case, since the re-
gression for the sample 2(N+S)40.10 is almost parallel to the
regression for the sample 3(N+S)40.10 (Table 6).

5. Voids among superclusters

Many attempts have been undertaken to define and to charac-
terize voids in the distribution of galaxies and clusters, but there
were not sufficient statistics for superclusters. The KK catalog
gives an opportunity to study the voids among superclusters.

Let us consider the probability that a disk of area A ran-
domly placed on the 2D distribution of superclusters contains
no superclusters. According to White (1979), the 2D void prob-
ability function (VPF), namelyP (ΣA), where Σ is the 2D mean

density, depends on the correlation functions of all orders. It is
easy to show that for a Poisson distribution of points

P (Σ A) = exp (−Σ A) . (8)

The VPF has been the most used statistic for void studies
(e.g. Ostriker & Strassler 1989, Babul & Postman 1990, Mau-
rogordato et al. 1992, Vogeley et al. 1994, Ghina et al. 1996).

We have applied the VPF to some supercluster samples
(Fig. 12). Continuous lines refer to the theoretical VPF, while
squares are the observed VPF with Poisson error. Each square
is a result of 10000 simulations of the supercluster catalogs
obtained by the bootstrap resampling technique. Of course, all
randomly distributed disks intersecting the edge were rejected.

Clearly there are no significant voids in the 2D distribution of
the superclusters. Having in mind that the superclusters are not
points, one would expect even better agreement with a Poisson
distribution.

Therefore, the 2D distribution of the voids among super-
clusters is Poissonian.

Voids in the 3D case, if any, should be named supervoids.
The space distribution of the voids essentially depends on a
decrease of the mean density D of superclusters with distance.
The corresponding VDF is

P (DVr) = exp(−DVr), (9)

where Vr is a sphere of radius r which does not contain any
supercluster, randomly placed among the real superclusters.

Therefore

P (DVr) = exp[dex(a + bR)Vr] = P (R, r), (10)

where the coefficients are from Table 6. Note that the VDF de-
pends on the distance and the radius of the empty spheres.

The observed VDF is derived again from random superclus-
ter catalogs but without bootstrap resampling technique. Each
random supercluster is simulated with distance according to lin-
ear regressions from Table 6 and random galactic coordinates.

But a comparison between observed and theoretical VPF
is not so simple as the 2D case since there is an additional
parameter, namely the radius r.
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Fig. 12. Void probability functions (2D) for some samples. Continuous
lines refer to P (ΣA) = exp(−ΣA). Each point of observed VPF is a
result of 10 000 simulations. The uncertainties are Poisson errors

Some results are presented in Fig. 13 for samples 3N40 and
3S40. The curves refer to theoretical, and squares to observed
VPFs. Radii r = 40, 60, 80 and 100 Mpc are given. Each square
is the result of 10000 random supercluster catalogs.

In general, the agreement between theory and observation
is very good. Squares in the first bin (100 ≤ R Mpc < 200) are
biased estimates, since the volume where random supercluster
centers are generated is smaller in order to avoid edge-on effects.

Fig. 13 shows that there is no definitive excess of observed
over theoretical VPF. All samples of Table 1, having large size,
say n >∼ 60 ÷ 70, lead to the same result. Hence supervoids
among superclusters in real space do not exist with volume in
the range (1.1÷ 41.9) · 105 Mpc.

6. Correlation functions

Correlation functions are very powerful instruments to study
the distribution of galaxies and clusters (Totsuji & Kihara 1969,
Peebles 1973, 1980). It is established that the two-point space
correlation functions of galaxies and clusters are power laws
(with many modifications for dependence on the sample, lumi-
nosity, morphological type, richness etc.). But there is no agree-
ment about the two-point space correlation function ξs−s(r) for
superclusters of galaxies.

The first determination of ξs−s(r) was given by Kalinkov &
Kuneva (1985). It is shown that ξs−s(r) ≈ 0 for r h−1 <∼ 200
Mpc. Bahcall & Burgett (1986) have used the catalog of super-

Fig. 13. Void probability functions (3D) for two samples. Curves are
theoretical P (R, r), while squares are observed VDFs. Radii of empty
spheres are r = 40, 60, 80 and 100 Mpc.

clusters of Bahcall & Soneira (1983) to estimate the correlation
function. Assuming the same power index as for galaxies and
clusters, Bahcall & Burgett conclude

ξs−s(r) = 1500 r−1.8 ≈ (r/60)−1.8. (11)

Moreover, based on the galaxy and cluster correlation functions

ξg−g(r) = 20 r−1.8 and ξc−c(r) = 360 r−1.8, (12)

they presume the existence of a dimensionless or universal cor-
relation function (such a function is discussed by Szalay &
Schramm 1985, also). The universal function is quoted in many
papers – e.g. Bahcall & West (1992).

First of all, Fig. 1 in Bahcall & Burgett (1986) is not con-
vincing, because of the scatter of the six points in the range
90–140 Mpc. But the scatter in their Fig. 2 is even larger.

Kalinkov & Kuneva (1986) used another catalog of super-
clusters with conclusions:

(i) the superclusters are almost uniformly distributed,
(ii) ξs−s(r) has nothing to do with ξg−g(r) and ξc−c(r) and

(iii) the crosscorrelation function for rich-poor superclusters
shows a weak anticorrelation.

Lebedev & Lebedeva (1988) have computed ξs−s(r) =
(r/90)−1.8 for the supercluster catalog of Batuski & Burns
(1985a); this is a doubtful result because selections in the real
catalog are not fully taken into account. Besides, the supercluster
catalog is polluted, because of a crude estimation for redshift.

Now it is possible to compute ξs−s(r) for more superclusters
and for various density enhancements.
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We use the standard estimate

ξs−s(r) =
DD

DR

2N
N − 1

− 1, (13)

where DD is the number of supercluster pairs in the examined
sample with space separation between r−∆r/2 and r + ∆r/2,
andDR is the number of pairs in a cross correlation between the
observed supercluster catalog and a simulated one. The objects
in the mock catalog are in an identical volume and are subject
to the same selection effects presented in the observed sample.
The sample size is N. So the mock catalog contains just the same
number of objects as the real one. We use for the uncertainty of
the correlation function

∆ξ =
1 + ξ√
DD

=

√
1 + ξ

DR
. (14)

Let us mention that the Hamilton (1993) estimator, namely

ξs−s(r) = 4
DD RR

DR2
− 1, (15)

leads to the same results when (13) is used.
Various simulated catalogs with different assumptions are

generated.

(i) One attributes to each “random” point a triple of coordinates
– b, l and distance R, which is taken from the real sample
– it is a bootstrap resampling technique (bbb).

(ii) Cumulative distributions of b, l andR from the real sample
are fitted with polynomials, which are used for generation of
the simulation catalogs. The polynomials used are between
3rd and 14th order (ppp).

(iii) Cumulative distributions are fitted with straight lines only
(111).

(iv) Mix procedures – (bbn), (bnn), (1nb). . .
(v) Selection functions for b and R, uniformly distributions for

l.

Obviously polynomials of higher order would produce cat-
alogs very close to bootstrap resampling ones. But polynomials
of first power, straight lines, operate as a function which smooths
at the most possible degree. So the limiting cases, within which
the real correlation function must be located, correspond to the
bootstrap and polynomials of first power.

All calculated correlation functions are in the range defined
by cases (bbb) and (111). However sometimes, when cumulative
distributions are badly fitted with straight lines, the estimates
according to (111) differ substantially from all other estimates.

In general, the first distance bin contains a biased estimate
of the correlation function, since in the real samples there are
no separations smaller than the diameters of the superclusters,
while in the mock catalogs these separations could be smaller.
In a more refined procedure for estimation of any correlation
function, a cut-off parameter, or a softening distance, must be
introduced.

Each correlation function is determined for 1000 “random”
catalogs and in the examined cases all (i) – (v) various estimates
do not differ substantially.

Fig. 14. Correlation functions for samples 3(N+S)40. Squares – boot-
strap method (bbb), circles – polynomial fitting (111)

Fig. 15. Correlation functions for samples 3N30

Fig. 16. Correlation functions for samples 3S30

Fig. 14 presents ξs−s(r) for samples 3(N+S), and it is zero
in the entire range of separations to 600 h−1 Mpc. One should
note that, depending on bin, the first point of the smallest one
is a biased estimate of the correlation function.

The same situation exists for samples 3N30 (Fig. 15). But for
sample 3S30 (Fig. 16), there are indications for anticorrelation
between 200 and 400 h−1 Mpc at all density enhancements.
This might be due to uncertain redshift estimates.

The application of other estimators, including Landy & Sza-
lay (1993), does not change the results (Kalinkov et al. 1997).
Consequently the 2-point space correlation function of the su-
perclusters is zero in the range 100 < R Mpc < 627.

We have attempted to estimate the correlation function as a
function of the separation parallel and perpendicular to the line
of sight, namely ξ(rp, π), e. g. Fisher et al. (1994). All attempts
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Fig. 17. Crosscorrelation functions for superclusters and member clus-
ters

failed – ξ(rp, π) is zero along as well as transverse to the line of
sight.

This result that the correlation function is zero means there
are no distortions in redshift space. Therefore, the correlation
function in real space is zero too.

Up to now, we have been examining the autocorrelation
function. Here some results on the crosscorrelation function
will be given. All estimates are obtained with the bootstrap re-
sampling technique.

Our calculation of the crosscorrelation function ξs−c for su-
perclusters and clusters show no systematic difference between
north and south caps. Therefore, only the crosscorrelation func-
tion for merged samples worth examining.

The crosscorrelation function for superclusters and member
clusters is given in Fig. 17, while Fig. 18 presents the crosscor-
relation function with all A- and ACO-clusters. In fact 1 + ξs−c

is given. Of course only clusters located in the same volume
defined for the superclusters are treated.

According to Fig. 17, the amplitude and the correlation ra-
dius of ξs−c increase when the density contrast increases. Fig. 18
establishes that “field” clusters of galaxies which do not belong
to any supercluster are not correlated with the superclusters.
Naturally, the corresponding amplitudes for member clusters
are higher than for all clusters.

Crosscorrelation functions were determined for clusters and
galaxies (Seldner & Peebles 1977; more details in Peebles 1980)
and Stevenson et al. (1985). Lilje & Efstathiou (1988) proposed
another model for the crosscorrelation function. However the
supercluster-cluster crosscorrelation function cannot be fitted
with the models applicable to the cluster-galaxy crosscorrelation
function.

Fig. 18. Crosscorrelation functions for superclusters and all clusters

7. Reliability of the results

We use superclusters that have member clusters with estimated
redshift. This could be regarded as a serious objection against
our results. That is why some tests are presented in this section to
verify the influence of the redshift estimates on our conclusions.

First we note that a naive assumption that estimated redshifts
would “smear” any weak correlation (if any) is not correct. Sup-
pose we estimate cluster redshift with one estimator only – the
magnitude of the tenth rank galaxy. It is known that the distri-
bution of m10 is clumpy, due to systematic effects (cf. Rowan-
Robinson 1972). Then redshift estimates would be clumpy also,
and preferred redshifts would appear. In a sense, the distances
to clusters will be discrete and not continuous. Therefore the
correlation would grow. This effect would be attenuated if there
are several carefully selected estimators as in the our case.

We need to obtain the correlation function for samples con-
taining only those superclusters having measured redshift for
all cluster members. The sample sizes are not large and natural
uncertainties would be larger. Secondly, if the KK catalog is not
substantially different from other catalogs, we would expect the
same correlation function for superclusters found according to
quite different searching criteria. Finally a dependence of ξ(r)
on distance R could be tested when samples of near and distant
superclusters are examined.

7.1. Correlation function for superclusters with measured red-
shift

We have created some samples of superclusters with measured
redshift for all cluster members. The new samples are denoted
with zz instead of z. The results for samples 3N30zz.10 (n =
40), 3S30zz.10 (n = 28) and 3(N+S)zz.10 for the bbb method
are given in Fig. 19. Again 1000 random catalogs of superclus-
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Fig. 19. Correlation function for superclusters with member clusters
having measured redshift

ters are used. Again, the correlation function is zero, which is
very strong evidence that results presented in Figs. 14-16 are
consistent. The consistency is manifested for the other samples
and for different density enhancements.

Now let us look at a sample, denoted as 3N30zc which to-
gether with 3N30zz constitute the sample 3N30. The sample
3N30zc includes samples 3N30z and 3N30c – containing su-
perclusters with cluster members without measured redshift. In
the light of previous results, it is not surprising that ξ(r) ≈ 0 for
3N30zc.10 as well as for 3S30zc.10.

7.2. Correlation function for other catalogs

The correlation functions for three other catalogs are presented
in Fig. 20:

i) Zucca et al. (1993) – ZZSV, 69 superclusters for their f ≥ 2
and ν ≥ 2,

ii) Einasto et al. (1994) – EETDA, 130 superclusters with ν ≥ 2
and

iii) Einasto et al. (1997b) – ETJEA, 220 superclusters with ν ≥
2.

Again the bbb method is used and 1000 simulated catalogs
are generated for each case.

For all catalogs ξ(r) ≈ 0. Therefore the zero correlation is
an intrinsic property of all superclusters found, independent of
the searching procedure.

7.3. Correlation function for near and distant superclusters

Let us name near superclusters those having 100 ≤ R Mpc <
400. Then distant superclusters have 400 ≤ R Mpc < 627.
Results for samples 3N30.10, 3S30.10 and 3N30z.10, contain-
ing respectively 44, 82 and 33 near, and 82, 49 and 31 distant
superclusters are given in Fig. 21.

Obviously the incompleteness in the basic cluster catalog
does not substantially affect the conclusions.

Fig. 20. Correlation functions for superclusters from other catalogs

Fig. 21. Correlation function for near and distant superclusters

8. Discussion

The main result of this paper is that superclusters are uniformly
distributed in space. If so, according to older terminology based
on Abell and Zwicky discussions, clusters of galaxies of third
order do not exist. (A galaxy is a cluster of zero order, a cluster
of first, and a supercluster of second order.) Therefore the hier-
archical clustering has an upper bound. A very crude estimate
of the upper bound is 100–200 h−1 Mpc, resulting mainly from
the diameter of the largest superclusters of galaxies. But if the
Universe is structureless at separations larger than 100–200 h−1

Mpc, it means that we reach a homogeneous Universe.
This problem is not a new one (cf. Sect. 1). Our estimate is in

coincidence with the transition scale to a homogeneous Universe
of Einasto & Gramann (1993), as well as with the crossover to
an isotropic and homogeneous Universe of Scaramella et al.
(1991).

Our independent rough estimate of the upper bound of the
hierarchical clustering is in good agreement with spectral esti-
mates (Peacock & West 1993, Vogeley et al. 1992, Fisher et al.
1993). Let us mention that the upper bound may be regarded
as the cutoff in the multifractal distribution (e.g. Coleman &
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Pietronero 1992, Guzzo et al. 1992, Baryshev et al. 1994, Di
Nella et al. 1996, Labini & Pietronero 1996).

A short discussion needs be given concerning the wavelet
transform. The authors of some papers claim that the wavelet
analysis is the only multiscale technique. It is not quite true,
since here we have shown that a classic technique with Gaus-
sian smoothing (and filtering) functions works at multiscales.
This technique has an advantage, which enables us to see the
fundamental magnitude – the surface (or space) density. More-
over, although not so simple, the technique gives an opportunity
to study the 3D case. We add that in some cases it is better than
the adaptive kernel smoothing (Silverman 1986, Beers et al.
1991, Merritt & Tremblay 1994, Huang & Sarazin 1996).

We did not find any voids among superclusters in the 2D nor
in the 3D case, in contrast to Einasto et al. (1997b). Moreover,
we did not find any regularity in the supercluster distribution
reported by Einasto et al. (1997a).

The second important result here is the estimate of the two-
point space correlation function. It is established that ξs−s(r) ≈
0 for a huge range – up to ∼ 600 h−1 Mpc. Our result does
not agree with those of Bahcall & Burgett (1986). However
this poses another question, about the reality of the universal
correlation function (UCF), e.g. (Bahcall & West 1992).

At the insistence of an anonymous referee, we have looked
thoroughly at the disagreement of Bahcall & Burgett (1986)
and our results on the correlation functions. We have repeated
some of their calculations. BB estimates of ξ for bins 85-110,
110-135 and 135-160 Mpc are 0.8, 0.1 and ∼ 0.1, respectively.
If the uncertainty for these bins are 0.6, as is shown in their
Fig. 1, it is worth to examine only ξ(85 − 110). Our estimate
for this range is higher ξ ≈ 1.2 (for n = 15 superclusters hav-
ing 0.02 ≤ z ≤ 0.08; 10 000 random catalogs), but with an
uncertainty of 1.8, which is defined in the manner of BB – a
“typical 1σ statistical error-bar, obtained by comparison with
10 000 random catalogs” (p. L37). In fact, the Poisson error
is 0.6, but it is the smallest one. Another uncertainty follows
from the bootstrap resampling method (Ling et al. 1986), which
seems to overestimate the error (Mo et al. 1992, Shepherd et al.
1997) leading to 1σ error of 1.9. We use as the most plausible
one the uncertainty introduced by Efron & Tibshirani (1986) and
successfully applied by Shepherd et al. (1997) and Kalinkov et
al. (1997). This uncertainty leads to an error of 1.6. Moreover,
the other estimates of the correlation function (Landy & Szalay
1993 and Hamilton 1993) definitely show no significant corre-
lation in a wide range of separations 60 ≤ r h−1 Mpc ≤ 200
for the BS superclusters.

We have to note that the first bin (85-110 h−1 Mpc) con-
tains separations connected with superclusters BS12, BS6 and
BS9. We do not think BS12 is a real supercluster. It is con-
glomeration of two famous superclusters – Bootes and Corona
Borealis, and a poor supercluster (Scl 679 of KK). All of the
existing catalogs include Bootes and Corona Borealis as dif-
ferent entries. No other catalogs contain BS6(A1035+A1187).
While the Abell cluster A1187 is a member of a supercluster
in EETDA and ETJEA, A1035 is not a part of any known su-
percluster. Maybe BS9 is a phantom too, despite it is found in

larger configurations in EETDA and ETJEA but linked together
with A-clusters without measured redshift. If the corresponding
separations of superclusters BS12, BS6 and BS9 are not taken
into account then the estimate ξ(r) = DD/RR - 1 drops to zero
even within the Poisson error.

Likely considerations hold for the f = 40 sample of super-
clusters, giving the conclusion that the correlation function is
zero among BS superclusters. (A minor note – there is a misprint
of the right ascension of A1367+A1656 supercluster, BS10; it
is 12h20m instead of 11h20m).
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