![]() | ![]() |
Astron. Astrophys. 332, 1044-1054 (1998) 1. IntroductionThe physical processes governing line formation in stationary gaseous nebulae are believed to have been well established for a long time (Seaton 1960; Spitzer 1978; Osterbrock 1974, 1989; Aller 1984; Harrington 1989). The determination of chemical abundances, particularly in Planetary Nebulae (PNe) with their relatively high degree of symmetry and small amount of dust grains, has therefore been considered to be rather safe (cf. Kaler 1985; Pottasch 1984a). Discussion of their implications for the theory of stellar evolution has been quite extensive (Iben & Truran 1978; Iben & Renzini 1983; Iben 1984; Renzini & Voli 1981; Marigo et al. 1996). In comparison with the predictions of the stellar evolution theory it is of course of paramount importance to be able to define the accuracy which is attached to each individual determination of chemical abundances, something which, in our opinion, is currently not handled with a sufficient care. We also note that in principle a dynamical treatment is needed, considering the complicated velocity field, the density structure and the occurrence of shocks within a planetary. The importance of an accurate knowledge of the chemical abundances is clear already in connection with the simple, yet very important question, on whether a given PN is carbon or oxygen rich. Only a precise knowledge of the accuracy of the measured C/O abundance ratio permits derivation of meaningful astrophysical conclusions from the observed distribution of C/O in PNe. Similarly an accurate knowledge of the errors of chemical abundances is required when dealing with abundance gradients from PNe in galaxies. It is useful to recall that the determinations of chemical abundances in PNe are done with three methods:
Technique iii) was used essentially by Aller and associates (Aller
& Czyzak 1983; Aller & Keyes 1987) on about 90 PNe. Method i),
which is physically the most satisfactory, has been applied to very
few objects so far. The bulk of our information rests on method ii)
(in its different specifications), used for the determination of
abundances in more than 250 galatic PNe. When properly applied, method
ii) may produce chemical abundances not far from those of method i)
(cf. Pottasch 1984b). Based on a comparison of results from the
different methods on the well studied planetary NGC 7662, Pottasch
emphasizes: "A tentative conclusion is that careful analysis using the
constant To assess the general validity of these concepts, a more extended use of method i) is clearly desirable. But there are limitations because this method requires various poorly known information items, including the distance of the object. In other words one is dealing with a multi-parameter problem, with the possibility of non-unique solutions. The comparison of the abundance of a given ion as derived by lines
powered by different physical processes is clearly quite important to
assess the correctness of the derived abundances. A well known example
is the abundance of All in all, it is evident that substantial work needs to be done to come to a satisfactory understanding of the errors associated with the determinations of chemical abundances in PNe. With the present work, we wish to contribute to the subject by evaluating the errors that can be associated to the determinations made with method ii) just due to the basic assumption of constant electron density and temperature. While this is only a piece of the effort to be made, it will at least serve to give a quantitative idea of errors inherent in method ii) and therefore in the bulk of the available abundances in PNe. In Sect. 2we illustrate the modeling of the planetary nebulae and the technique used to derive abundances. The results are presented and discussed in Sect. 3. The conclusions follow in Sect. 4. ![]() ![]() ![]() ![]() © European Southern Observatory (ESO) 1998 Online publication: March 30, 1998 ![]() |