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Abstract. I argue that the rotation of white dwarfs is not a
remnant of the angular momentum of their main sequence pro-
genitors but a result of the mass loss process on the AGB. Weak
magnetic fields, if present in stellar interiors, are likely to main-
tain approximately uniform rotation in stars, both on the main
sequence and on the giant branches. The nearly uniform rotation
of the core of the Sun is evidence for the existence of such fields.
Exactly axisymmetric mass loss on the AGB from uniformly
rotating stars would lead lead to white dwarfs with very long
rotation periods (> 10 yr). Small random non-axisymmetries
(∼ 10−3) in the mass loss process, on the other hand, add suffi-
cient angular momentum to explain the observed rotation peri-
ods around one day. The process illustrated with a computation
of the probability distribution of the rotation periods under the
combined influence of random forcing by weak nonaxisymme-
tries and angular momentum loss in the AGB superwind. Such
asymmetries can in principle be observed by proper motion
studies of the clumps in interferometric images of SiO maser
emission.
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1. Introduction

White dwarfs are observed to rotate with typical periods of a
day. The main sequence progenitors of these stars are also rotat-
ing, and it is generally assumed that the rotation of white dwarfs
is a remnant of this main sequence rotation. Arguments involv-
ing conservation of angular momentum can be used to make
this plausible (e.g. Perinotto 1990, Pijpers 1993). A problem
with this picture is, however, that progenitors of WD have gone
through a giant stage in which at least the envelope rotated very
slowly. Thus, it is necessary to assume that the cores of giants
remain decoupled rotationally from their envelopes during the
entire evolution from main sequence turnoff till the formation
of the WD. Since little is known with certainty about the pro-
cesses that might redistribute angular momentum inside stars,
this assumption can not be easily rejected.

There are, however, observational and theoretical reasons to
doubt this picture. A strong observational argument is the in-

ternal rotation of the Sun. The most recent helioseismological
measurements (Elsworth et al. 1995, Kosovichev et al. 1997,
Corbard et al. 1997) show that the rotation below the convec-
tion zone is esentially uniform, with measured degrees of dif-
ferential rotation well below the 30% seen at the surface. The
known hydrodynamic angular momentum transport processes,
even with rather optimistic estimates of their efficiency, leave the
Sun with a much too rapidly rotating interior (Spruit et al. 1983).
A new hydrodynamic mechanism recently studied in some detail
is friction by internal gravity waves excited by the convection
zone (Press 1981, Spruit 1987, Zahn 1990, Schatzman 1993).
Realistic calculations of this process appear to be difficult, but
estimates indicate that it can be more effective than the other
hydrodynamic processes (Zahn et al. 1997).

Magnetic fields, on the other hand, have long been known to
be very efficient at transporting angular momentum. The torques
exerted by magnetic fields become significant already at very
low field strengths. For the Sun, for example, a field of less
than 10G can provide sufficient torque to maintain the observed
uniformity of rotation. A number of mechanisms can provide
such weak fields, for example a fossil field (remnant of the star
formation process) or a dynamo-like process operating on (a
small remnant of) the differential rotation of the core.

In this paper, I develop the consequences of assuming that
the cores of giants do, in fact, corotate approximately with their
envelopes. After discussing the observational evidence on WD
rotation rates I develop theoretical arguments for the existence
of effective coupling between the core and the envelope. This
predicts very slowly rotating cores in the giant progenitor of a
single WD. The rotation of single white dwarfs must then be
explained by other processes.

The same applies to neutron stars born in red giants. The ob-
served pulsar rotation periods of the order of a second are much
shorter (by a factor103 or so) than expected if they formed in ap-
proximately uniformly rotating giants, and with our assumption
of strong coupling of the core another mechanism also has to
be found to explain the rotation of pulsars. The processes differ
somewhat for white dwarfs and neutron stars. The arguments
for the neutron star case are developed in a companion paper
(Spruit & Phinney, 1998). There, we show that the kicks with
which neutron stars are born (as inferred from their transverse
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velocities) also impart angular momentum at amounts sufficient
to explain the rotation of most pulsars.

To explain the typical rotation rates periods of single white
dwarfs (of which only about 30 have measured rotation rates), I
show in Sect. 5 that small asymmetries in the mass loss processes
during the last phases of evolution on the AGB are sufficient to
explain the observed rotation rates. These asymmetries act as a
random forcing through which angular momentum accumulates
in the envelope. A balance results between this random forcing
and the loss of angular momentum by the wind. The evolution
of the angular momentum as the mass loss proceeds turns out to
be mathematically the same as that of the velocity of a particle
experiencing Brownian motion in a gas, and can be described by
a Fokker-Planck equation. Solutions of this equation (Sect. 5.1)
show that probability distribution of the angular momentum is
close to a Maxwellian. The mean angular momentum decreases
as the square root of the envelope mass remaining. Current ob-
servational evidence relating to the asymmetries needed in this
picture is discussed in Sect. 6.

1.1. Rotation speeds of AGB cores

Starting with a rapidly rotating main sequence star, and assum-
ing uniform rotation during the expansion to the giant stage,
we can estimate the rotation periods to be expected for white
dwarfs evolving from single stars. An early type main se-
quence (MS) star, rotating near its maximum speed (of the
order 400 km/s), and expanding without angular momentum
loss onto the asymptotic giant branch (AGB), has a rotation
period PG = 2π/(GM/R3

G)1/2(RG/RMS)1/2 ∼ 10yr for
RG ∼ 1AU (except for a modest difference in gyration radius
neglected here). Most early type MS stars rotate significantly
slower, so that periods of the order 30-100 yr would be ex-
pected for the AGB descendants of earlytype stars. Some of the
observed white dwarfs must have descended from solar type
stars (F-G), which have periods of the order 30d at the end of
their main sequence life. The AGB progenitors of these WD
would rotate 100 times slower, with periods of the order of a
thousand years.

If the small amount of envelope mass is ignored which settles
back onto the core during post-AGB evolution (more about this
in Sect. 4.1), these rotation periods would also be inherited by
the WDs formed. While there are a few magnetic white dwarfs
with inferred rotation periods of at least a century, most WDs
for which periods are known rotate much faster. We evidently
need another mechanism to explain the rotation of typical single
WDs. Before entering the discussion of possible mechanisms,
I briefly review the observational evidence on WD rotation.

2. White dwarf rotation periods

Three methods exist for measuring the rotation rates of white
dwarfs. The largest number of determinations comes from spec-
tral and/or polarization variations in magnetic WDs. Fig. 1
shows these rotation periods, as compiled by Schmidt & Nor-
sworthy (1991, see also Schmidt & Smith, 1995). Added to

Table 1.Asteroseismologically determined WD rotation periods

object P ref
PG 1159−035 1.38d Winget et al. 1991
PG 2131+066 5.07hr Kawaler et al. 1995
PG 0122+200 1.61d O’Brien et al. 1996
GD 358 1.38d Winget et al. 1994
GD 165 4.2d Bergeron et al. 1993
GD 154 2.3d Pfeiffer et al. 1995
G226−29 8.9h Kepler et al. 1995

this compilation was G 158-45 (Putney, 1996) with a period of
4.44 hr. A second group of determinations comes from ZZ Ceti
and other oscillating stars. In a number of these, sufficiently
detailed observations exist to identify the oscillation modes, al-
lowing determination the period splittings due to rotation. The
rotation periods for 7 oscillating white dwarfs collected from
the literature (Table 1) are also shown in Fig. 1. The spike in
the figure at3 104d represents the (magnetic) stars whose pe-
riods are inferred to be longer than a century, on the basis of
the absence of variations in the polarization on time scales of
decades. These stars were put at their approximate lower limits
of 100 yrs.

The widths of the narrow NLTE line cores have been used to
set limits on rotation velocities of stars for which the magnetic
and seismological methods can not be used (Wesemael et al.
1980, Koester & Herrero 1988, Koester et al., 1998, in prep.).
The detection limit, apparently around 20 km/s, is not sensitive
enough to determine the rotation of stars in the∼ 1d main peak
in Fig. 1, but may be useful in setting limits on the number of
rapidly rotating (P < 1hr) stars. Reid (1996, his Sect. 3.1) and
Heber et al. (1997) infer upper limits from 8 to 40 km/s from
Keck spectra of some 25 single white dwarfs.

The distribution of periods in the main hump around 1d looks
the same for the magnetic and the oscillating stars, given the
limited statistics. Very long periods are absent from the sample
of seismologically determined periods, but this may be due to
observational limitations. No stars have had their oscillations
followed long enough to detect period splittings of a decade. One
concludes that with the (limited) data available, there does not
seem to be a significant difference in the distribution of rotation
rates of magnetic (B ∼> 105G) and nonmagnetic (B ∼< 104G)
stars. There may, however, be other differences between the
magnetic and nonmagnetic WD, apart from the field strength.
Sion et al. (1988) and Liebert (1995) for example, argue that the
magnetic stars are more massive than the nonmagnetic ones, and
derive from more massive progenitors.

3. Angular momentum transport processes

3.1. internal gravity waves

The kinetic energy of convective motions in the envelope ap-
pears as a source of pressure fluctuations at the boundary be-
tween the envelope and the core. These fluctuations propagate as
internal gravity waves through the core. The waves carry angu-
lar momentum and their dissipation therefore transmits torques.
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Fig. 1. Rotation periods of isolated white dwarfs. Dark: oscillating WD
(asteroseismological periods), light: magnetic WD. From Schmidt &
Norsworthy 1991, Putney 1996, and refs in Table 1. The peak at the
right represents the lower limits for the 5 stars whose rotation period
is larger than about a century.

Assume that prograde and retrograde waves are excited with the
same amplitude. This is a good approximation if the rotation is
slow, such that the effect of Coriolis forces on the wave genera-
tion process is small. As the waves propagate into the core, they
conserve their angular momentum (or wave action) until dis-
sipation becomes important. If the dissipation of prograde and
retrograde waves is the same, no net angular momentum trans-
port takes place. Prograde (retrograde) waves propagating into
a medium of increasing (decreasing) rotation speed, however,
meet critical layers (where the rotation rate equals the horizontal
component of the phase speed), and are much more effectively
absorbed there (see the discussions in Goldreich & Nicholson
1989, Zahn et al. 1997). Due to this asymmetry, there is a net
angular momentum transport which tends to reduce the differen-
tial rotation. In effect, the internal gravity wave field is a source
of friction. Zahn et al. find that for the Sun, the time scale for
synchronization between core and envelope due to this friction
is of the order107 yr. Since this is of the order of evolution time
scale to the giant branch, the process could be significant in
maintaining synchronization during core contraction. Detailed
evolution calculations including this process by Talon & Zahn
(1998), however, still yield too large internal rotation rates for
the present Sun.

3.2. magnetic torques

Magnetic torques are transmitted by the stress component
BrBφ/(4π). Approximating this as constant over a spherical
surface, the angular momentum balance is

IΩ̇ =
2
3
BrBφr3. (1)

The synchronization time scale between a core of radiusr =
1010R10cm, massM = mM� and moment of inertiaI =
k2MR2 rotating at a rateΩ = 10−6Ω−6s−1 is then

τ =
3
2

k2MΩ
BrBφR

= 3 108(BrBφ)−1mr−1
10 Ω−6 yr, (2)

wherek is the gyration radius. At the Sun’s current rotation
rateΩ−6 = 3, the synchronization time scale is less than the
age of the Sun if(BrBφ)1/2 > 3G. If on its way to the giant
branch the core of the Sun were to contract to a radius of109cm
while conserving angular momentum, it would rotate at rate
Ω−6 ∼ 300. To maintain corotation on the107 yr contraction
time scale, a field strength(BrBφ)1/2 = 300G is sufficient, at
this rotation rate.

If the azimuthal and radial field components are of similar
magnitude, (1) can be written in terms of the magnetic energy
EB = B2/(8π)(4π/3)r3, and rotational energyEΩ = 1

2IΩ2

as

EB =
1
2
EΩ

1
τΩ

. (3)

If the Br andBφ are not comparable, (3) is only the minimum
magnetic energy required. Nevertheless, sinceτΩ is typically
such a large number, (3) shows that corotation can be maintained
by a magnetic energy which issmall fraction of the rotational
energyof the star, for spindown on a time scale long compared
with the rotation period.

3.3. Winding up of field lines

Are such magnetic field strengths plausible? If the fields of the
magnetic A stars are fossil (which unfortunately is still unclear),
sufficiently strong fields might also exist in the cores of solar
type stars. Even if the initial fields (on the ZAMS) are lower
than these values, however, differential rotation will increase
the field strength quickly to values that have an effect on rota-
tion. Whether initially present in the star or developing later by
core contraction, differential rotation winds up the field lines,
increasing the field strength. This problem has been studied in
various forms since the ’50s. Winding up of an axially sym-
metric poloidal field into a predominantly azimuthal field by
differential rotation produces an opposing torque that is linear
in the number of differential turns made, as in a harmonic os-
cillator. The result is an oscillation of alternate winding up and
unwinding at a period given by the Alfvén travel time through
the star (Mestel, 1953), where the Alfvén speed is that of the
poloidal field (which is unaffected by the winding-up). Since
Alfv én waves travel decoupled from each other, each on its
own magnetic surface, the oscillation period is different on each
magnetic surface. The oscillations on these surfaces therefore
get out of phase after a few oscillations, and the length scale
across the surfaces decrease ast−1. In a finite time, dissipative
processes across the surfaces become important, and the oscil-
lation damps out by phase mixing (Spruit 1987, Charbonneau
& MacGregor 1993, Sakurai et al. 1995). The net effect of the
process is that the component of differential rotation along the
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field lines is damped out, on a finite time scale, and this can
happen with an initial field that is much weaker than estimate
(3).

3.4. Magnetic shear instability

Another possibility is that a turbulent field is generated by
the same magnetically mediated shear instability that has been
shown to operate effectively in accretion disks (Hawley et al.
1995, Matsumoto & Tajima 1995, Brandenburg et al. 1995). The
conditions for magnetic shear instability to exist in a star have
already been studied in detail by Acheson (1978, 1979) though
the proper interpretation of this instability (Balbus & Hawley,
1992) was not clear at the time (see, however, Fricke, 1969). In
the context of stellar interiors, it has been studied again recently
by Kato (1992), Balbus & Hawley (1994) and Urpin (1996).
Wherever this instability exists it will lead to very rapid growth
(on the differential rotation time scale) of a turbulent magnetic
field, which then acts on the differential rotation like an effective
viscosity.

Acheson’s (1978) analysis of the instability conditions in-
cludes (unlike the more recent works) the effects of thermal
and magnetic diffusion and of viscosity. The inclusion of ther-
mal diffusion is especially important since it makes the insta-
bility appear under much wider conditions. This is seen from
Acheson’s condition (7.27, a special case of his more general
condition), which is equivalent to

− 2q − V 2
A

Ω2r2

(
r

γH
− 2

)
F >

η

κ

γN2

Ω2 , (for instability), (4)

where

q = d ln Ω/d ln r, F = d lnBφ/d ln r, (5)

N is the buoyancy frequency,η andκ the magnetic and thermal
diffusivities, andH the pressure scale height. This condition
holds for low viscosity (ν/η � 1), for an azimuthal fieldBφ

at the equator of the star. The first term on the left hand side
represents the magnetic shear instability, the second term Parker
instability (magnetic buoyancy instability). For weak fields, this
second term is negligible. The right hand side shows the stabi-
lizing effect of the stratification, which, however, is partially
undone by thermal diffusion (for adiabatic perturbations, the
factorη/κ would be replaced by unity). Since photons diffuse
so much more effective than the magnetic field, the instability is
present much more widely than in an adiabatic treatment. The
instability, however, is able to grow only on length scales suffi-
ciently small that thermal diffusion is important. This somewhat
limits its effectiveness, and it may be that the effective viscosity
it produces is not much larger than the viscosity produced by
hydrodynamic shear instabilities (Zahn, 1974) under the same
conditions. These questions could, in principle, be readily ad-
dressed by an appropriate numerical simulation.

Because magnetic fields are so effective at transmitting
torques, already at low field strengths, differential rotation can
survive over a large number of rotations only in regions where
the radial field component is very small. In order to allow the

core in a giant to rotate substantially faster than its envelope,
one must find a reason why it could have been so accurately
‘shielded’ magnetically, over the entire life of the star on the
giant branch.

While the arguments given here do not constitute a proof,
I feel they are sufficiently strong that approximately uniform
rotation (modulo a factor of a few) is a reasonable hypothesis,
compared with the traditional assumption in which the core of
a giant rotates104–105 times faster than its envelope.

4. Mass and angular momentum loss on the AGB

A large fraction of the star’s mass is lost in the last phases of
evolution on the AGB (e.g. Habing, 1990). Most is ejected in
the form of a superwind (∼ 10−4M�yr−1) lasting on the order
of 104yr (e.g. Vassiliadis & Wood, 1993). It is believed to be
driven by pulsational instability and radiation pressure on dust
(Fleischer at al. 1992, Sedlmayr & Carsten 1995, Höfner &
Dorfi, 1997), or possibly by sound waves (e.g. Pijpers & Hearn,
1989). The mass loss is probably not steady because the stellar
pulsation is an important part of the driving. Also, dust formation
in the expanding flow is an unstable process (Höfner & Dorfi,
1997). Thus the envelope is probably ejected in the form of a
(large) number of light shells. The mass loss is also believed to
be modulated on longer time scales by the thermal pulses of the
AGB star.

A small fraction of the star’s envelope (on the order
10−4M�) settles back onto the core after the superwind ceases.
Most of the angular momentum is lost together with the mass of
the envelope, but because of the large size of the envelope, even
the small amount of mass remaining might conceivably con-
tain enough angular momentum to form a significantly rotating
white dwarf. Thus we need to look in some detail at the angular
momentum balance of the mass losing AGB envelope. First, I
show that if the superwind is axially symmetric and has the spe-
cific angular momentum of the stellar photosphere from which
it is ejected, the angular momentum remaining after envelope
ejection isfar too small to produce a significantly rotating white
dwarf.

4.1. Axially symmetric mass loss

If the mass is ejected from the stellar photosphere in axisym-
metric fashion, taking with it the angular momentum it had in
the photosphere, the net angular momentum loss by the wind is

J̇ = 2
3ṀR2

∗Ω∗, (6)

whereṀ is the mass loss rate,R∗, Ω∗ the photospheric radius
and rotation rate of the envelope. The factor 2/3 is due to the
variation of specific angular momentum over the surface. Since
the envelope is convective, it is a good approximation to assume
that it rotates uniformly. Because of the very large radius of the
envelope, the core contributes very little to the star’s moment
of inertia, even if the envelope mass is quite small. By angular
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momentum conservation the star’s angular momentumJ∗ varies
as

J̇∗ = 2
3Ṁ∗R2

∗Ω∗, (7)

where M∗ is the star’s mass. With uniform rotation,J∗ =
k2M∗ΩR2

∗, wherek is the radius of gyration, hence

J̇∗ =
2Ṁ∗

3k2M∗
J∗. (8)

In stars,k2 < 0.4, so that the angular momentum of the star de-
creases more rapidly than its mass. This is because the specific
angular momentum of the mass leaving the star is higher than
the average specific angular momentum of the star (by a factor
2/3k2). Since the envelope mass varies strongly, the gyration
radius can not be taken as constant. The total moment of iner-
tia of the star can be written as the sum of core and envelope
contributions:

I∗ = k2M∗R2
∗ =

∫
core

ρ$2d3r +
∫

envelope
... = Ic + Ie, (9)

where$ is the distance to to rotation axis, and

Ic = k2
cMcR

2
c , Ie = k2

eMeR
2
∗. (10)

If the envelope contains most of the stellar mass,k2
e is approx-

imately that of a polytrope of index 1.5,k2
e ≈ 0.2. For the

estimates below I assume this value. For a degenerate core of
mass∼ 0.6, k2

c is of the order 0.19. The gyration radius of the
star as a whole is then

k2
∗ = I/(M∗R2

∗) = k2
c
Mc

M∗
R2

c

R2∗
+ k2

e
Me

M∗
. (11)

For R∗ ∼ 1013, Rc ∼ 109, the first term is negligible for
envelope masses larger than∼ 10−8M�, so that

k2
∗ ≈ k2

e
Me

M∗
. (12)

With (8) this yields

J̇∗/J∗ = m
Ṁ∗
Me

. (Me ∼> 10−8), (13)

where

m =
2

3k2
e

≈ 3.3. (14)

Since the core mass is essentially constant during the mass
loss, we haveṀ ≈ Ṁe. Eq. (13) can be integrated to yield

J∗
J0

=
(

Me

Me0

)m

, (15)

whereJ0 andMe0 are the initial angular momentum and en-
velope mass. The steep dependence onMe implies that only
a small fraction ofJ0 is retained. An upper limit on the final

rotation rate is obtained by assuming the AGB star to rotate crit-
ically, Ω∗ = (GM/R3

∗)
1/2. The rotation rate of the post-AGB

core then becomes

Ωf/Ω0 =
k2

∗M∗
k2
f Mf

R2
∗

R2
f

(
GM∗
R3∗

)1/2 (
Mef

Me0

)3.3

, (16)

where indicesf and∗ denote the post-AGB core and the AGB
star, respectively. If at the end of the superwind phase an en-
velope mass of not more than10−3Me0 is left, we get a final
rotation period of at least a year.

The effect depends rather critically on the indexm in (15). If
the wind corotates with the star out to some radiusR > R∗, for
example because of an atmospheric magnetic field, the specific
angular momentum in the wind is increased by the factorf =
(R/R∗)2, and the indexm would become

m =
2f

3k2
e
. (17)

Magnetic fields are known to exist in Mira envelopes from the
circular polarization of the SiO masers (Barvainis et al. 1987,
Kemball & Diamond 1997). The values of the field derived are
uncertain since they depend on the degree of saturation of the
masers (Nedoluha & Watson 1994). A strength of a few tenths
of a Gauss, however, would already cause significant additional
angular momentum loss by the wind.

The conclusion is that even a maximally rotating AGB star,
with its huge amount of angular momentum, will produce only
a nearly non-rotating white dwarf if mass loss is axisymmetric.
This results from the fact that almost all the envelope is lost,
combined with the higher than average specific angular mo-
mentum taken away by the mass lost. Physically, as mass is lost
from the photosphere, the envelope expands, causing spindown
by angular momentum conservation.

Let me summarize the assumptions made in arriving at this,
perhaps surprising, conclusion. The first is that core of the AGB
star corotates approximately with the envelope when the phase
of rapid mass loss sets in. The others are the rather minimal as-
sumptions that the (convective) envelope rotates approximately
uniformly, and that the mass lost in the wind carries at least the
specific angular momentum of the photosphere of the star.

5. Slightly nonaxisymmetric mass loss

The angular momentum evolution of the star is altered dramat-
ically if even a small amount of non-axisymmetry is allowed in
the mass ejection process. If a shell is ejected aspherically, it gen-
erally carries a net momentum, and the direction of this momen-
tum vector in general need not pass exactly through the center of
mass. It is conceivable, for example, that the dust-formation in-
stability found in spherically symmetric numerical simulations
of the ejection process actually is non-axisymmetric, so that the
forces exerted are not evenly distributed over the surface. In
this way, the ejection process adds a small amount of angular
momentum (‘kick’) to the star.

Suppose now that a large number of shells are ejected,
adding small amounts of angular momentum in random direc-
tions. Since the simulations indicate that the shells are ejected
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with periodsδt of the order of the oscillation period of the star
(on the order of a year) while the duration of the superwind
phase is of the order of104yr, there are on the order of104

kicks, each associated with an ejected massδM on the order of
10−4M�. The maximum amount of angular momentum such a
kick can impart isδMR2

∗ve, whereve is the ejection velocity,
observed to be in the range 5–50 km/s. This maximum applies
when the mass is ejected tangentially to the surface of the star.
This is of course quite unrealistic, and one expects the angular
momentum imparted to be only a small fraction of this:

δJ = ε δMR2
∗ve, (18)

whereε is a small number. In the following, I estimate how large
this number must be to explain the observed rotation periods.

The evolution of the star’s angular momentum vector is ob-
tained by adding the forcing by kicks to (13):

J̇ = −m
|Ṁe|
Me

J + A(t), (19)

whereA is a random fluctuating vector with time stepδt and
amplitudeδJ . This equation (Langevin’s equation) is the same
as that governing the Brownian motion of particles in a gas. Fol-
lowing the standard treatment in statistical physics (e.g. Becker,
1978) we can take the continuum limit, in which the time step is
infinitesimal, and derive a Fokker-Planck equation for the prob-
ability distributionf(J, t) of obtaining an angular momentum
J after timet. Leaving out this derivation, the result is

∂f/∂t = β∇J · (Jf + D∇Jf), (20)

where

β = m
|Ṁe|
Me

, (21)

is the ‘braking rate’,∇J is the gradient inJ-space, andD the
diffusion coefficient inJ-space

D = 1
3 (δJ)2/δt. (22)

The main difference with respect to standard Brownian motion
is that the coefficientsβ, D in the present case are functions of
time.

If the kicks are random in direction, and the star initially non-
rotating, the probability distributionf is isotropic inJ-space,
f = f(J). Writing

F = J2f, (23)

Eq. (20) can then be written as

∂tF = ∂J [βJF + D(∂JF − 2F/J)]. (24)

If β andD are constant, as they are in the case of Brownian
motion, the asymptotic solutionF∞ for larget is that for which
the bracket on the RHS vanishes. This yields

F∞ ∼ J2 exp(−1
2

β

D
J2), (25)

i.e. a Maxwellian distribution peaking atJ = (2D/β)1/2. In
our case,β varies significantly with time, because the envelope
mass varies strongly. We should therefore do not expect the
distribution function to be a Maxwellian.

Before entering into more detailed calculations an estimate
of the orders of magnitude to be expected can be made by mak-
ing a quasi-stationary approximation to (20). The distribution
F is then given approximately by (25). The typical angular mo-
mentum to be expected at the end of the mass loss, when the
envelope mass left isMe � Me0 is then, with (21), (22):

J ≈ δJ(nk2
eMe/Me0)1/2, (26)

where

n = (Me0 − Me)/(Ṁeδt) (27)

is the number of kicks experienced. With (18):

J ≈ εMe0R∗ve

(
Me

mnMe0

)1/2

, (28)

wherem = 2/(3k2
e ) for angular momentum loss at the photo-

spheric value (f = 1 in 17). The expected rotation rate of the
white dwarf, with gyration radiuskw, massMw and radiusRw
is thenΩw = J/(k2

wMwR2
w). Assuming a final envelope mass

of 10−4M�, initial envelope mass of2M�, andMw = 0.6M�,
this yields

Ωw ≈ ε5n−1/2s−1. (29)

If shells are ejected every two years or so, we haven ≈ 104. A
rotation period of 1d is then obtained forε ≈ 10−3.

As long as it is not known how the relevant details of the
ejection process take place, it is hard to argue whether an asym-
metry of the order10−3 is realistic or not, but a number as small
as this would not seem too demanding. The reason why such
small asymmetries are sufficient, even when their effect is fur-
ther reduced by random superposition (the factorn−1/2 in 28),
is the very large lever arm on which the kicks act. A star on
the AGB is so large compared with the final white dwarf that
a very precisely axisymmetric mass loss would be needed to
avoid introducing the small amount of angular momentum that
is sufficient to produce white dwarfs with periods of a day.

5.1. Distribution of rotation rates resulting from random kicks

The coefficientβ varies by a factor104 as the envelope mass
is reduced from its initial value to a representative post-AGB
value of the order10−4M�. To take this into account, I solve
Eq. (24) numerically. I use a second order , implicit time step
and centered differences in theJ-coordinate (Crank-Nicholson
scheme).

As angular momentum coordinate I use the dimensionless
variablej, defined by

J = jεMe0R∗ve(mn)−1/2. (30)

Let

g(j) = j3f(j) = dN/d ln j (31)
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Fig. 2. The mean angular momentumjm as a function of the remaining
envelope massMe, for angular momentum induced by random non-
axisymmetries in the superwind mass loss. Solid: solution of Eq. (33).
Dotted: stationary approximation, Eq. (34). Evolution is from right to
left

be the probability distribution per unit ofln j, and for time co-
ordinate use

τ = − ln(Me/Me0). (32)

Then Eq. (24) can be written as

∂τg = j∂j [mg + e−τ j2∂j(g/j3)]. (33)

The integration is fromτ = 0 to τf = − ln(Mef/Me0), where
Mef is the envelope mass at which the mass loss ends. Apart
from Mef the only parameter in the problem is the angular mo-
mentum loss indexm = 2f/(3k2

e ) (cf. Eq. 17). The evolution
for m = 3.3 is given in Fig. 2, which shows the meanjm of the
probability distributiong(j, Me) as a function of the remaining
envelope mass.

If the evolution is sufficiently ‘slow’, one expects the solu-
tion to be close to the Maxwellian stationary solution, obtained
by setting the square bracket in (33) equal to zero. This station-
ary distribution has mean dimensionless angular momentum

js = 2
√

2/π(Me/Me0)1/2, (34)

and is shown for comparison in Fig. 2. The stationary approxi-
mation actually turns out to be quite good, except in the initial
phase of the evolution. The white dwarf rotation rate corre-
sponding to (34) is given by:

Ωw = ε 2
√

2/π
Me0

k2
cMw

R∗
Rw

ve

Rw
(

Me

mnMe0
)1/2. (35)

Thus, the predicted white dwarf rotation rate decreases as the
square root of the mass remaining in the envelope at the time
when mass loss ceases.

5.2. Comparison with observed distribution

By adjusting either the asymmetry parameterε or the final enve-
lope massMef , the maximum of the distribution can be made
to agree with the observations. This distribution is close to a

Fig. 3. Predicted distribution of rotation periods (solid) for asymme-
try parameterε = 10−3, and a log-normal spread in final envelope
mass from2 10−5 to 5 10−4M�. Histogram: observed distribution
from Fig. 1

Maxwellian, and its width is too narrow compared with the
observations, which spread by a factor 20 or so. The factors
influencing the mean rotation rate (35) most are the asymmetry
parameterε and the remaining envelope massMe0. Both might
depend on systematic factors like the initial stellar mass. A ran-
dom variable could be the phase in the thermal pulse cycle at
which the superwind takes place, which is known to have an
effect on the post-AGB evolution (Schönberner 1990, Vassil-
iadis & Wood 1993). Lacking a sufficiently detailed theory for
the superwind, it is hard to guess how the asymmetry parameter
might depend on such variables. Values of the remaining enve-
lope mass, on the other hand, have been inferred for oscillating
WD and post-AGB stars by comparisons with theoretical mod-
els. Clemens (1994) finds a hydrogen envelope masses of about
10−4M�. In the helium (DB) white dwarfs and their possible
progenitors the PG 1159 stars, only a helium envelope (with
inferred masses of the order10−3M�, cf. Dehner & Kawaler
1995) is left. Bl̈ocker & Scḧonberner determine a hydrogen en-
velope mass of3 10−4M� for FG Sge. It seems reasonable to
assume that a certain spread inMef is present. This could be due,
for example, to random variations in moment at which pulsation
ceases. To fit the observed distribution with such a spread, I as-
sume a log-normal distribution of the parameterMef , with peak
atM̄ef = 10−4M� and (1/e-) width from2 10−5 to5 10−4. The
asymmetry parameter is assumed to beε = 10−3. The resulting
period distribution is compared with the observations in Fig. 3.
The agreement with the observations is not a test of the theory
developed here (since both the width and the mean have been
fitted), but comparison shows that a spread in envelope mass of
a factor 5 on both sides of the mean is sufficient to explain the
observed width.
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5.3. Binarity and common envelope

Alternatives to the picture sketched may be envisaged, in which
the rotating white dwarfs are in one way or another the result of
binarity. The following is a brief discussion of such scenarios.

The observed periods,0.1d < P < 10d are suggestive
of the orbital periods of close binaries, as has been noted by
Schmidt et al. (1986), who suggest the possibility that AM
Her stars might be the progenitors of the rotating white dwarfs.
Those must then have somehow lost their companions, perhaps
through the mass transfer. Current understanding of the evolu-
tion of CVs does not favor this possibility, since it predicts that
the secondaries can not transfer all of their mass within a Hubble
time. This is because the angular momentum loss slows down
dramatically once the secondary has been reduced to a small
degenerate dwarf (e.g. Verbunt 1996, Kolb 1993).

A second possibility that suggests itself is that of a binary
companion absorbed in a common envelope (CE) process. Two
different outcomes of such a CE are possible. One is that the
envelope is ejected, by the orbital energy released, before the
secondary has spiraled in completely. In the other, the secondary
spirals in completely and merges with the primary. The first case
leaves a detached system (such as V471 Tau) which then evolves
into a CV by magnetic braking. Theory and numerical simula-
tions (for reviews see Taam 1995, Livio 1996) predict that this
case happens if the secondary is massive enough and the density
gradient in the inner parts of the giant are not too steep. If these
conditions are not met, the secondary is predicted to dissolve
completely, transferring all its mass to the giant envelope. A
significant fraction of common envelope systems may actually
experience this fate.

The high incidence of elongated or bipolar structures in plan-
etary nebulae (PN) and objects believed to be in transit from an
AGB star to a PN suggests that a large fraction of PN involve
some form of common envelope evolution (e.g. Han et al. 1995).
Detailed hydrodynamical simulations have been made to repro-
duce the morphology of these nebulae (Icke et al. 1992, Frank
& Mellema 1994). The results show that in the initial phases of
the radiation driven nebular expansion there must have been a
thick disk-like structure inhibiting fast outflow in the plane of
the disk, leaving a structure of two rapidly expanding lobes and
a more slowly expanding ring. In the CE interpretation, the disk
contains the mass ejected in the spiral-in process.

If the secondary is small, the energy released as it spirals
in is insufficient to eject the entire envelope of the primary.
The net effect in this case is that both the mass and the angu-
lar momentum of the secondary are added to the envelope of
the primary. The envelope remaining on the primary after the
CE would then contain a large amount of angular momentum,
even if the companion absorbed is small. Would this suffice to
produce a rotating white dwarf? If our basic assumption of ap-
proximately uniform rotation is valid, the answer is negative.
This follows from the analysis of Sect. 4.1, where I have shown
that even a maximally rotating AGB star leaves a core rotating
with a period of at least 10 years.

This answer applies as long as there is still a significant
amount of mass left in the envelope after the common envelope
process (0.1M�, say), and mass loss then continues like in
normal AGB stars. If any significant amount of mass is left in
the form of a convective envelope after the CE, the results from
Sect. 4.1 predict that the result will be a very slowly rotating
white dwarf.

The consequence of the above is that a rapidly rotating white
dwarf by CE evolution is to be expected only if the final dis-
solution of the companion coincides rather precisely with the
ejection of the last bits of envelope. Barring possible surprises
conc erning late phases of CE evolution, the details of which
are not well known, this situation would appear to be a rare
coincidence.

6. Discussion

In the standard view, the rotating single WD derive from the ro-
tating cores of giants, which somehow avoided spinning down in
the slowly rotating convective envelope. I argue, instead, that ro-
tating cores in giants are an unattractive idea, especially if these
cores are magnetic. Unless the magnetic WD acquired their
fields after emerging from the envelope, the observed dipole
moments are so large that a strong interaction with the slowly
rotating convective envelope would be very hard to avoid.

I recall the classical demonstration (e.g. in Mestel 1953,
1961) that rather weak magnetic fields (magnetic energy a small
fraction of the rotational energy) can already transmit enough
torques to maintain corotation between core and envelope. Such
a weak field could be inherited from the star formation process.
In order to prevent these torques from acting, any magnetic
field in the core would have to be very weak or very accurately
shielded from the convective envelope. In addition, a differ-
entially rotating, initially nonmagnetic core is unstable to the
growth of a small scale dynamo magnetic field, initiated by a
magnetic shear instability (Balbus & Hawley 1992). The con-
ditions for existence of this instability in stars were studied in
detail already by Acheson (1978) who showed, in particular,
that thermal diffusion allows it to operate under a much wider
range of conditions than in the adiabatic case.

The very weak differential rotation in the core of the Sun
(e.g. Kosovichev et al.1997), for which no good explanation
has been put forward except magnetic torques, is strong evi-
dence for the operation of magnetic effects. While the arguments
given here do not constitute a proof, I feel they are sufficiently
compelling that approximately uniform rotation is a reasonable
hypothesis, and is at least as plausible as the traditional assump-
tion, which implies a core rotating104–105 times faster than the
envelope for the entire duration of the RGB and AGB.

I have explored the consequences of the assumption of ap-
proximately uniform rotation for AGBs stars in the process of
shedding their envelopes. If this mass loss is strictly axisymmet-
ric, the remaining core rotates very slowly (period more than 10
years). This is just the consequence of angular momentum con-
servation: the wind takes away almost the entire envelope, but
the specific angular momentum it carries away is that of the
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stellar photosphere, which is larger than the average specific
angular momentum of the envelope.

On the other hand, only small nonaxisymmetries in the mass
loss process suffice to give the star enough ‘kick’ to explain the
angular momentum of single white dwarfs. Such kicks could
be associated with mass loss events at the pulsation period of
the star or dust-formation episodes in the atmosphere. I have
illustrated this with a calculation of the evolution of the prob-
ability distribution of the star’s angular momentum under the
combined action of many small nonaxisymmetric kicks and the
angular momentum loss in the wind. The degree of asymmetry
required is found to be of the order10−3.

Present theories for AGB mass loss are not detailed enough
to calculate such asymmetries, but observational indications for
asymmetries exist. Interferometric images of red supergiants
(α Sco,α Ori andα Her: Tuthill et al. 1997), speckle recon-
structions (α Ori: Kluckers et al. 1997) and HST imaging (α Ori:
Gilliland & Dupree, 1996) show pronounced ‘hot spots’ on their
surfaces. Assuming that such nonuniform photospheric condi-
tions persist during the superwind phase, one would expect them
to also affect the dust formation that is thought to be essential
for the driving of the wind. The required asymmetry is obtained
if a few (5 say) such spots are present, and the wind locally gen-
erated above these spots is slightly non-radial by a few tenths
of a degree. That the mass flow is indeed asymmetric already
close to the stellar photosphere is shown by speckle imaging
(IRC 10216: Osterbart et al. 1997), and especially by mm-wave
interferometric images of the SiO maser emission. These show
a highly clumpy and time dependent structure (Diamond et al.
1994, Humphreys et al. 1996, Pijpers et al. 1994). This maser
emission occurs at a few stellar radii, which is also the region
where the backreaction of the wind on the star (‘kick’) takes
place. Though the SiO maser emission is very sensitive to small
changes in the local physical conditions, models of the emission
(Lockett & Elitzur 1992, Bujarrabal 1994) should give estimates
of the degree of inhomogeneity in the physical conditions in the
wind.

Measurement of deviations from radial flow in proper mo-
tion studies of the masing clumps in the wind should enable
direct determination of the asymmetries relevant for the kick
process described in this paper.

An issue mentioned here only briefly is the origin of the 5
or so very slowly rotating (P ∼> 100yr) magnetic white dwarfs.
A possible explanation is angular momentum loss in a radiation
driven, but magnetized, wind during post-AGB evolution. This
possibility will be further explored elsewhere.

The coupling between core and envelope proposed here
would also imply that the cores of pre-supernovae on the gi-
ant branch are so slowly rotating that very slowly (P ∼ 1hr)
rotating neutron stars would result even if angular momentum
were conserved during core collapse. While these would not
show up as pulsars, one would have to argue that none of the
observed pulsars were formed in red giants, which feels like an
unattractive idea. It turns out, however, that the kicks neutron
stars receive at birth and which give them their high observed
space motion, are strong enough to impart a significant rotation

as well. This idea is developed further in a separate paper (Spruit
& Phinney, 1998).
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