![]() | ![]() |
Astron. Astrophys. 334, 409-419 (1998) 4. Results of the data analysisWe analyse the simulated maps of secondary fluctuations due to the moving lens effect, for the three cosmological models described in Sect. 3, and we quantify their contributions. We also make attempts at detecting and extracting the secondary fluctuations from the entire signal (primary CMB, SZ kinetic effect and moving lenses). 4.1. Statistical analysisWe show the histogram of the secondary fluctuations for the moving
lens effect (randomly generated) in the three cosmogonies
(Fig. 2). In all cases, the amplitude of anisotropies ranges
roughly between
In the context of our statistical analysis of the secondary anisotropies, we also compute the fitted angular power spectra (Fig. 3) of the three main sources of anisotropies: primary CMB fluctuations (in the standard CDM model) and both the predicted power spectra of the fluctuations due to the moving lenses (thin lines) and the SZ kinetic effect (thick lines). In Fig. 3, the solid lines are for the standard CDM model, dashed and dotted lines are respectively for the open and non zero cosmological constant models.
We fit the power spectra of the secondary anisotropies due to moving lenses with the general expression: in which the fitting parameters for every cosmological model are given in Table 1. Table 1. Fitting parameters for the power spectrum of the fluctuations induced by moving lenses as a function of the cosmological model. The SZ kinetic anisotropies are fitted with the following expression: with the fitting parameters for the cosmological models gathered in Table 2. Table 2. Fitting parameters for the power spectrum of the fluctuations induced by the Sunyaev-Zel'dovich kinetic effect as a function of the cosmological model. The power spectra of the SZ kinetic effect exhibit the
characteristic The moving lens power spectra, for both CDM and
In order to interpret this behaviour, we distinguish between what
we refer to as the resolved and unresolved structures. The spatial
extent of the resolved structures is much greater than the pixel size
(or analogously the beam size). Whereas, the unresolved objects have
extents close to, or smaller than, the pixel size. At the pixel size
an unresolved structure generates a SZ kinetic anisotropy which is
averaged to a non-zero value. Whereas the dipolar anisotropy induced
by the moving lens effect is averaged to zero (except what remains
from the side effects). A pixel size anisotropy thus does not
contribute to the signal in the moving lens effect; while it
contributes with its At a given large scale and for the SZ kinetic effect, there is more power on large scales in a standard CDM model compared with the OCDM. This is because the contribution to the power comes from low redshift resolved structures, which are less numerous in an OCDM model. Consequently, in the case of the fluctuations induced by the moving lens effect at large scale, the power in the OCDM model is greater than in the standard CDM. In addition, at a given large scale the power of the moving lens effect accounts for the cumulative contribution from the massive objects, with high amplitude, and from the less massive ones, with lower amplitudes. A comparison between the CMB and the moving lens power spectra
obviously shows that primary CMB fluctuations dominate at all scales
larger than the cut-off scale, whatever the cosmological model
(Fig. 3). Furthermore in the OCDM and Nevertheless, the contribution of the SZ kinetic effect is very
dependent on the predicted number of structures that show a gas
component. In other words, some objects like small groups of galaxies
may not have a gas component, and therefore no SZ thermal or kinetic
anisotropy is generated, but they still exhibit the anisotropy
associated with their motion across the sky. We attempt to study a
rather wide range of models. We therefore use two prescriptions to
discriminate between "gaseous" objects and "non gaseous" ones. These
prescriptions correspond to arbitrary limits on the masses of the
structures. Namely: in the first model, we assume that all the dark
matter halos with masses greater than Despite this cut-off in mass and the decrease in power, the SZ kinetic effect remains much larger than the moving lens effect. Therefore at small angular scales, the SZ kinetic point like sources are still the major source of confusion. In order to get rid of this pollution in an effective way, one would need a very sharp but unrealistic cut-off in mass.
4.2. Detection and extractionWe analyse the simulated maps in order to estimate the amplitudes
of the anisotropies associated with each individual moving structure.
In such an analysis both primary CMB and SZ kinetic fluctuations
represent spurious signals with regards to the moving lens.
Fig. 3 shows that these signals contribute at different scales
and at different levels. The primary CMB contribution vanishes on
scales lower than the cut-off whereas the SZ kinetic contribution
shows up at all scales and its power increases as
Nevertheless, the signal has two characteristics that make the attempts at detection worthy at small scales. The first advantage is that the anisotropy induced by a moving lens exhibits a particular spatial signature which is seen as the dipole-like patterns shown in Fig. 5. The second, and main advantage is that we know the position of the center of the structures thanks to the SZ thermal effect.
In fact, the objects giving rise to a dipole-like anisotropy are either small groups or clusters of galaxies with hot ionised gas which also exhibit SZ thermal distortions. The latter, characterised by the so-called Comptonisation parameter y, have a very specific spectral signature. It is therefore rather easy to determine the position of the center of a structure assuming that it corresponds to the maximum value of the y parameter. In the context of the Planck multi-wavelength experiment for CMB observations, it was shown (Aghanim et al. 1997) that the location of massive clusters will be well known because of the presence of the SZ thermal effect. We based our detection strategy for the moving lens effect on these two properties (spatial signature and known location). We also assumed that the SZ thermal effect was perfectly separated from the other contributions thanks to the spectral signature. The problem is therefore eased since it lies in the separation of moving lens, SZ kinetic and primary CMB anisotropies at known positions. Nevertheless the clusters and their gravitational potential wells are likely to be non-spherical, making the separation difficult. In the following, we will show that even in the simple spherical model we adopt the separation remains very difficult because of the spectral confusion of the moving lens, SZ kinetic and primary CMB fluctuations. Separation is even more difficult because of the numerous point-like SZ kinetic sources corresponding to weak clusters and small groups of galaxies for which we do not observe the SZ thermal effect. 4.2.1. MethodIn order to clean the maps from the noise (SZ kinetic and CMB fluctuations), we filter them using a wavelet transform. Wavelet transforms have received significant attention recently due to their suitability for a number of important signal and image processing tasks. The principle behind the wavelet transform, as described by Grossmann & Morlet (1984), Daubechies (1988) and Mallat (1989) is to hierarchically decompose an input image into a series of successively lower resolution reference images and associated detail images. At each level, the reference image and detail image contain the information needed to reconstruct the reference image at the next higher resolution level. So, what makes the wavelet transform interesting in image processing is that, unlike Fourier transform, wavelets are quite localised in space. Simultaneously, like the Fourier transform, wavelets are also quite localised in frequency, or more precisely, on characteristic scales. Therefore, the multi-scale approach provides an elegant and powerful framework for our image analysis because the features of interest in an image (dipole pattern) are generally present at different characteristic scales. Furthermore, the wavelet transform performs contemporaneously a hierarchical analysis in both the space and frequency domains. The maps are decomposed in terms of a wavelet basis that has the best impulse response and lowest shift variance among a set of wavelets that were tested for image compression (Villasenor et al. 1995). These two characteristics are important if we want to identify the locations and the amplitudes of the moving lenses. Since the moving lenses induce very small scale anisotropies compared to the CMB, we filter the largest scales in order to separate these two contributions. We note that this also allows us to separate the contributions due to the large scale SZ kinetic sources. In the following we describe our analysis method, first applied to an unrealistic study case and then to a realistic case. ![]() ![]() ![]() ![]() © European Southern Observatory (ESO) 1998 Online publication: May 15, 1998 ![]() |