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Abstract. Cyclotron absorption is known to be significant in
pulsar magnetospheres. It is shown that when particles absorb
significant fraction of pulsar radio emission, they acquire rela-
tivistic gyration. Therefore synchrotron absorption by relativis-
tic plasma with small pitch-angles is considered. It is shown that
both the frequency of the absorbed radiation and the absorption
coefficient remain the same as in the cyclotron case provided
that the angle the absorbed radiation makes with plasma veloc-
ity exceeds the pitch-angle. This condition holds if the absorbed
energy is less than initial energy of plasma. Spontaneous ree-
mission of the absorbed energy is considered. In short-period
pulsars, a significant fraction of the absorbed energy is reemitted
in the far infrared band.

Key words: plasmas – radiation mechanisms: non-thermal –
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1. Introduction

The radio emission observed from pulsars is known to be highly
directional. So it is widely accepted that the pulsar radio emis-
sion originates well within the magnetosphere of the neutron star
within a narrow tube of open magnetic field lines. The electron-
positron plasma streams relativistically along the tube therefore
the emission is concentrated in a narrow beam directed along
the magnetic axis. Where the radio emission is presumably gen-
erated, the magnetic field strength is extremely high, so that the
electron gyro-frequency greatly exceeds the frequency of the
originating radio waves in the plasma rest frame. The gyro-
frequency decreases outwards due to dipolar character of the
magnetic field. So at some radius the gyro-frequency becomes
equal, in the plasma rest frame, to the frequency of the outgo-
ing radiation, that is the cyclotron resonance takes place. Then
the radiation is absorbed, the plasma particles being excited
into higher Landau orbitals. Because particles on high Landau
orbitals emit synchrotron radiation, some part of the absorbed
energy is reemitted at larger frequencies.

Note that in the magnetized plasma the cyclotron resonance
occurs at the negative harmonic of the gyro-frequency as well.
Then the particle transitions into higher Landau orbitals result
in the anomalous Doppler emission, if only the plasma allows

corresponding subluminous waves. Since initially the particles
populate the ground Landau orbital, these waves should be am-
plified (Tsytovich & Kaplan 1972; Kawamura & Suzuki 1977,
Machabeli & Usov 1979, 1989; Lominadzeet. al.1983, Kazbegi
et. al.1991). The instability is known to be possible at very high
plasma densities for waves propagating along the magnetic field.
We do not consider here this process because waves emitted well
within the magnetosphere come to the resonance region at large
enough angle to the magnetic field; therefore these waves may
be only absorbed but not amplified.

The cyclotron absorption of radiation within pulsar mag-
netospheres was first considered by Blandford & Scharlemann
(1976). The authors found the process to be extremely effective.
According to their result, in the standard pulsar models radio
emission from the internal parts of the magnetosphere should be
heavily absorbed. Later on Mikhailovskiiet.al. (1982) treated
the cyclotron absorption of radio waves at pulsar conditions in
terms of the plasma theory and came to similar conclusions.
Note that the problem of radio wave escape from pulsar magne-
tospheres may be avoided by assuming that plasma generation
above the polar cap is unsteady. Then at any given moment the
plasma do not fill the whole open magnetic field tube and radi-
ation can freely escape from the magnetosphere when there is
no plasma at the cyclotron resonance radius.

Both of the two papers mentioned above deal with the case
of non-relativistic particle rotation in the guiding-center frame.
Indeed the electron-positron plasma leaves the polar cap region
moving along the magnetic field in the lowest Landau orbital
because any transverse energy immediately radiates away in the
superstrong magnetic field. However it will be shown below that
far from the neutron star, where the cyclotron resonance con-
dition is met for radio frequencies, the electrons and positrons
readily acquire relativistic gyration energies through absorption
of pulsar radio emission. The aim of our work is to examine the
conditions in which radio absorption allows relativistic trans-
verse motion of particles and to consider the absorption by the
relativistically gyrating particles. In Sect. 2 we estimate some
essential parameters determinant for the cyclotron absorption
process. Only the cyclotron resonanse within the light cylin-
der is considered, which is justified for ”normal” pulsars with
P >∼ 0.1s and for low-field recycled pulsars withP >∼ 10ms.
Sect. 3 deals with the kinematics of absorption. It is shown
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that when the particles absorb significant amount of pulsar ra-
dio emission, they acquire relativistic gyration energies. A gen-
eral consideration of the synchrotron absorption and emission
in terms of Einstein’s coefficient method is given in Sect. 4.
Sect. 5 is devoted to an analysis of spontaneous emission re-
sulting from particle radiative de-excitation. In Sect. 6 we make
some summary. The Appendix contains the calculation of the
synchrotron absorption coefficient on the basis of plasma the-
ory. The condition on which the plasma influence is negligible
is given there as well.

2. Characteristic parameters of cyclotron absorption

Let radiation propagate through a medium of relativistically
moving electrons and positrons embedded in a magnetic field.
The cyclotron resonance condition for radio frequencies is met
at the distances from the neutron star comparable to the light
cylinder radius; the plasma density there falls considerably be-
cause the open field lines diverge. Hence, the refractive index
of any wave mode at the cyclotron resonance radius is close to
unity (for more details see Appendix), so that one can regard
the waves undergoing the cyclotron resonance to be approxi-
mately transverse electromagnetic ones. If a wave reaches (by
any way) the cyclotron resonance region, it is already transverse
electromagnetic wave independently of what type of wave was
radiated well within the magnetosphere.

We consider absorption of linearly polarized transverse elec-
tromagnetic waves. Electrons and positrons absorb linearly po-
larized radiation identically, therefore below we consider only
electrons. Although in pulsar conditions electron and positron
distribution functions are known to be slightly different, the
contribution of the effect to absorption process is negligible.
Note that the two-stream instability, which may be caused by
this difference, does not affect the cyclotron absorption pro-
cess because the instability generates underluminous waves in
the Cherenkov resonance with particles whereas we consider
absorption of waves whose frequencies meet the condition of
cyclotron resonance (see Appendix).

The optical depth to cyclotron absorption of radiation may
be easily obtained as follows (Blandford & Scharlemann 1976).
The absorption cross-section in the rest frame of an absorbing
electron is given by a well-known formula:

σ = 2π2 e
2

mc
δ(ω′ − ωH). (2.1)

Heree is the electron charge,m the electron mass,c the speed
of light,ω′ the frequency of incident radiation,ωH the cyclotron

frequency;ωH = eB
mc , withB being the magnetic field strength.

If the electron is moving at the angleθ to the flux of radiation,
the probability of absorbing a photon per unit length isσ(1 −
β cos θ), whereβ is the electron velocity in units ofc. Therefore
the optical depth to cyclotron absorption in the laboratory frame
is written as

Γc =
∫
σ(1 − β cos θ)Ndl, (2.2)

whereN is the plasma number density and integration is over
the ray trajectory.

We assume the magnetic field inside the pulsar magneto-
sphere to be dipolar one:B = B?(r?/r)3, wherer? is the
neutron star radius,B? the field strength at the stellar surface.
Continuity of the plasma flow within the open field line tube
requires the plasma number density to follow the magnetic field
strength:

N = N?

(r?
r

)3
.

The number densityN? at the bottom of the open field line
tube is conveniently normalized by the Goldreich-Julian charge
density

N? =
κB?

Pce
,

whereκ is the plasma multiplicity factor,P the pulsar period.
Note that the standard pulsar models (e.g.,Ruderman & Suther-
land 1975, Arons 1983) suggestκ ∼ 103 − 104, however be-
cause of significant uncertainties in the available models, one
can also assumeκ is outside this range. Making use of the above
formulas, the cyclotron optical depth may be estimated as

Γc ∼ κ
rc
rL
θ2c , (2.3)

whererL = cP/2π is the light cylinder radius,rc andθc are
referred to the point of cyclotron resonance.

Now we turn to magnetosphere geometry in order to find the
cyclotron resonance radiusrc and the angleθc (see also Barnard
1986). The cyclotron resonance condition may be written as

ωγ(1 − β cos θ) = ωH , (2.4)

whereγ is the plasma Lorentz-factor. First we assume that
rc � rL. Let a ray be emitted along the magnetic field line
at a radiusr0. In the case of non-rotating dipolar magnetic field
the ray would make the angle3θ0(1 − r0/r)/4 with the field
line at a radiusr; hereθ0 is the polar angle of the emission
point. Due to rotation the magnetic axis turns through the angle
(r−r0) sinϑ/rL, withϑ being the angle between the rotational
and magnetic axes of the pulsar. Then the angle between the ray
and magnetic line at the radiusr � r0 is r sinϑ/2rL ± 3θ0/4.
One can neglectθ0, since the ray is emitted along the magnetic
field well inside the open field line tubeθ0 <∼

√
r0/rL <∼ 0.1.

The magnetic field structure is known to deviate from the dipolar
one, the field lines bending away from the rotational direction.
However, the corresponding angle,∼ (r/rL)3/2, does not ex-
ceed the rotation angle and can be neglected. In the laboratory
frame electrons move along the magnetic lines with an ultra-
relativistic velocity and take part in the magnetosphere rotation
with the linear velocitycr sinϑ/rL. So to the first order inr/rL
we find the angleθ between the ray and electron velocity to be

θ =
r

2rL
sinϑ. (2.5)

At the cyclotron resonance radiusθγ � 1; the cyclotron
resonance condition (2.4) then yields:

rc
rL

=
0.3B1/5

?12

(P 3ν9γ2 sin2 ϑ)1/5
, (2.6)
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whereB?12 ≡ B?

1012G
, ν9 ≡ ν

109Hz
, γ2 ≡ γ

102 . The star

radius here and hereafter is taken asr? = 106cm. Thus the
resonance for radio frequencies occurs inside the light cylinder
on condition that

P > 0.13B1/3
?12ν

−1/3
9 γ

−1/3
2 sin−2/3 ϑ s (2.7)

So for long-period pulsars the cyclotron resonance takes place
well within the light cylinder at any reasonable conditions. In
that case one can evaluate the optical depth to cyclotron absorp-
tion using Eqs. (2.3)–(2.6):

Γc =
2κ3B

3/5
?12 sin4/5 ϑ

(P 3ν9γ2)3/5 . (2.8)

Apparently, the cyclotron absorption inside the light cylinder
is efficient if the plasma multiplicity factorκ3 ≡ κ

103
>∼ 1. In

agreement with Eq. (2.7), ifP ∼ 0.1s the resonance takes place
close to the light cylinder; this is also true for the recycled pulsars
with P >∼ 10ms because their magnetic field is low. Given that
rc ≈ rL the angleθ is of order unity. So the cyclotron depth for
pulsars withP ∼ 0.1s may be estimated as

Γc ∼ 102κ3, (2.9)

which is rather high at any reasonableκ. Because the magnetic
field structure beyond the light cylinder is badly known, we
do not consider fast pulsars (P < 0.1s for normal pulsars and
P < 10ms for recycled ones).

3. Variations of plasma parameters in the course of
absorption process

In the previous section the optical depth to cyclotron absorp-
tion of radio waves in pulsar magnetospheres was found to be
significant. So the plasma particles absorb an essential part of
the energy of incident radiation, the energy of their transverse
motion increasing. The treatment of the absorption process car-
ried out above is valid until the particles absorb enough energy
to perform relativistic transverse motion in the guiding-center
frame. In the present section we deduce the condition under
which the transverse motion becomes relativistic and examine
whether it is the case in pulsar magnetospheres.

It is convenient to investigate the absorption process in the
corotating frame, in which the electric field is absent and ini-
tially electrons stream along the magnetic field at the relativistic
velocity. Consider absorption by an electron moving at an angle
θ to incident radiation. Conservation of energy and momentum
parallel to the field implies

γmc2 + αγmc2 = γ1mc
2,

γmv + αγmc cos θ = γ1mv‖,
(3.1)

whereγ andγ1 are initial and final electron Lorentz-factors,
respectively,αγmc2 is the energy absorbed. Hence, one can
obtain:

β‖ =
β + α cos θ

1 + α
, (3.2)

β⊥ =

√
α2 sin2 θ + 2α(1 − β cos θ)

1 + α
, (3.3)

whereβ‖, β⊥ are the components of the final electron velocity,
parallel and perpendicular to the field, respectively, in units of
c, β the initial velocity in units ofc. Let the absorbed energy be
much less than the initial energy of the electron,α � 1, then
β⊥ ≈ θ

√
α. The transverse electron momentum,p⊥ ≡ β⊥γmc,

remains unchanged by Lorentz transformation to the guiding-
centre frame. So the electron gyration is relativistic when

α > (θγ)−2, (3.4)

i.e., when the absorbed energy is still very small as compared
to the initial electron energy. As soon as the inequality (3.4)
becomes true the Lorentz-factor of longitudinal motion,γ‖ ≡
(1 − β2

‖)−1/2, decreases approaching(θ
√
α)−1. Note that, in

accordance with Eqs. (3.2), (3.3), when the absorbed energy
exceeds the initial electron energy,α > 1, the electron pitch-
angle approachesθ, if only (π/2 − θ) > 1/α. In the laboratory
frame the longitudinal energy always significantly exceeds the
transverse one.

Given the efficient cyclotron absorption the plasma absorbs
an essential part of the energy of passing radiation. So the max-
imumα may be estimated as the ratio of the initial energies of
radiation and the absorbing plasma. Radiation is supposed to
be emitted along the open magnetic lines and concentrated into
a beam of angular widthψ (ψ ∼ 0.1). First we consider long-
period pulsars. At the cyclotron resonance radiusrc (rc � rL),
the scale length of lightened area in the direction perpendicular
to magnetosphere rotation isψrc while in the direction of ro-
tation it is∼ r2c sinϑ/rL. Then the cross-section of lightened
area may be estimated as

S =
ψr3c
rL

sinϑ. (3.5)

Note that it turns out to be much less than the open field line
tube cross-section, which isπr3c/rL. Therefore only a small part
of the plasma occupying the open field line tube takes part in
absorbing radiation. In agreement with the definition ofαmax

one can write:

αmax =
L

NSγmc3
, (3.6)

whereL is the pulsar luminosity at a given frequency. Using
Eqs. (2.6), (3.5) Eq. (3.6) may be reduced to the form:

αmax =
3L28P

2

κ3γ2ψ−1B?12 sinϑ
, (3.7)

whereL28 ≡ L
1028erg · s−1 , ψ−1 ≡ ψ

0.1 . It is easy to see that

αmax is independent onrc sinceN ∝ r−3
c , S ∝ r3c . Therefore

in case of short-period pulsars (rc ∼ rL) αmax is also given by
Eq. (3.7). Note that the value ofαmax appears to vary within
orders of magnitude due to the essential dependence onL, P
andκ. The inequality (3.4) withα given by Eq. (3.7) is true if

κ3 < 700L28P
4/5ν

−2/5
9 B

−3/5
?12 γ

3/5
2 ψ−1

−1 sin−9/5 ϑ.
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In accordance with Eq. (2.8), ifκ3 <∼ P 9/5 the efficiency of
cyclotron absorption is small. Then the energy absorbed is char-
acterized byα = αmaxΓc. Using the latter in Eq. (3.4) yields
that relativistic gyration energies are achieved at

L28 ≥ 10−3Pν9ψ−1 sinϑ.

These inequalities hold for all pulsars, therefore absorption by
the relativistically gyrating electron should be considered.

4. Synchrotron absorption coefficient

As soon as an electron acquires relativistic gyration energy in
the guiding-centre frame the character of absorption alters, so
that the cross-section for cyclotron absorption given by Eq. (2.1)
is expected to be no longer valid. Now we proceed to the more
general consideration. The only restriction assumed is that in the
corotating frame the electron energy is chiefly longitudinal; in
another words, the electron pitch-angle is much less than unity.
Absorption and emission of small-pitch-angle synchrotron ra-
diation will be investigated in terms of Einstein’s coefficients.

Einstein’s coefficientsAj
l , Bj

l , Bl
j are related to each other

by well-known expressions:

Bj
l = Bl

j ; Bj
l =

8π3c3

n2h̄ω3

∣∣∣∣∂(nω)
∂ω

∣∣∣∣A
j
l , (4.1)

wheren is the refractive index of the incident wave. In the
above relations the refractive index deviation from unity can
be ignored. Note that the power emitted spontaneously by gy-
rating electron, and consequentlyAj

l , depends onn as well;
there |1 − n| can be ignored on more stringent condition:
|1 − n| � 1/γ2 (see,e.g., Ginzburg & Syrovatskii 1969), with
γ being the electron Lorentz-factor. Further on we suppose this
condition is fulfilled. A more general treatment on the basis of
the dispersion relations for the wave modes in the magnetized
plasma is carried out in Appendix.

The absorption coefficient,µ, may be written as

µ =
h̄ω

c

∑
(NjB

l
j −NlB

j
l ) =

8π3c3

ω2

∑
Aj

l (Nj −Nl).

(4.2)
HereNj , Nl are the numbers of electrons on thej-th andl-th
Landau orbitals, respectively, and summation is over all tran-
sitions between the states whose energies differ byh̄ω. The
difference(Nj − Nl) may be expressed in terms of the elec-
tron distribution functionf(p⊥, p‖), wherep⊥ andp‖ are the
components of momentum parallel and perpendicular to the
magnetic field. The normalization is assumed to be as follows:
2π
∫
f(p⊥, p‖)p⊥dp⊥dp‖ = 1. Then

Nj −Nl = −N
(
∂f

∂p⊥
∆p⊥ +

∂f

∂p‖
∆p‖

)
. (4.3)

Here the variations∆p⊥, ∆p‖ may be found from the conser-
vation laws:

∆p‖ = h̄ω
c cos θ,

ε∆ε = p‖∆p‖c2 + p⊥∆p⊥c2,
(4.4)

whereθ is the angle the incident wave makes with the magnetic
field, ε the electron energy,∆ε = h̄ω.

The coefficientAj
l is related to the synchrotron energy

loss rate at thel-th harmonic of gyro-frequency,Pl(ω, θ) =
h̄ωAj+l

j (ω, θ). Making use of the well-known formula for the
power of synchrotron emission (see, e.g., Eq.(6.15) in Bekefi
1966) and taking into account that the observed power,ηl(ω, θ),
is related toPl(ω, θ) asPl = (1 − β‖ cos θ)ηl, one can write

Aj+l
j (ω, θ) =

e2ω

2πch̄

{(
cos θ − β‖

sin θ

)2

J2
l (ξ)

+β2
⊥J

′2
l (ξ)

}
δ[lωH/γ − ω(1 − β‖ cos θ)], (4.5)

HereJl(ξ) is the Bessel function,J ′
l (ξ) the derivative with re-

spect to argument,

ξ =
lβ⊥ sin θ

1 − β‖ cos θ
. (4.6)

The first term in the braces of Eq. (4.5) describes an ordinary
wave polarized in one plane with the wave vector and the mag-
netic field while the second term corresponds to an extraordinary
wave polarized perpendicularly to this plane.

Note that the expression forPl(ω,Ω) written above refers
to the corotating frame where the electric field is absent and
there is no particle drift. Being transformed into the laboratory
frame the angleθ changes due to aberration by the correction of
r sinϑ/rL becoming equal to−r sinϑ/2rL while all the other
quantities remain unchanged to the first order inr/rL (see Sect.
2). Sinceθ turns out to be the same in the absolute value and
emission is certainly symmetrical with respect to the magnetic
field then to the first order inr/rL Eq. (4.5) is appropriate in
the laboratory frame as well.

Using Eqs. (4.3)-(4.6) in Eq. (4.2) one can obtain:

µi =
8π3e2N

mc

∫
dp⊥dp‖

γ

[(
− ∂f

∂p⊥

)
(1 − β‖ cos θ) (4.7)

+
(

− ∂f

∂p‖

)
p⊥
γmc

cos θ
]∑

l

R
(i)
l δ[lωH/γ−ω(1 −β‖ cos θ)],

wherei = 1, 2, with the indices1 and2 referring to ordinary
and extraordinary modes, respectively;

R
(1)
l =

(
cos θ − β‖

sin θ

)2

p2
‖J

2
l (ξ), R

(2)
l = p2

⊥J
′2
l (ξ). (4.8)

So we found the coefficients of synchrotron absorption and
emission for both ordinary and extraordinary waves.

In Sect. 3 it was pointed out that as long as the energy ab-
sorbed remains less than the initial electron energy,α � 1, the
electron Lorentz-factor is nearly constant andβ⊥ � θ. Then
the resonance condition given by the argument of delta-function
in Eq. (4.7) may be approximately written as

ω =
2lωH

θ2γ
.
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So in caseβ⊥ � θ, the frequency of the basic harmonic suf-
fering synchrotron absorption is the same as the frequency ab-
sorbed in the cyclotron case (cf. Eq. (2.4)) although electron
gyration is already relativistic.

Note that the second term in the square brackets of Eq. (4.7)
is β2

⊥/θ
2 less than the first one, so it can be neglected. The

small-pitch-angle condition implies thatp‖ ≡ β‖γmc = γmc.
Then the first term in Eq. (4.7) may be easily integrated by parts
yielding:

µ1 =
16π3e2N

mc

∫ p2
‖dp⊥dp‖
p⊥γ

(
cos θ − β‖

sin θ

)2∑
l

ξJl(ξ)J ′
l (ξ)

×(1 − β‖ cos θ)fδ[lωH/γ − ω(1 − β‖ cos θ)], (4.9)

µ2 =
16π3e2N

mc

∫
p⊥dp⊥dp‖

γ

∑
l

l2 − ξ2

ξ
Jl(ξ)J ′

l (ξ)

×(1 − β‖ cos θ)fδ[lωH/γ − ω(1 − β‖ cos θ)]. (4.10)

In the last expression we used the relation:

ξJ ′′
l (ξ) + J ′

l (ξ) =
l2 − ξ2

ξ
Jl(ξ)

resulting from the Bessel equation. Recall that the above for-
mulas are obtained for electrons. Positrons absorb linearly po-
larized radiation independently in the same way. Therefore, if
distribution functions of electrons and positrons are the same,
one can use Eqs. (4.9, 4.10) withN being the total number of
particles. In general case one should take sum of the expres-
sions (4.9) (or, correspondingly, (4.10)) for both these species
with proper distribution functions. Note that in pulsar magne-
tospheres distribution functions of electrons and positrons do
differ however the difference is not large, the characteristic en-
ergies of most of particles are the same.

To the first order inβ⊥/θ the Bessel function argument (4.6)
becomes:

ξ =
2lβ⊥
θ

. (4.11)

Then atl � θ/β⊥ the Bessel function can be approximately
presented in the form:

Jl(ξ) ∼ 1
l!

(
ξ

2

)l

. (4.12)

So induced absorption of the first harmonic is the most effective.
Substituting Eqs. (4.11), (4.12) into Eqs. (4.9), (4.10) it is easy
to obtain to the first order inβ⊥/θ:

µ1 = µ2 =
2π2Ne2

mcω
F

(
2ωH

ωθ2

)
, (4.13)

with

F (γ) = 2π
∫
f(p⊥, p‖)p⊥dp⊥.

Above it is assumed thatθ � 1/γ. The absorption coefficient
given by Eq. (4.13) is exactly the same as the cyclotron one. In
agreement with Eq. (2.2),µ = Nσθ2/2. Then takingf(γ) =

δ(γ−γ̃) we immediately come toσ = 2π2 e2
mcδ(ωγ̃θ

2/2−ωH),
which is the customary cross-section for cyclotron absorption.
Thus the latter is appropriate in the synchrotron case as well,
provided thatβ⊥ � θ.

In the previous section we found out that as soon as the en-
ergy absorbed exceeds the initial electron energy,α > 1, β⊥
approachesθ. Then the cross-section for cyclotron absorption
is no longer valid. In this case Eqs. (4.7)–(4.8) for the absorp-
tion coefficients cannot be simplified without using a specific
form of the distribution function. Since the distribution func-
tion formed after absorption of large amount of energy may be
rather complicated detailed consideration of the caseβ⊥ ∼ θ is
beyond the scope of the present paper.

As long asβ⊥ � θ the optical depth for synchrotron ab-
sorption certainly coincides with that given by Eq. (2.8) in the
cyclotron case. Hence, at

κ3 > 0.5ν3/5
9 P 9/5B

−3/5
?12 γ

3/5
2 sin−4/5 ϑ (4.14)

pulsar radiation should be heavily affected by synchrotron ab-
sorption. Note that the shorter the pulsar period the more ef-
fective the synchrotron absorption process; given thatP ≤ 0.1
s the absorption depth appears to be large at any conceivable
pulsar parameters. Then inhomogeneity of the plasma flow can
only account for the escape of pulsar radiation from the mag-
netosphere.

5. Spontaneous reemission

In the above consideration spontaneous reemission was sup-
posed to be sufficiently weak to alter the electron gyrational
energy essentially. The spontaneous power found by Blandford
& Scharlemann (1976) for the cyclotron case proved to be neg-
ligible. However, the synchrotron power is sure to be larger than
the cyclotron one.

Note that while synchrotron absorption occurs predomi-
nantly at the first harmonic of gyro-frequency, spontaneous
emission peaks at the essentially higher frequency,ωs. The lat-
ter corresponds to the harmonic with the number of∼ γ3

0 , where
γ0 is the electron Lorentz-factor in the guiding-centre frame, so
that

ωsγ‖(1 − β‖ cos θs) = ωHγ
2
0 ,

whereθs is the angle which the emission makes with the mag-
netic field. Spontaneously emitted radiation is mainly directed
along the electron velocity,θs ∼ 1/γ‖, within the interval
∆θs ∼ 1/γ. Thenωs is related to the frequency of radiation
absorbed at the angleθ to the field,ω, as

ωs = ω
θ2γ2

2
. (5.1)

First let us consider long-period pulsars (P ∼ 1s). By means of
Eqs. (2.5), (2.6) eq.(5.1) may be readily reduced to the form:

νs = 1011 ν
3/5
9 γ

8/5
2 B

2/5
?12

P 6/5 sin4/5 ϑ
Hz. (5.2)
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Pulsar luminosity provided by the spontaneous emission in the
frequency band of∼ νs may be estimated as

Ls =
2e2β 2

⊥γ
2ω2

H

3c
NSrc, (5.3)

whereN is the plasma number density,S the lightened area
given by Eq. (3.5). Assumingβ⊥ to be∼ θ one can obtain:

Ls = 7.4 · 1022κ3ψ−1

(
ν3
9γ

13
2 B12

?12 sin11 ϑ

P 26

)1/5

erg · s−1.

(5.4)
Although the luminosity provided by the synchrotron sponta-
neous reemission is larger than that in the cyclotron case, for
long-period pulsars it is still rather low.

Proceeding to short-period pulsars (P ∼ 0.1s) we recall that
in this case one can assumerc ∼ rL, θ ∼ 1. Then the frequency
of spontaneous emission (5.1) may be rewritten as

νs = 5 · 1012ν9γ
2
2 Hz (5.5)

In accordance with Eq. (3.7),αmax < 1 provided thatP ∼
0.1s. So one can estimateβ⊥ as∼ θ

√
αmax ∼ √

αmax. The
luminosity (5.3) then takes the form

Ls = 2.5 · 1022L28P
−5γ2B

2
?12 erg · s−1. (5.6)

Hence, for short period pulsars the spontaneous synchrotron
emission appears to be rather high.

6. Conclusions

We investigated absorption of radiation by an ultrarelativistic
magnetized electron-positron plasma in pulsars. In the cyclotron
limit the process appears to be significant at pulsar conditions.
In case the energy absorbed becomes large enough to provide
relativistic electron gyration in the guiding-centre frame, the
customary theory of cyclotron absorption is expected to be no
longer appropriate. This is really the case in pulsars because
absorption of the pulsar radio emission cause the electrons to
acquire relativistic gyration. Thus a more general consideration
of synchrotron absorption and emission is necessary.

As the electron pitch-angle is much less than the angleθ,
which radiation absorbed makes with the magnetic field, the res-
onance frequency and the synchrotron absorption coefficients
for both modes turn out to coincide with the cyclotron ones.
Therefore the estimates (2.8) and (2.9) for the optical depth
are valid until the absorbed energy remains less than initial en-
ergy of absorbing plasma. For the long-period pulsars,P ∼ 1s,
absorption is significant if only the multiplicity factor values
κ3 >∼ 1. As for the short-period pulsars,P ∼ 0.1s, synchrotron
absorption is significant at any conceivable parameters. Absorp-
tion in the very fast pulsars (P < 0.1s for the normal pulsars
andP < 10ms for the low-field recycled ones) is not consid-
ered here because in these pulsrs the cyclotron resonanse occurs
beyond the light cylinder, where the magnetic field structure is
badly known. Note that the estimated large optical depth does
not argue against the models of pulsar emission in which the

waves originate well within the magnetosphere. The problem
of radio wave escape can be naturally avoided through the as-
sumption of the nonuniform plasma distribution within the open
field line tube (Blandford & Scharlemann 1976). Then the radi-
ation passing through the regions of sufficiently dilute plasma
is weakly absorbed, the most part of it reaching the observer.

The power of synchrotron radiation resulting from spon-
taneous reemission of the energy absorbed proved to exceed
significantly the cyclotron one. Being strongly dependent on
pulsar period, spontaneous emission of relativistically gyrating
electrons appears to be rather intense for short-period pulsars,
so that an essential fraction of the energy absorbed is reemitted
in the far infrared band.
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Appendix A: treatment of synchrotron absorption in terms
of plasma theory

Here we consider the synchrotron absorption process by plasma
methods to find the condition on which ignoring the plasma in-
fluence is appropriate and, correspondingly, the above expres-
sions for absorption coefficients, (4.7)–(4.8), are valid. The dis-
persion relation for normal waves in the uniformly magnetized
plasma (see,e.g., Krall & Trivelpiece 1973, Eqs. (8.10.10)—
(8.10.11)) can be easily generalized for the relativistic plasma
particle motion as follows:

Det || (1 − k2c2

ω2 )δαβ +
kαkβc

2

ω2 − aαβ ||= 0, (A1)

with

axx =
ω2

pm
2

ω

∞∑
l=−∞

[[
l2ω2

H

k2
⊥
J2

l

(
k⊥v⊥γ
ωH

)
χ

]]
, (A2)

axy = −ayx =
iω2

pm

ω
(A3)

×
∞∑

l=−∞

[[
lωHp⊥
k⊥

Jl

(
k⊥v⊥γ
ωH

)
J ′

l

(
k⊥v⊥γ
ωH

)
χ

]]
,

axz =
ω2

pm

ω

∞∑
l=−∞

[[
lωHp‖
k⊥

J2
l

(
k⊥v⊥γ
ωH

)
Λ
]]
, (A4)

ayy =
ω2

p

ω

∞∑
l=−∞

[[
p2

⊥J
′2
l

(
k⊥v⊥γ
ωH

)
χ

]]
, (A5)

ayz =
−iω2

p

ω

∞∑
l=−∞

[[
p⊥p‖Jl

(
k⊥v⊥γ
ωH

)
J ′

l

(
k⊥v⊥γ
ωH

)
Λ
]]
,

(A6)

azx =
ω2

pm

ω

∞∑
l=−∞

[[
lωHp‖
k⊥

J2
l

(
k⊥v⊥γ
ωH

)
χ

]]
, (A7)
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azy =
iω2

p

ω

∞∑
l=−∞

[[
p⊥p‖Jl

(
k⊥v⊥γ
ωH

)
J ′

l

(
k⊥v⊥γ
ωH

)
χ

]]
,

(A8)

azz =
ω2

p

ω

∞∑
l=−∞

[[
p2

‖J
2
l

(
k⊥v⊥γ
ωH

)
Λ
]]
, (A9)

Here the magnetic field is assumed to be directed along thez-
axis and they-component of the wave vector is taken to be zero;
k‖, k⊥ are the wave vector componentskz, kx parallel and per-

pendicular to the magnetic field, respectively,ωp ≡
√

4πNe2
m

the plasma frequency,i the imaginary unity,

χ ≡ ∂f

∂p2
⊥

(
1 − k‖v‖

ω

)
+
k‖v‖
ω

∂f

∂p2
‖
, (A10)

Λ ≡ ∂f

∂p2
‖

− lωH

γω

(
∂f

∂p2
‖

− ∂f

∂p2
⊥

)
. (A11)

Double square brackets in Eqs. (A2)–(A9) denote the integral
operator

[[F (p⊥, p‖)]] ≡
∫

4πF (p⊥, p‖)p⊥dp⊥dp‖
γ(k‖v‖ + lωH/γ − ω)

= P
∫

4πF (p⊥, p‖)p⊥dp⊥dp‖
γ(k‖v‖ + lωH/γ − ω)

(A12)

+iπ
∫

4πF (p⊥, p‖)δ(k‖v‖ + lωH/γ − ω)
p⊥dp⊥dp‖

γ
.

It should be noted that, in contrast to vacuum case, in the
magnetized plasma the resonance may occur not only at positive
harmonics of gyro-frequency but also at zeroth and negative
ones. The casel = 0 corresponds to Cherenkov resonance; at
l < 0 the electron transitions into higher Landau orbitals result,
due to the anomalous Doppler effect, in emitting the waves.
Corresponding resonance conditions may be met only in case
plasma allows slow enough, perhapsω/k‖ < c, waves. Provided
that initially the particles populate the ground Landau orbital,
such waves should be amplified (Tsytovich & Kaplan 1972;
Kawamura & Suzuki 1977, Machabeli & Usov 1979, 1989;
Lominadzeet. al. 1983, Kazbegiet. al. 1991). However, this
instability is possible only at very high plasma densities,κ �
104, for waves propagating along the magnetic field. We do not
consider such a case here. Note that an instability atl > 0 is also
possible (synchrotron maser) but only in case higher Landau
orbitals are overpopulated,∂f

∂p⊥
> 0. One can easily see that in

this case the absorption coefficients (4.7) (see also below Eqs.
(A15), (A18)) become negative. However such a distribution
function cannot be formed in the course of absorption process,
therefore we consider here only the case∂f

∂p⊥
≤ 0, when the

absorption coefficients are positive.
Obviously, plasma contribution to wave dispersion is rep-

resented by the termsaαβ . In the case of interestaαβ � 1, so

that their products can be neglected. In this approximation, the
dispersion equation (A1) becomes factorized, the wave modes
being independent:

1 − k2c2

ω2 − 4πω2
p

ω

∞∑
l=−∞

∫
J ′2

l

(
k⊥v⊥γ
ωH

)
Rlp

3
⊥dp⊥dp‖ = 0,

(A13)

1 − k2c2

ω2 − 4πω2
p

ω

∞∑
l=−∞

∫ [
1 − β2

‖ −
(
ω − k‖v‖
k⊥c

)2
]

× J2
l

(
k⊥v⊥γ
ωH

)
Rlγ

2m2c2p⊥dp⊥dp‖ = 0, (A14)

where

Rl ≡
∂f
∂p2

⊥

(
1 − k‖v‖

ω

)
+
k‖v‖
ω

∂f
∂p2

‖
γ(k‖v‖ + lωH/γ − ω)

.

Eqs. (A13, A14) describe the extraordinary and ordinary modes,
correspondingly.

Givenayy � 1 one can assume thatn ≡ ck
ω ≈ 1. Then the

damping decrement for the extraordinary mode takes the form:

Imk =
2π2ω2

p

c

∫ [(
1 − k‖v‖

ω

)(
− ∂f

∂p⊥

)

+
k‖v‖
ω

p⊥
p‖

(
− ∂f

∂p‖

)]
(A15)

×
∞∑

l=−∞
J ′2

l

(
k⊥v⊥γ
ωH

)
δ[lωH/γ − ω + k‖v‖]

p2
⊥dp⊥dp‖

γ
.

The latter equation coincides with the absorption coefficientµ2
given by Eqs. (4.7)–(4.8) provided that one substitutesβ‖ cos θ
for k‖v‖/ω andsin θ for k⊥c/ω, with θ being the angle between
the wave vector and the magnetic field. In particularly, then the
terms withl ≤ 0 do not contribute to the sum in Eq. (A15), since
the argument of delta-function does not turn into zero. Such a
substitution is possible in case

|1 − n| � θ2, (A16)

Indeed making use ofn ≈ 1, θ � 1, β⊥ � 1, one can write

ω − k‖v‖ = ω(1 − n+ θ2/2 + β2
⊥/2 + 1/2γ2).

Taking into account that we are interested in the caseθγ � 1,
θ >∼ β⊥, one can see that above substitution is indeed possible
only on the condition (A16) but not on the weaker condition
n ≈ 1. Now we are to estimate the integral in the principal value
sense in Eq. (A13) to find|1 −n|. Making use of the resonance
condition, the Bessel function argument may be written as

k⊥v⊥γ
ωH

≈ 2lβ⊥θ
β2

⊥ + θ2 + γ−2 ∼ l
β⊥
θ
.
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Note that since the Bessel function steeply decreases with the
order, only low harmonics mainly contribute to the integral. For
these harmonics at the above argument one can takeJ ′

l
<∼ 1.

Taking into account the standard estimate

P 1
k‖v‖ + lωH/γ − ω

∼ 1
ω
,

one can finally find|1 − n| ∼ ω2
pθ

2

ω2γ
. Substituting this estimate

into Eq. (A16), one can see that plasma influence on the ab-
sorption of the extraordinary wave is negligible on condition
that

ω2
p � γω2. (A17)

Then the damping decrement (A15) reduces to the absorption
coefficientµ2 given by Eqs. (4.7)–(4.8).

The ordinary mode can be treated similarly. The damping
decrement turns out to be:

Imk =
2π2ω2

p

c

∫ p2
‖dp⊥dp‖
γ

[
1 − β2

‖ −
(
ω − k‖v‖
k⊥c

)2
]

×
[(

1 − k‖v‖
ω

)(
− ∂f

∂p⊥

)
+
k‖v‖
ω

p⊥
p‖

(
− ∂f

∂p‖

)]
(A18)

×
∞∑

l=−∞
J2

l

(
k⊥v⊥γ
ωH

)
δ[lωH/γ − ω + k‖v‖],

which certainly reduces to the absorption coefficientµ1 if the
condition (A16) is satisfied. Estimating the integral in the princi-
pal value sense in the dispersion relation for the ordinary mode,
one can come to the same condition (A17).

Above we considered the one-component plasma. In general
case one should take the sum over charge species in the right-
hand sides of Eqs. (A2–A9). This implies the similar summing
in the right-hand sides of Eqs. (A15), (A18). So the components
of the pair plasma absorb radiation independently.

Now let us check whether the condition (A17) holds in cy-
clotron resonance zones of real pulsars. Substituting the param-
eters from Sect. 2 in Eq. (A17) yields

1.4 · 10−11 κ3B
1.6
12

ν 2.6
9 P 4.6γ0.6

2
� 1, for P ∼ 1s,

5.1 · 10−10 κ3B12

ν2
9P

4γ2
� 1, for P ∼ 0.1s.

These inequalities hold for any reasonable parameters therefore
our neglect of the plasma influence on the absorption process is
justified.
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