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Abstract. The process of particle cross-field diffusion in the
presence of finite MHD amplitude wave fields is considered us-
ing the Monte Carlo particle simulations. We derive the cross-
field diffusion coefficientκ⊥ and the parallel diffusion coeffi-
cientκ‖ for the flat and the Kolmogorov wave spectra, including
the waves propagating oblique to the mean magnetic fieldB0.
We note a substantial difference in the cross-field diffusion ef-
ficiency between the considered turbulent fields. Much larger
values ofκ⊥ appear in the presence of fast-mode waves in com-
parison to the Alfv́en waves and we reproduce the expected
increase ofκ⊥ with the growing power of waves propagating
perpendicular toB0. We interpret these results in terms of the
particle drifts in non-uniform magnetic fields.
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1. Introduction

Understanding particles motions in perturbed magnetic fields is
essential for a wide range of problems in astrophysics includ-
ing describing galactic cosmic ray transport and acceleration at
shock waves. In spite of large progress achieved since the pa-
per by Jokipii (1966) there are a number of issues still poorly
understood. In the previous paper (Michalek & Ostrowski 1997
(≡ MO97)) we presented simulation of particle transport in the
presence of 1-D, 2-D and 3-D finite amplitude turbulence pat-
terns composed of Alfv́en waves propagating parallel to the av-
erage magnetic field. Those simulations were limited to a some-
what unrealistic flat turbulence spectrum. In the present paper
we extend these considerations to the Kolmogorov turbulence
spectrum proposed to be a viable model for interplanetary space
(e.g. Jokipii 1971). For these considerations we adopt a simple
model of a turbulent magnetic field including waves propagat-
ing obliquely to the mean field (cf. Miller et al. 1996) to study
the cross-field diffusion coefficientκ⊥ and the parallel diffusion
coefficientκ‖ in the presence of finite amplitude(δB/B ∼ 1)
magnetosonic and Alfv́en waves. In the next section (Sect. 2)
we present a short review of quasi-linear results. As described
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in Sect. 3 the anisotropic wave distribution is modelled by se-
lecting the wave vectors from a finite opening cone directed
along the mean magnetic fieldBo. In our simulations we use
the fast-mode and the Alfvén mode turbulence with the flat or
the Kolmogorov wave spectrum selected from a finite wave-
vector range. The results and a short discussion are presented in
Sections 4 and 5, respectively. We note substantial differences
in the cross-field diffusion efficiency at the same perturbation
amplitude, depending on the form of the turbulent field consid-
ered. We prove the possibility of larger values ofκ⊥ occurring
in the presence of the fast-mode waves in comparison to the
Alfv én waves of the same amplitude.

2. Quasi-linear cross-field diffusion coefficient

To date, the analytical derivations ofκ⊥ in turbulent magnetic
fields have been limited to the quasi-linear approach, valid for
small amplitude field perturbations,δB � B0. The first con-
siderations by Jokipii (1966, 1967, 1971) applied the Fokker-
Planck equation to describe particle motion in terms of the
magnetic-field perturbations’ power spectrum. Jokipii showed
that scattering at the small-scale magnetic inhomogeneities
drives pitch-angle diffusion, allowing for transverse guiding-
centre diffusion across the field lines. For a particle distribution
close to isotropy the distribution function averaged over pitch-
angle satisfies the diffusion equation, with the diffusion tensor
expressible in terms of the correlation function of the irregular
magnetic field. If the fluctuating field depends only on the z-
coordinate (= direction of the mean magnetic field), the Fokker-
Planck coefficients for pitch-angle diffusion and for cross-field
diffusion derived by Jokipii take the form, respectively,
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At the present time one knows that the cross-field diffusion
coefficient (2.2) must vanish for the 1-D turbulence model (Gi-
acalone & Jokipii 1994; see also discussion below). However, as
these expressions were widely used for discussion of the cross-
field diffusion process, and as the interpretation of the terms
in (2.2) is mostly valid for the 3-D turbulence, we repeat this
expression following the original paper. The coefficients (2.1,2)
describe particle scattering by fluctuations that are resonant with
the particle’s gyromotion in the averaged magnetic fieldB0. In
coefficients (2.2) describing cross-field diffusion one can note
an additional non-resonant term∝ Pxx(k = 0). It represents
the tendency of particles to follow the meandering or random
walk of magnetic field lines.

Achatz et al. (1991) re-derived the Fokker-Planck equation
for charge particle transport in a slab turbulence superimposed
on a homogeneous magnetic field, involving all phase-space
variables. In contrast to the previous papers they included dis-
persive effects of the waves by considering whistler-mode waves
in addition to the Alfv́en waves. They confirmed the previous
results of Jokipii that the diffusion perpendicular to the mag-
netic field could be solely due to the wandering of field lines
(waves with zero wave vectors). The same result was obtained
in a different way by Achterberg & Ball (1994), who studied
the requirements for efficient electron acceleration in young
supernova remnants, where the shock is expanding into the pro-
genitor’s stellar wind with the magnetic field lines forming a
tightly-wound spiral. Then the intersection point between the
shock and the magnetic field line moves along the mean mag-
netic field at a speed exceeding c. To allow the shock wave to
accelerate electrons to GeV energies required to account for the
observed radio emission, efficient particle diffusion across the
magnetic field is necessary. In the considered situation relativis-
tic particles can be scattered by resonant low-frequency MHD
waves. The waves with a wave-vector component perpendicular
to the magnetic fieldk⊥, contribute to the s-th resonance with
a weightJ2

s∓1(k⊥v/Ω(o)), whereJn is the n-th order Bessel
function. Fork⊥v⊥/Ω(o) ≤ 1 the dominant contribution comes
from thes = ±1 resonances. These resonant waves produce a
stochastic change in particle momentum as well. The net diffu-
sion process in particle momentum is accompanied by guiding
centre shift across the field. In the case of turbulence symme-
try aroundB0, < k2

x >=< k2
y >= k2

⊥/2, they estimated the
diffusion tensor components as:

κ‖ ≈ v2

3νs
= ε−1κB , (2.3)
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whereε ≈ νs/Ω(o), νs is the effective pitch-angle scattering
frequency and the Bohm diffusion coefficientκB = 1

3r2
gΩ(o).

One may note that the waves withk⊥ = 0 do not contribute to
particle transport across the magnetic field.

Vanishing of the cross-field diffusion for turbulence models
involving 1- or 2-dimensional perturbation fields was proved by

Giacalone & Jokipii (1994). They demonstrated that if one or
two ignorable co-ordinates appear in the magnetic field descrip-
tion, the ions are effectively tied to the magnetic lines of force,
independent of the turbulent field’s amplitude.

The process leading to particle diffusion perpendicular to
the average magnetic field due to field line wandering (or braid-
ing) has been considered in some forms since the first papers of
Jokipii & Parker in 60th. Achterberg & Ball (1994) discuss the
case with long-wavelength perturbations leading to stochastic
excursions of magnetic field lines transverse toB0. Particles
stay in a given patch of field lines for a timetc, travelling a
distanceLc = s(tc) along a field line. The distanceLc is neces-
sary for particle to enter a neighbouring, statistically indepen-
dent, patch of field lines. Application of this model yields the
perpendicular diffusion coefficient

κ⊥ = Dm

(
Lc

tc

)
, (2.5)

whereDm is the field lines’ diffusion coefficient. Recently, a
regime of sub-diffusive transport and of compound diffusion
in the presence of ‘braided’ magnetic field was discussed by
Duffy et al. (1995). For times less thantc, the particles undergo
sub-diffusion, which is a combination of diffusion along a fixed
field line, which itself diffuses. The defining characteristic of
sub-diffusion is that the mean square cross-field deviation of
a particle is not proportional tot as in ordinary diffusion, but
rather to the time with power lower than 1 (

√
t for the most

often discussed cases). Subsequently, the particle decorrelates
and undergoes compound diffusion with the ordinary∝ t be-
haviour. The compound diffusion combine wandering of field
lines and diffusion of particles along and across the local field.
This problem was discussed by Kirk et al. (1996) for the issue
of cosmic ray acceleration at perpendicular shock waves (see
also Giacalone & Jokipii (1996) for numerical modelling).

3. Description of simulations

Following the approach applied by Michalek & Ostrowski
(1997) and Michalek et al. (1998), in the present paper we
use numerical Monte Carlo particle simulations. The general
procedure is quite simple: test particles are injected at random
positions into a turbulent magnetized plasma and their trajecto-
ries are followed by integration of particle equations of motion.
For each particle we have the individual set of randomly se-
lected waves allowing particles to move diffusively in space
and momentum. By averaging over a large number of trajec-
tories one derives the diffusion coefficients for turbulent wave
fields. In the simulations we consider relativistic particles with
velocityv � VA and use dimensionless units (cf. Appendix A):
δB ≡ δB/Bo for magnetic field perturbations,1/Ωo for time
andk/kres for wave vectors.

Below we describe the models of the turbulent MHD fields
applied in the simulations and we also consider two topics used
later in discussion of the particle cross-field diffusion: the diffu-
sion of magnetic field lines in a turbulent medium and particle
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guiding centre drifts in the magnetic field perturbed by an indi-
vidual wave.

3.1. The wave field models

In the modelling we consider a superposition of 384 plane
MHD waves propagating obliquely to the average magnetic field
Bo ≡ Boêz. The wave propagation angle with respect toBo

is randomly chosen from a uniform distribution within a cone
(‘wave-cone’) along the mean field. For a given simulation two
symmetric cones are considered centered alongBo, with the
opening angle2α, directed parallel and anti-parallel to the field
direction. The same number of waves is selected from each cone
in order to model the symmetric wave field. Related to the i-th
wave, the magnetic field fluctuation vectorδB(i) is given in the
form:

δB(i) = δB(i)
o sin(k(i) · r − ω(i)t) . (3.1)

The electric field fluctuation related to a particular wave is given
asδE(i) = −V (i) ∧ δB(i). For the Alfv́en waves (A) we con-
sider the dispersion relation

ω2
A = k2

‖V 2
A , (3.2)

whereVA = Bo/
√

4πρ is the Alfvén velocity in the fieldBo.
The wave magnetic field polarization is defined by the formula

δBA = δBA(k, ωA) (k × êz) k−1
⊥ . (3.3)

In considered here low-β plasma the fast-mode magnetosonic
(M) waves propagate with the Alfvén velocity and the respective
relations are:

ω2
M = k2V 2

A (3.4)

δBM = δBM (k, ωM ) (k × (k × êz)) k−1 k−1
⊥ . (3.5)

In the simulations we adoptVA = 10−3c. One should be aware
of the fact that the considered turbulence model is unrealistic
at largeδB and the present results can not be considered as the
exact ones. In particular, in the presence of a finite amplitude
turbulence the magnetic field pressure is larger than the mean
field pressure and the wave phase velocities can be greater than
theVA(Bo) assumed here.

3.2. Spectrum of the turbulence

In the simulations we consider power-law turbulence spectra,
where the irregular magnetic field in the wave-vector range
(kmin, kmax) can be written as

δB(k) = δB(kmin)
( k

kmin

)−q/2
(3.6)

where the wave vectorkmin = 0.08 (kmax = 8.0) corresponds
to the considered longest (shortest) wavelength andq is the wave

spectral index. In the present simulations we consider the flat
spectrum withq = 1 and the Kolmogorov spectrum withq =
5/3. Considering the flat spectrum we try to refer to our earlier
simulations (MO97) where we used parallel Alfvén waves with
the flat spectrum. On the other hand this kind of turbulence
spectrum is very convenient for numerical simulations due to
the presence of a large number of short waves.

For our flat spectrum case the wave vectors are drawn in
a random way from the respective ranges:2.0 ≤ k ≤ 8.0 for
‘short’ waves,0.4 ≤ k ≤ 2.0 for ‘medium’ waves and0.08 ≤
k ≤ 0.4 for ‘long’ waves. The respective wave amplitudes are
drawn in a random manner so as to keep constant

[ 384∑
i=1

(δB(i)
o )2

]1/2 ≡ δB, (3.7)

whereδB is a model parameter, and in each separate wave-
vector range analogous sums equalδB/

√
3.

In the case of the Kolmogorov turbulence spectrum. all wave
vectors are drawn in a random manner from the whole range
(0.08 ≤ k ≤ 8.0) but amplitudes (δB(i)) are fitted to the re-
spective waves according to the Kolmogorov distribution as to
satisfy the formula (3.7). With such turbulence spectrum most
of the energy is carried by ‘long’ waves.

In the discussion below we will consider four cases for tur-
bulence:
i. Alfv én waves with the flat spectrum - AF,
ii. Alfv én waves with the Kolmogorov spectrum - AK,
iii. Magnetosonic-M waves with the flat spectrum - MF,
iv. Magnetosonic-M waves with the Kolmogorov spectrum -
MK.
Thus for a given simulation we use one of the above models
characterized by parametersα andδB. Here we have to note
that the assumption of a superposition of Alfvén waves when
δB ∼ 1 can be questionable due to non-linear effects. We use
this simplification due to lack in the literature of the more real-
istic in a wide wave-vector range models.

3.3. Magnetic field line diffusion coefficient

Following MO97 we derived the magnetic field diffusion coef-
ficients,Dm, for all considered field models. Examples of such
derivations are presented in Fig. 1, whereDm versusδB is given
for waves with the Kolmogorov spectrum, for three opening an-
glesα = 45◦, 60◦, 90◦. As expected,Dm increases withδB,
however, the particular behaviour of this relation depends on the
field model considered. For Alfv́en wavesDm grows uniformly
with α, but this is not the case at largerδB when fast-mode
waves are present. For these waves withδB > 0.6 Dα=45◦,60◦

m

is about two times larger thanDα=90◦
m . Simulated values ofDm

for the flat spectrum (not presented in the figure) show the same
features, but for large amplitudesδB ≥ 0.6 the magnetic field
lines’ diffusion coefficients are about two times smaller than
with the respective models of the Kolmogorov turbulence. For
all turbulence modelsDm have to vanish whenα → 0◦. In fact
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Fig. 1. Simulated values of magnetic field diffusion coefficientDm

versusδB for α = 45◦, 60◦ (dotted line) and90◦ (solid line) are
presented at the upper panel variation ofDm for the magnetosonic
turbulence and at the bottom panel for the Alfvén turbulence.

Fig. 2.Variation of the< |wd
⊥| > versus a wave propagation angle for

the Alfvén (A) and the magnetosonic (M) wave. The results for a long
wave (k = 0.1) are presented with dashed lines, and the ones for a
short wave (k = 10) with solid lines.

our simulations forα = 0◦ yielding Dm = 0 provide a good
accuracy check for the computations.

3.4. Particles drifts

Any force F ⊥ acting on a gyrating particle, the one which is
constant on the time and space scales large compared with the

particle gyromotion, perpendicular to the magnetic field causes
its drift directed perpendicular to bothF ⊥ andB, with velocity

wd =
c

e

F ⊥ × B

B2 . (3.8)

Such drifts move the particles across the magnetic field lines.
In the presence of MHD waves the drifts can arise due to in-
troduced curvature and perpendicular gradient of the magnetic
field. These drifts induce local fluxes of particles moving per-
pendicular to the average magnetic field. Averaging over these
fluxes in a turbulent magnetic field leads to particle diffusion
across the average magnetic field. For Alfvén waves the gradi-
ent drift is caused by the variation of the magnetic field, being the
second-order inδB. For magnetosonic waves containing com-
pressive components such drifts are associated with the first-
order inδB field variations. To evaluate the role of drifts in the
simulations we derived theformal drift velocity perpendicular
to the average magnetic field,wd

⊥, in the presence of a single
long (longer thanrg) or short (shorter thanrg) wave propagat-
ing at some angle with respect to the mean magnetic field. We
consider both drifts arising due to the curvature and the perpen-
dicular gradient of the magnetic field. Thenwd

⊥ = wG
⊥ + wC

⊥,
where the component due to the field gradient is

wG
⊥ =

r2
gΩ

2B2 (∇⊥B × B◦) , (3.10)

and the component due to the field curvature

wC
⊥ =

v2
‖

ΩB3 [B × (B∇)B] . (3.11)

In this discussion we consider the isotropic distribution of parti-
cle velocity vectors withv2 = v2

⊥ + v2
‖ = c2. The drift velocity

fluctuates in the wave magnetic field but the average< |wd
⊥| >

of its absolute value provides information about efficiency of
drifts in generating the cross-field particle transport. Variations
of < |wd

⊥| > versus the wave propagation angleφ for the Alfvén
and the magnetosonic wave are shown at Fig. 2. In the upper
panel the results are presented for the short wave (k = 10kres)
and in the bottom panel for the long wave (k = 0.1kres). We
observe a much more rapid increase of< |wd

⊥| > with φ for the
magnetosonic wave than for the Alfvén wave. Due to larger gra-
dients, for a short wave< |wd

⊥| > is about twenty times larger
than in the presence of a long wave. If one considers separately
the drifts due to the curvature and the magnetic field gradient
(not presented in the figure) one finds that in the presented ex-
ample< |wG

⊥| > is about ten times larger than< |wC
⊥| >.

4. Derivation of the diffusion coefficients

The simulated cross-field diffusion coefficientsκ⊥ for different
wave-cone opening angles and for different turbulence ampli-
tudes are presented in Fig. 3. For the flat spectrum turbulence
a systematic increase ofκ⊥ with amplitude occurs and the rate
of this increase roughly scales asδB2. The value ofκ⊥ at any
given δB is a factor∼ 10 larger for the fast-mode waves in



562 G. Michalek & M. Ostrowski: On the cosmic ray cross field diffusion in the presence of oblique MHD waves

comparison to the Alfv́en waves (cf. Section 5). It grows sub-
stantially with increasing wave cone openingα, i.e. with in-
creasing power of waves perpendicular to the mean magnetic
field. For the Kolmogorov spectrum a dependence ofκ⊥ on the
perturbation amplitude is flatter, the values of the cross-field dif-
fusion coefficient at smallδB are larger and there is a smaller
difference between the fast-mode and the Alfvén waves.

The simulated parallel diffusion coefficientsκ‖ for different
wave cone opening angles and wave amplitudes are presented
in Fig. 4. One may note thatκ‖ depends only weakly on the
considered wave model if the turbulence spectrum is flat. In this
case the main parameter influencing the value ofκ‖ is the wave
amplitude. However, one may note a small (in the logarithmic
scale) departure from the general trend for magnetosonic waves
with intermediate opening angles (our case ofα = 40◦) pro-
viding more effective scattering and smallerκ‖. As in MO97,
for the flat spectrum turbulence one can reasonably fit the data
by the quasi-linear relationκ‖ ∝ (δB)−2 (in the ‘worst’ pre-
sented case for magnetosonic waves withα = 40◦ one obtains
κ‖ ∝ (δB)−2.4).

The situation is more complicated for the Kolmogorov spec-
trum. Thenκ‖ depends both on the wave amplitude and the
turbulence model. For Alfv́en wavesκ‖ decreases in a mono-
tonic way with bothδB and α. For magnetosonic waves an
exceptional behaviour occurs again for the intermediateα MK
model (seeα = 40◦). These data are not fitted well with the
quasi-linear relation, as approximatelyκ‖ ∝ δB−2.9, except
for magnetosonic waves withα = 40◦, whereκ‖ ∝ δB−3.9.
One should note that forα = 0◦ the parallel diffusion is about
fourteen times larger for the Kolmogorov turbulence than for
the flat turbulence spectrum.

The characteristic features seen in Figs. 3 and 4 can be qual-
itatively explained with the use of simple physical arguments
involving results of Sects. 3.3,4. Comparison of Figs. 1 and
3 shows much larger increases of respectiveDm thanκ⊥. It
proves that in the range ofδB considered hereκ⊥ is in a sub-
stantial degree controlled by the cross-field drifts and the reso-
nance cyclotron scattering, and not by the field line diffusion.
Let us stress that the substantial cross-field shifts accompany
wave particle interaction involving the so called ‘transit time
damping resonance’, where for the effective cross-field drift the
particle velocityv‖ and the wave phase velocityV‖ along the
mean field should be approximately equal:

v‖ ≈ V‖ , (4.1)

whereV‖ = VA for the Alfvén waves andV‖ = VA(k/k‖) for
the magnetosonic fast-mode ones. ForVA = 10−3 andv = 0.99
considered in our simulations a noted difference betweenκ⊥
for the Alfvén and the fast-mode waves is expected to occur as
a result of satisfying the resonance condition (4.1) in a wider
range ofv‖, when the oblique fast-mode waves are present.
Another difference arises from the fact that the linear compres-
sive terms occur only in the fast-mode waves. It enables the
gradient drifts to be revealed by these waves at smaller per-
turbation amplitudes. Also, the ‘effective’ particle gyroradius

rg(B0 + δB) < rg(B0) and particles can interact resonantly
with shorter waves. In the case of the Kolmogorov spectrum,
the power of such waves is smaller and the importance of reso-
nance interactions decreases. At the same time, the long waves
enable uncorrelated long distance drifts leading to a net grow
of κ⊥ with turbulence amplitude (decorrelation length for drifts
at short waves is much shorter and makes the net effect smaller
even with the formally larger drift speeds). Such effects are ex-
pected to be responsible for the slightly flatter curves for the
fast-mode waves in Fig. 3.

In Fig. 5 variations of the productsκ‖ ·κ⊥ versus the pertur-
bation amplitudeδB for various wave cone openings are pre-
sented. The results for the flat and the Kolmogorov turbulence
spectra are significantly different. In the former caseκ‖ · κ⊥ is
slowly varying within the considered waves’ amplitudes. At the
same time, in the presence of the Kolmogorov spectrumκ‖ ·κ⊥
decreases significantly with increasingδB for all models. We
fitted these data with power law relations with respect toδB.
Thenκ⊥ ·κ‖ scales from∝ δB−3.9 for the steepest curve (mag-
netosonic waves withα = 40◦) to ∝ δB−1.9 for the flattest one
(Alfv én waves withα = 90◦). Thus the sometimes applied in
the literature scallingκ⊥κ‖ ≈ κ2

B (eg. Drury 1983) may be
wrong even at the quantitative level.

5. Summary and discussion

We modelled particle transport in the presence of oblique Alfvén
and magnetosonic waves with finite amplitudes. The diffusion
transport of energetic particles is mediated by resonant scat-
tering of energetic particles, drifts in turbulent magnetic fields
and diffusion of magnetic field lines. Under the considered con-
ditions, the main factors causing the cross-field diffusion are
particle drifts requiring the ‘n=0’ resonance and the cyclotron
(‘n=1’) resonant scattering. We suspect that the magnetic field
line diffusion will become important at smallerδB. In accord
with the analytical derivations of Giacalone & Jokipii (1994) our
simulations confirm vanishing ofκ⊥ in the 1-dimensional tur-
bulent fields, the case occurring in the simulations forα = 0).
As expected,κ⊥ increases with the turbulence amplitude but
for the Kolmogorov turbulence this effect is less pronounced as
compared to the flat spectrum. We also note the possibility of
larger values ofκ⊥ occurring – up to ten times larger with the
flat spectrum and up to five times with the Kolmogorov spec-
trum – in the presence of the compressive fast-mode waves in
comparison to the Alfv́en waves of the same amplitude. This
difference can be partly explained as a result of more effective
drifts with magnetosonic waves. For the Kolmogorov spectrum,
which prefers long waves, this increase is somewhat less sig-
nificant. From Eq. 2.4 one obtains an analytic approximation
κ⊥ ∝ < k⊥ >2/< k‖ >2. In our simulations the last factor
≈ 0.13 for models withα = 40◦ and≈ 1 for α = 90◦ what
givesκ⊥α=90◦/κ⊥α=40◦ ≈ 7. It is consistent with models pre-
sented in Fig. 4 for our ‘small’ wave amplitudes. As velocities of
the considered waves are very small (u = 0.001c) any induced
electric fields do not influence the derived cross-diffusion in a
noticeable way.
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Fig. 3. Variation of the cross-field diffusion coefficientκ⊥ versus the perturbation amplitudeδB and the wave propagation anisotropy (angle
α) for the flat spectrum and the Kolmogorov spectrum. Results for the Alfvén turbulence (thin lines) and the fast-mode turbulence (thick lines
with indicated simulation points) are superimposed at the same panels.

Fig. 4.Variation of the parallel diffusion coefficientκ‖ versus the perturbation amplitudeδB and the wave propagation anisotropy (angleα) for
the flat spectrum and the Kolmogorov spectrum. Results for the Alfvén turbulence (thin lines) and the fast-mode turbulence (thick lines with
indicated simulation points) are superimposed at the same panels.

Fig. 5.Variation ofκ‖ ·κ⊥ versus the perturbation amplitudeδB and the wave propagation anisotropy for the flat spectrum and the Kolmogorov
spectrum. For comparison the results for both the Alfvén turbulence (thin lines) and the fast-mode turbulence (thick lines with indicated simulation
points) are superimposed at the same panels.
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The main parameter influencing the value ofκ‖ is the form
of the spectrum. At small wave amplitudes in the Kolmogorov
spectrum a decreased number of waves resonantly scattering
particles in pitch angle leads to substantially – a factor of 10
– largerκ‖ (less effective scattering) in comparison to the flat
spectrum turbulence, but the presence of oblique waves can de-
crease this difference at larger amplitudes. For comparison let
us refer to the analytic evaluation by Schlickeiser (1989), who
provided a relationκα=0◦

‖ ∝ (2/q2 − 6q + 8)(λmax/rg)q−1

depending on the wave spectral indexq. Using this formula for
our simulations we can show that forq = 5/3 κα=0

‖ should be
about thirteen times larger in comparison to theq = 1. At large
amplitudesδB ∼ 1 the observed difference is preserved for the
Alfv én waves, but for the fast-mode waves with intermediateα
the respective scattering efficiency may increase substantially
thus decreasing the difference. We also note that the flat spec-
trum data can be reasonably fitted with the quasi-linear relation
κ‖ ≈ (δB)−2 (cf. MO97). At Fig. 4 we see that for the Kol-
mogorov turbulence spectrumκ‖ is smaller about ten times for
isotropic wave distribution (α = 90◦) than forα = 0◦.

Consideration of MHD waves propagation oblique to the
mean magnetic field (e.g. Tademaru 1969, Lee & Völk 1975)
shows that such waves are subject to effective processes dissi-
pating their energy. Therefore the effect considered here of the
cross-field diffusion enhancement due to fast-mode waves can
occur only in a volume with the turbulence generation force
acting. For example, in the vicinity of the strong shock, or in
a region of magnetic field reconnection, the required fast-mode
oblique waves could be effectively created. Also, the damping
processes are less effective in the conditions of the low plasma-β
(cf. Michalek et al. 1998).
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Appendix A: summary of notation

B = B0 + δB – a magnetic induction vector
B0 – a regular component of the background magnetic field
δB – a turbulent component of the magnetic field
c – the light velocity
Dµµ– a pitch angle diffusion coefficient
Dm – a magnetic field lines’ diffusion coefficient
E – an electric field vector
e – a particle charge
gj(k) – a magnetic field energy density for given waves ‘j’
k – a wave vector
kres ≡ 2π/rg

k‖ – a wave vector component alongB0
k⊥ – a wave vector component perpendicular toB0
Lc – a turbulence correlation distance
m – a particle mass
p – a particle momentum vector
Pij(k) – a power spectrum ofδB
q – a spectral index for waves
rg – a particle gyro-radius

tc – a turbulence correlation time
v ≡ c2p/ε – a particle velocity vector
VA – the Alfvén velocity in the fieldB0
v‖ – a velocity alongB0
α– a wave-cone opening angle
γ ≡ (1 − v2/c2)−1/2 – a particle Lorentz factor
λmax – a maximum considered wave length
κ⊥ – a transverse (cross-field) diffusion coefficient
κ‖ – a parallel diffusion coefficient
ω – a wave frequency
Ω ≡ eB/γmc
Ω(o) ≡ eB◦/γmc
Ω◦ ≡ eB◦/mc
ρ – a mass density of particles
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