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Abstract. We have examined instabilities of non-thin buoyant
magnetic flux tubes ascending through a solar convection zone
model using numerical 3D MHD experiments. The experiments
show that the fate of the flux tubes is entirely dependent on the
internal topology of the magnetic field lines in the flux tube; if
the initial topology is too simple the tube is quickly disrupted by
a Rayleigh-Taylor like instability. The disruption is prevented
or delayed if the field has a component that makes the topology
non-trivial. Even a weak random or twisting component, an or-
der of magnitude weaker than the longitudinal magnetic field,
is sufficient to let the tube ascend as a more or less coherent
structure. These 3D results may resolve the apparent contradic-
tion between the success of experiments using the thin flux tube
approximation to study the buoyant rise of magnetic flux tubes,
and the rapid break-up of flux tubes found in 2D experiments.
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1. Introduction

A solar active region is initiated as a lot of small scale magnetic
flux emerges on the solar surface. Gradually more magnetic
flux appears in the emerging magnetic flux region (EFR) that
grows in size, resulting in a large bipolar magnetic region where
eventually pores and sunspots form. After the formation of the
sunspots, magnetic flux continues to appear in the EFR (cf.
Gaizauskas 1993). The observational evidence thus indicates
that the magnetic field out of which the active region is formed
exists in the form of a lot of small scale structures in the sub-
photosphere and top convection zone.

The current belief is that active regions are formed when
magnetic flux loops from the interior of the Sun penetrate the
photosphere. The emerging magnetic fields are thought to have
their origin in a toroidal flux system that resides in the under-
shoot layer between the convective envelope and the stably strat-
ified radiative interior of the Sun. The cyclic process responsi-
ble for the formation of the toroidal flux system is probably,
in broad terms, a combined effect of the solar differential ro-
tation, a shear in the undershoot layer and turbulent convec-
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tion. A likely scenario is the dynamic Babcock-Leighton dy-
namo (cf. Parker 1955; Babcock 1961; Leighton 1964, 1969;
Wang & Sheeley 1991; Wang et al. 1991; Sheeley 1992).

One aspect of the dynamo is, apparently, the forma-
tion of a strong toroidal magnetic flux system in the under-
shoot layer, with magnetic energies of the order of a hun-
dred times the values that result from equipartition with the
kinetic energy (Choudhuri & Gilman 1987; Choudhuri 1989;
Moreno-Insertis et al. 1992). When this flux system is subjected
to instabilities fragments of it erupt and form the observed mag-
netic activity cycle.

Recent models of rising magnetic flux tubes show re-
sults that are in agreement with the observed tilt angles
and emergence latitudes for active regions and sunspots
(D’Silva & Choudhuri 1993; Fan et al. 1993; Fan et al. 1994;
Caligari et al. 1995). One can even understand the scattering
in the tilt angles as a consequence of convection zone turbu-
lence (Longcope & Fisher 1996). Against this background it
may seem that the behavior of buoyant magnetic flux tubes in
the convection zone is well understood.

There are, however, several problems. Firstly, these numer-
ical experiments so far have assumed that the magnetic field as-
cends in the form of nice, coherent (even closed) flux tubes that
remain intact as they ascend. Secondly, most of the experiments
have used the ‘thin flux tube approximation’ (cf. Spruit 1981;
Moreno-Insertis 1986; Choudhuri 1989) and the numerical ex-
periments have therefore been stopped at, or near, the point
where this assumption breaks down; around 10-20 Mm below
the photosphere. However, all observations of EFRs show that
an EFR does not consist of a nice coherent flux tube but rather
is made up of a lot of smaller flux tubes that only later merge to
form pores and sunspots.

How can it be then that the numerical experiments agree so
well with the observations? We must conclude on the one hand,
that the flux tubes are apparently able to maintain their integrity
throughout most of the convection zone — if they were not, then
eg. the ratios of buoyancy to drag assumed in the calculations
would be grossly in error (but see Choudhuri & D’Silva 1990;
D’Silva & Choudhuri 1991; Choudhuri 1992; D’Silva 1993 for
an alternative scenario). On the other hand, once the tubes do
get close enough to the surface they obviously break up into
smaller flux tubes.
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There are at least two mechanisms that may be responsi-
ble for the break-up of flux tubes near the solar surface. The
first has to do with the range of validity of the thin flux tube
approximation. As a flux tube ascends, the ratios of its size to
the local pressure and density scale heights increase, both be-
cause its size increases and because the scale heights decrease.
A flux tube that is larger than the local pressure and density
scale heights induces a strongly anisotropic external velocity
field, and horizontal pressure fluctuations that are large com-
pared to the average pressure. It seems plausible that such a flux
tube would be subject to instabilities that split it into fragments
whose size are comparable to the scale heights.

The second mechanism that may cause break-up of flux
tubes appears already within the framework of the thin flux tube
approximation. As a toroidal flux tube rises and expands adiabat-
ically it may at some point, depending on its initial field strength,
encounter a layer where the internal gas pressure equals the ex-
ternal pressure. At this height a flux tube ‘explosion’ may set
in (cf. Moreno-Insertis et al. 1995) if hydrostatic equilibrium is
obtained along field lines. If the initial field strength is large
enough this layer will be close to the photosphere, and if the
total magnetic flux is large the ascent may be sufficiently fast
for hydrostatic equilibrium along the tube not to be obtained.
However, for weak and / or small flux tubes this effect may set
in before the previously mentioned mechanism.

In any case, after the flux tubes have emerged, and the legs
anchored deep in the convection zone have had time to estab-
lish hydrostatic equilibrium, the existence of a layer where the
internal pressure equals the external pressure would imply that
there was no net restraining force. Fan et al. (1994) proposed
the name ‘dynamic disconnection’ for this situation (though in
their case it may be strongly influenced by their initial config-
uration). The mechanism provides a possible explanation for
the disconnection of surface magnetic fields from the global
toroidal flux system to let them drift more or less freely on the
solar surface as observed.

Thus, a reasonably consistent picture emerges; fragments
of the toroidal flux system become buoyantly unstable at field
strengths of around105 G, ascend to the surface, and emerge
after breaking into smaller fragments just beneath the surface.
However, there is a fundamental difficulty with this picture:
As has been shown by Schüssler (1979), a Rayleigh-Taylor
like instability threatens to split rising flux tubes long before
they even come close to the surface. This is an important
problem, since the consequences would bring the nice thin flux
tube results into question. Recently, Longcope et al. (1996)
have reiterated the problem, concluding that “an isolated
horizontal tube of flux can rise only a few of its own radii
before fragmenting”. Emonet & Moreno-Insertis (1996b),
Emonet & Moreno-Insertis (1997) and
Emonet & Moreno-Insertis (1998) find similar results, but
in addition show that the splitting instability can be inhibited
by introducing a uniform twist of the flux tubes, if the tangent
of the maximum pitch angle exceeds( R

HP
)

1
2 , whereR is the

tube radius andHP the pressure scale height. Earlier 2D re-
sults on the splitting instability are by Tsinganos (1980),

Cattaneo & Hughes (1988), Cattaneo et al. (1990),
Matthews et al. (1995), Emonet & Moreno-Insertis (1996a)
and Moreno-Insertis (1997). In the subsequent sections we
report on numerical experiments that demonstrate that this
difficulty is likely to be an artifact of using oversimplified
models. Sect. 2 discusses the model we adopt. Results and
discussions are presented in Sect. 3, and the conclusions are
drawn in Sect. 5.

2. The model

The objective of these numerical experiments is to study insta-
bilities in buoyant magnetic flux tubes. For this purpose we need
to solve the MHD equations in a stratified medium, bounded be-
low by a stable layer. We use periodic boundary conditions in
the horizontal directions, and a top boundary that is a ‘virtual
boundary’; i.e., it is a mathematical boundary whose influence
on the solution we attempt to minimize.

2.1. The equations

The equations that we use are the MHD equations in the absence
of rotation, written in conservative form:

∂ρ

∂t
+ ∇ · ρu = 0, (1)

∂ρu
∂t

= −∇ · (ρuu − τ) − ∇P + j × B + ρg, (2)

∂B
∂t

= −∇ × E, (3)

µ0j = ∇ × B, (4)

E = ηj − u × B, (5)

∂e

∂t
= −∇ · (eu) − P∇ · u + Qrad + Qvisc + QJoule, (6)

whereρ is the mass density,u the velocity,τ the viscous stress
tensor,P the pressure,B the magnetic field,j the electric cur-
rent,g the gravity,E the electric field,η the magnetic diffusiv-
ity, e the internal energy per unit volume and theQ’s are the
radiative energy transfer and the viscous and Joule dissipation
respectively.

2.2. Dimensions and boundary conditions

Geometrically, the MHD model consists of a box containing
nx ×ny ×nz grid points. The physical dimensions correspond-
ing to the model areLx = (nx − 1)∆x, Ly = ny∆y and
Lz = nz∆z, where∆x, ∆y and∆z are the distances between
grid points. For reasons of computational efficiency (on a CM-
200), we usex as the vertical dimension. The y-axis corresponds
to the azimuthal (toroidal) direction in a spherical geometry, and
the z-axis corresponds to the polar direction.

Using the numerical scheme of
Nordlund & Galsgaard (1997), a solution to Eqs. (1) –
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(6) is obtained in the form of snapshots ofρ, ρux, ρuy, ρuz, e,
Bx, By andBz on a staggered mesh; the density and internal
energy are centered inside a mesh cube, the momenta and
magnetic field components are centered on the cube faces. The
time stepping is performed by a third order predictor-corrector
method (Hyman 1979) and the number of time steps between
each snapshot is typically 500, corresponding to about 0.33
sound travel timesτs = Lx/max(cs) for nx = 512.

In order to implement the boundary conditions in the vertical
direction, we placeghost zonesin the index rangesx ∈ [1 :
4] ∧ [nx − 4 : nx]. The y- and z-directions are taken to be
periodic.

In order to allow the magnetic field to ascend through the
upper boundary, the velocity in the ghost zones that determines
the electric field, and thus the partial time derivatives of the
magnetic field, is taken to be an extrapolation of the velocity
u inside the box so thatE = −u × B. In general, such an
open boundary condition is unstable, but in the case of a strati-
fied model an auxiliary boundary condition on the density can
enforce stability; we assume that

∂ρ

∂t
= −(1 + ε)ux

∂ρ

∂x
(7)

at the upper boundary, whereε is a small, positive quantity (we
useε = 0.1). This corresponds to assuming that the density at
the upper boundary varies in the same sense as (but slightly faster
than) for vanishing Lagrangian variation. Thus, the Lagrangian
variation (following the motion) is such as to increase the density
when fluid is going out and to decrease the density when fluid
is coming in. This is sufficient to prevent run-away caused by
the boundary extrapolation of the velocity.

2.3. Initial conditions

To make sure that the background convection zone model is in
hydrostatic equilibrium we first find an entropy profile that de-
scribes the convection zone and the undershoot layer. We adopt
the entropy profile of Fan et al. (1994) as the starting point. Go-
ing outwards through the solar interior the entropy increases
linearly because we adopt a constant subadiabatic stratification
until the bottom of the convection zone is reached. From there on
the entropy decreases according to the model by Spruit (1974).
At first the decrease is extremely slow, so that the entropy is
almost constant, but in the top portion the conditions become
noticeably superadiabatic.

Given the entropy profile, it is possible to obtain the hydro-
static pressure and density by a simple one dimensional iteration
scheme.

We consider three initial conditions for the magnetic flux
tube. In all three cases the field strength is given by

B(x, y, z) =
(

−∂Ay

∂z
, By,

∂Ay

∂x

)
, (8)

whereBy does not depend ony (which is taken along the flux
tube axis) so that the magnetic field is divergence free. In the
first case (henceforthic1), Ay = 0 and thus the magnetic field

strength is almost constant inside the flux tube; the field strength
is an exponential of the radial distance from the center of the
tube to the 7th power. In the second case (ic2), Ay is also zero,
while the magnetic field profile across the tube is Gaussian. In
the third case (ic3), the magnetic field is similar to that inic1,
but has an additional weak transversal contribution given by

Ay = A0 × fC(x, y, z) × G(r)4, (9)

whereG is a Gaussian, andfC is composed of a sum of sine
and cosine functions with amplitudes sampled from a random
number generator, and raised to low powers. The exact form of
this random part is not significant, but it should be noted that the
average ofAy across the tube does not vanish exactly, and hence
the resulting magnetic field has both a random and a systematic
transversal component.

The transverse component of the fieldBφ =
√

B2
x + B2

z is
determined by the parallel component of the vector potential,
A = (0, Ay, 0), and is an order of magnitude smaller than the
parallel component, so that the maximum pitch angletan Ψ =
Bφ/By of the field lines is of the order of 10 degrees.

In order to skip the initial slow evolution that a purely hor-
izontal flux tube located in the undershoot layer would have
experienced after an initial perturbation, we assume that the top
part of the flux tube is already in the convection zone. In some of
the experiments the flux tube has a significant curvature and is
located rather high up in the convection zone. The initial buoy-
ant rise of thin flux tubes is well understood and, as discussed in
the introduction, this study concentrates on the possible break-
down of flux tubes once they are in the convection zone.

We set the initial entropy of the tubes equal to the entropy at
the bottom of the convection zone (Si = 0), and hence the tubes
are not in mechanical equilibrium, because this would imply
Si < Se.

Typical values of the magnetic field strength correspond to a
plasma betaβ of the order of 10. Adopting these values, that are
unrealistic for the Sun, serves the purpose of reducing the cost
of 3D experiments to acceptable values. Since we are solving
the compressible MHD equations, the time step is limited to a
fraction of the sound travel time between grid points. Typical
time steps are of the order of 1 s. Buoyancy increases as the
square of the magnetic field and, since the drag force is quadratic
in the velocity, the final ascent velocity is proportional toB. With
a magnetic field a factor of 10–100 larger than the solar field, the
time scales that result from our simulations are correspondingly
about 10–100 times smaller than the time scales in the Sun.

In order to hold on to the lower parts of the flux tube in
the cases with an undulatory flux tube, we increase the subadi-
abaticity in proportion to the increased buoyancy.

The flow patterns that develop are driven by the buoyancy,
and hence the speed of evolution of the instabilities scales with
the buoyant rise time. To check that exaggerating the magnetic
field strength only changes the time scale, but leaves the overall
pattern of motion of the ascending flux structure unchanged (at
least as long as the flow speeds remain substantially sub-sonic),
we also ran a few experiments with a lower fields strength but
the same initial field pattern.
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In more realistic models, as well as in the Sun, the evolution
of the buoyant flux tubes would be influenced by the turbulent
convection. That influence would be stronger for weaker fields,
and hence would be underestimated at the field strengths that we
adopt here. But since we do not include turbulent convection in
our models, we are free to modify the evolutionary time scales,
by scaling the magnetic field amplitudes. More detailed mod-
els, presently out of reach because of prohibitive computational
demands, should both include the turbulent convection and use
realistic magnetic field strengths.

The initial conditions for the magnetic field were chosen to
study the dependence on the detailed distribution of the mag-
netic field in the flux tube cross sections. The initial condition
ic1 corresponds to a thin flux tube that has been resolved, but
still has an almost constant field across the tube. In the caseic2
the magnetic field strength varies significantly across the tube,
but the field lines are still parallel. In the last case (ic3), the
magnetic fieldlines are interwoven, and are no longer parallel.

3. Results and discussion

We conducted a number of experiments with the model de-
scribed in the previous section. Both 3D and 2D experiments
of various dimensions and sizes and with various initial and
boundary conditions were performed (cf. Table 1). We do not
discuss the detailed results of all the experiments, but restrict
ourselves to the three experiments numbered E9, E16, and E17.
In E9 the tube is initially curved and the footpoints are anchored
in the stable lower layer. In E16 and E17 the tubes are straight
and located in the upper layer. The remaining experiments are
consistent with the ones that are discussed.

3.1. The magnetic field strength

The magnetic field strengthB decreases as the flux tube ascends
into layers of decreasing total pressure and hence expands. The
right hand side of the Walén equation (which is valid forη = 0)

D

Dt

(
B

ρ

)
=

(
B
ρ

· ∇
)

u, (10)

is zero if there are no motions along the tube; i.e. the ratio ofB
to ρ must remain constant unless the tube is stretched.

Numerical diffusion becomes important if the flux tube is
only a few mesh points, or if a larger flux tube develops struc-
ture on such small scales. As we shall see this does indeed hap-
pen, and numerical diffusion then decreases the magnetic field
strength by diffusing the flux, as the tube attempts to develop
unresolved structures.

3.2. Initial flux tube disruption

In most of the experiments cross sections through the flux tubes
evolve into a mushroom shape, consistent with the results of
Scḧussler (1979). Over time the structure eventually breaks up
into two separate, counter-rotating flux tubes.

Fig. 1 shows the result of experiment E9 (initial condition
ic2) in four snapshots. As the flux tube rises, the central part of

the flux tube (in the(z, x)-plane) moves upward faster than the
rest of the tube. The slow parts of the tube begin to rotate as the
flux structure continues to rise, though now at a slower pace; this
creates the shape that looks like a slice through a mushroom.

Qualitatively, the behavior of the flux structure as it rises
because of buoyancy is similar to the behavior of two fluids
subject to the Rayleigh-Taylor instability (cf. Schüssler 1979);
the plasma in the tube is lighter than the plasma outside, as
in the case of the Rayleigh-Taylor instability (henceforth ‘R-T
instability’).

If the initial flux tube has a magnetic field with a maximum
at the center and significantly lower field strengths away from
the center, such as the Gaussian profile ofic2, the buoyancy
also has a peak in the center of the tube. This means that as
the tube starts rising due to buoyancy, the central part attains a
higher speed than the outer parts of the tube, thus creating the
rotation associated with the mushroom-structure.

A similar thing also happens in the case of an initial flux tube
with a constant field across the tube (ic1), but the reason is some-
what different. In this case, the interior of the flux tube has nearly
the same field strength and hence is nearly uniformly buoyant.
All points in the interior of the tube thus obtain practically the
same amount of initial acceleration by buoyancy. However, in
addition to buoyancy, there are also pressure forces associated
with the motion of the tube through an external plasma.

The situation is similar to that of a rigid, cylindrical pipe,
moving upwards through a fluid at rest. Fluid in front of the pipe
is pushed aside by an over-pressure in front and is pulled back
by an under-pressure behind. There is thus a pressure difference
between the front and rear, and a corresponding (Stokes) drag
force.

In a flux tube, with no rigidity, the interior (magnetic and gas)
pressure must match the external pressure, as part of a smooth
overall pattern. The resulting motion pattern is also smooth with
a velocity maximum at the center. Hence the central parts of the
tube obtain the largest ascent velocities also in this case, which
initiates a development qualitatively similar to the one discussed
earlier.

Thus, there are two separate reasons that both lead to similar
behavior; 1) an uneven distribution of buoyancy inside the flux
tubes and 2) the effects of the pressure perturbation.

In addition to setting the left and right parts spinning in
opposite directions, the motion pattern also squeezes the top
part of tube in the vertical direction, and stretches it out in the
horizontal direction. The result is to create a mushroom-shaped
structure with two oppositely spinning vortices connected by a
rapidly thinning sheet.

The flow at the center of the connecting sheet is a stagna-
tion point flow, which implies exponential thinning of the sheet.
Thus, for any finite numerical resolution the connecting sheet
soon becomes thinner that can be resolved by the numerical
grid, and the connection between the two spinning vortices is
eventually lost.

When magnetic diffusion becomes significant, the quantity
B/ρ is no longer conserved following the motion; i.e., small
scale details in the magnetic field become washed out. A higher
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Table 1.Parameters for the models, listed by experiment number. The initial conditionsic1, ic2 andic3 are defined in Sect. 2.3

Experiment Dimensions Lx/HP Ly/HP Lz/HP Initial cond.

1 96 × 128 × 96 3.2 27 27 ic2
2 96 × 128 × 96 9.4 5.4 5.4 ic2
3 96 × 128 × 96 3.2 27 6.7 ic2
4 96 × 128 × 96 3.4 16.2 1.5 ic2
5 96 × 128 × 96 3.4 16.2 1.5 ic2
6 96 × 128 × 96 3.4 16.2 1.5 ic2
7 256 × 256 × 1 3.4 16.2 0 ic2
8 96 × 128 × 96 2.7 16.2 3 ic2
9 96 × 128 × 96 2.7 16.2 3 ic2

10 96 × 128 × 96 2.7 16.2 3 ic2
11 96 × 128 × 96 2.7 16.2 3 ic2
12 76 × 128 × 96 2.1 16.2 3 ic2
13 512 × 1 × 256 3.4 0 1.7 ic2
14 512 × 1 × 256 3.4 0 1.7 ic2
15 512 × 1 × 256 3.4 0 1.7 ic1
16 512 × 1 × 256 1.7 0 1.7 ic1
17 512 × 12 × 256 1.7 0.12 0.8 ic3
18 512 × 1 × 256 1.7 0 1.7 ic3

Fig. 1. A time evolution of the rising flux tube in four snapshots of E9. The upper panel showsB2 in a slice throughz = 105 Mm in the
(y, x)-plane. The lower panel also showsB2 but in a slice throughy = 600 Mm — the(z, x)-plane through the apex

numerical resolution only postpones the inevitable; the thinning
of the sheet proceeds exponentially. Since, the maximum ofB/ρ
remains on the line of symmetry for symmetric initial conditions
that maximum is eventually lost in the thinning flux sheet. For
the Gaussian initial conditions, the ‘surviving’ values ofB/ρ
in the spinning vortices are noticeably smaller than the initial
maximum.

Scḧussler (1979) found a similar behavior in a 2D numerical
experiment of dimensions60 × 20, assuming a constant field
inside an initially cylindrical flux tube, and made the interesting
remark concerning the (non-) analogy with a liquid drop: A flux
tube is different from a liquid drop in that the drop has surface
tension and the tube does not (because in the 2D geometry of
Scḧussler the tube has no magnetic tension along field lines).

Scḧussler therefore suggested that in a 3D scenario the frag-
mentation of the tube could possibly be prevented by magnetic
tension, since the fragmentation of a liquid drop is prevented
by its surface tension (for small drops). The 3D experiments
that we have made show that this is indeed the case (cf. the
discussion of experiment E17 below).

3.3. Evolution of a symmetric homogeneous flux tube

Fig. 3 illustrates the time evolution of experiment E16. This
model has theic1 initial magnetic field and therefore behaves
as discussed in the previous subsection; the tube splits apart into
fragments with small scale structure, resulting in a decrease of
the buoyancy.



334 S.B.F. Dorch &Å. Nordlund: Numerical 3D simulations of buoyant magnetic flux tubes

Fig. 2. The location of the point of maximum field strength is shown
as a function of time, in units ofLx/cs (from E16)

Because of the decrease of buoyancy, and because the spin-
ning vortices are trapped in the exterior downdraft generated by
the central ascent, most of the magnetic flux looses its ascent
velocity. Fig. 2 shows the location of the point of maximum
field strength as a function of time. After the initial increase of
the vertical speedux resulting from the initial acceleration, a
decrease ofux follows that results from the loss of buoyancy. At
around 19 times the sound crossing timeτs (τs = Lx/cS) the
magnetic field strength in the top part of the flux structure has
dropped so much that the highest magnetic field strength now
occurs in the rotating flux elements further down (cf. Fig. 3).

A remarkable picture emerges when this experiment is fol-
lowed over many time steps. After the evolution through a mush-
room shaped configuration with the creation of two oppositely
rotating flux elements (snapshots 8-ff. in Fig. 3), some of the
flux originally located in the center of the tube continues to rise.
The front surface starts to develop ripples, because of a small
scale R-T type instability. Suddenly a ‘plume’ is released (snap-
shots 18-20) from this rising flux element and descends down
between the two counter rotating flux elements (snapshots 22-
ff). At an even later stage the upper part of the flux structure
has turned into a new mushroom shaped structure. The total
range of time in Fig. 3 corresponds to∼ 36 τs. The two flux
elements in the mushroom-structure keep rotating through the
whole process and this helps them ‘stay in shape’; they retain
their identity and a significant magnetic flux, but their ascent is
halted (and even reversed).

The behavior of E9 and E16 is a result of the fact that there is
no mechanism that can hold the flux tube together. The flux tube
looses its initial shape very quickly and the buoyancy vanishes,
or is reduced so much that the flux fragments are easily caught
by the downward drag of the external motion pattern set up
by the initial ascent. The magnetic flux does not emerge at the
surface within a foreseeable time. Hence these models cannot
correspond to the buoyantly rising flux structures in the Sun that
form the emerging flux regions, despite the fact that they are just
more detailed versions of the otherwise successful ‘thin flux

tubes’. Mechanisms that can hold the flux together are clearly
needed.

One can think of a several such mechanisms. The models
show that when a flux tube splits into smaller structures these
are born rotating. The rotation suppresses the R-T instability,
and effectively holds the flux together into something that looks
like a tube. Thus rotation is a possible stabilizing mechanism.
Systematic rotation of the fragments that break loose from the
toroidal flux system can probably be excluded, though; there is
no plausible mechanism that would cause it.

One could argue that the initial splitting of a tube into two
counter-rotating tubes might be enough, and that these two tubes
would then be able to rise without further splitting (despite being
caught in the downdrafts set up by the initial event). The end
points of these tubes are anchored somewhere in the toroidal
flux system, and hence the induced rotation will eventually be
halted by the torsion built up along the tubes. The motion may
be thought of as a reflected, torsional Alfvén wave). During the
phase when motions are halted, the magnetic field has instead
the maximum twist, and when the field lines straighten out, there
is a maximum of the rotational motion.

The fragmentation process itself is thus to some extent able
to create conditions that delay further fragmentation. How-
ever, tubes twisted more than a few turns end-to-end would
become kink unstable, and the non-linear development of
the kink would induce significant magnetic dissipation (cf.
Galsgaard & Nordlund 1997). One might thus expect the ini-
tial angular momentum that caused the twist to be lost in the
process. All-in-all it seems somewhat far fetched that these dy-
namic processes alone could be responsible for the seemingly
coherent rise of buoyant flux tubes through the convection zone.
It is thus of significant interest to consider flux tubes with more
stationary stabilizing mechanisms “built-in”.

Numerical simulations of dynamo processes indicate that
the generated magnetic field may be very irregular, as the result
of a chaotic mapping of field lines. It is thus natural to assume
that the flux fragments breaking loose from the toroidal flux
system has a significant amount of internal structure. The cor-
responding magnetic topology is likely to be non-trivial; i.e.,
the field lines are intertwined and cannot be moved apart with-
out breaking the topology. In such a situation, one might expect
there to be some built-in coherence to the flux tube; the topo-
logical constraint prevents the flux tube from breaking apart too
easily. If such a mechanism can hold the flux together during
most of its buoyant rise, this may solve the problem; the disrup-
tion/splitting is postponed until the tube is much closer to the
photosphere.

3.4. Evolution of a ‘chaotic’ flux structure

Experiment E17 is an attempt to model chaosalongfield lines,
in the spirit of the previous discussion. The initial field is quite
arbitrary (but not current-free). It is constructed only with the
objective to make its topology complex. The field is initially not
in mechanical equilibrium; there are tension forces and pressure
forces associated with the fluctuations. It should be noted that
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Fig. 3. Snapshots ofB2 in the plane(x, z) from E16: Snapshots (from left to right) 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 23, 24 and 51 (with
500 time steps between each snapshot).

according to the magnetostatic theorem of Parker (1975), such
a system can never be in complete mechanical equilibrium. One
may expect, though, that after some initial transients the evolu-
tion will slow down, and continue on a much longer, resistive
time scale.

This is indeed what happens: Initially some transient pro-
cesses occur, as a result of wave propagation along the field
lines caused by magnetic tension forces. The basic effect of the
transient is to ‘untwist’ the strong field component of the mag-
netic field in the flux tube so that it points almost completely
in the y-direction, i.e.Bx andBz become small for the highest
values ofB; after the transient the maximum values ofBx and
By is typically about 10 % of the maximum ofBy. Only the
weak field lines in the outer parts of tube can maintain their cur-
vature, because the tension is too weak to ‘untwist’ them. This
does not mean that the structure of the flux tube is now simi-

lar to that of the flux tube in e.g. E16; the field strength in the
tube still has a randomly fluctuating weak field component. All
through the ascent, the strong field isnotunidirectional — even
though the extent of the y-dimension is small in E17, the strong
field shows small but non-zeroBx andBz, a weak poloidal field
is also present on the ‘surface’ of the flux tube throughout the
experiment.

Because the transient takes place very fast, one might as
well choose to view the state of the magnetic flux tube just after
the transient as the initial condition. Fig. 4 shows the overall
evolution of the toroidal magnetic field in experiment E17. After
the transient and the initial buoyant acceleration the magnetic
field continues to ascend with a nearly steady pace, with almost
the entire flux contained within a small closed structure.

In the early stages the tube is predominantly held together
by the chaotic mix of field lines within the tube, and the tension
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Fig. 4. Snapshots ofB2 in an(x, z)-plane from E17: Snapshots (from left to right) 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 20, 22, 23, 24, 25, 30, 31 and
32

along the field lines. A mushroom-structure attempts to develop
by the same processes that created it in the case of the initially
homogeneous flux tubes, but in the present case these processes
are suppressed. The ‘surface’ of the rising flux tube is what
holds it together in the late stages; a ‘core’ of predominantly
toroidal field lines is surrounded by a thin layer of weaker and
predominantly poloidal magnetic field lines. The peak energy
density of the poloidal surface field is about two orders of mag-

nitude smaller than that of the toroidal field in the core, yet it is
able to suppress the R-T type instability and hold the flux tube
together.

In contrast to the case of the flux structure in E16, the ascent
of the flux tube in E17 is much more well defined (cf. Figs. 2
and 5). In E16 the flux structure breaks into smaller fragments
that spread all over the volume, making it hard to define at what
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Fig. 5. The height of the point of maximum field strength versus time
(upper panel), and the maximum relative buoyancy as a function of
height (lower panel)

height ‘the flux is located’. In E17 the flux stays localized and
thus the ascent of the flux structure is well defined (cf. Fig. 5).

In the case of a flux tube ascending adiabatically with a
polytropic stratification inside, the pressure varies as

P = P0

(
T

T0

)γ/(γ−1)

= P0

(
1 − γ − 1

γ

(x − x0)
H0

)γ/(γ−1)

, (11)

whereT is the temperature,H is the pressure scale height and
the index 0 refers to the height where the flux tube begins the as-
cent. SinceB/ρ must be constant, this implies that the magnetic
field of such a flux tube decreases with height as

B(x) = B0

(
1 − γ − 1

γ

(x − x0)
H0

)1/(γ−1)

. (12)

A comparison between the Eq. 12 and experiment E17 is
shown in Fig. 6.

The maximum magnetic field strength of the flux tube in
model E17 is indeed well described by Eq. 12; this shows that

Fig. 6. The decrease with height of an adiabatic flux tube (γ = 5/3)
with a polytropic stratification obeyingB/ρ = constant (solid line),
compared with the decrease of the maximum field strength of the flux
tube in E17

the reason for the decrease of the magnetic field strength is the
ascent into layers with decreasing pressure, and that other field
weakening processes have little effect.

In the early stages of the buoyant rise, a structure develops
that looks a bit like the mushroom-structure discussed in the
case of E16. In this case it is, however, located in the ‘wake’ of
the flux tube, and has a very small field strength. The mushroom-
structure formation is a side effect, caused by the external ve-
locity field that is able to rip-off some of the weak field lines
from the ‘surface’ of the tube and mix these into the plasma in
the wake. Eventually, the wake structure undergoes a transition
and becomes chaotic (cf. Fig. 4).

Apart from keeping a tube-like structure and a relatively
high value of buoyancy, the flux structure in E17 also has another
interesting property. Even though most of the flux is transported
upwards in the box, the ripping-off of the surface layer means
that the structure ‘leaks’ a weak field into the ambient medium.

The field strength in the ‘wake’ of the flux structure attains
typical values of only 0.1-1 % of the peak value of the field. The
fate of this weak field, which has practically no buoyancy and
becomes mixed into the ambient plasma, depends on the local
velocity field topology.

We do not model the convective velocity field explic-
itly in our model, but the topological properties of convec-
tion in a stratified medium are known from other experiments
(Stein & Nordlund 1998). By following test particle motions,
Spruit et al. (1990) showed that the average depth of a set of
test particles always increases with time if the particles are fol-
lowed for a sufficiently long time. Even a subset of particles
that are all initially ascending soon turn over and become, on
the average, descending. This property is a direct consequence
of mass conservation; most of the ascending fluid at any one
height must turn over within one density scale height, in or-
der to not change the average stratification. As demonstrated
by more recent experiments with higher numerical resolution
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(2532 × 163; Stein & Nordlund 1998), this property is robust
and does not depend on whether the flow is laminar or turbu-
lent.

We thus expect that the fate of sufficiently weak magnetic
fields in the real solar convection zone, such as the ‘wake’ fields
found in the present experiments, is to be pulled down by the
stratified convection. This may be an interesting mechanism for
replenishing the dynamo magnetic field at the bottom of the
convection zone.

4. Summary and discussion

From the above discussions and experiments with various initial
conditions, it may be seen that there are at least three different
mechanisms that tend to disrupt buoyantly ascending flux tubes:

1. the R-T like instability that is effective even in the limit of
a very ‘thin flux tube’ and disrupts the tube by creating a
mushroom-like flux structure,

2. the expansion of the tube and the decrease of the pressure
scale height, that will tend to fragment the flux tube to pre-
vent the size from becoming much larger than the scale
height,

3. the explosion of a tube in hydrostatic equilibrium in a supera-
diabatic convection zone (cf. Moreno-Insertis et al. 1995).

Which of these mechanisms that comes into operation first de-
pends strongly on the initial conditions for the ascending flux
tube; a topologically simple flux tube is rapidly destroyed by the
R-T like instability, while a flux tube with a complex topology
but a too small total magnetic flux (and hence a sufficiently slow
ascent to maintain approximate pressure equilibrium along the
field lines) may ‘explode’ before it reaches the surface layers
(cf. Moreno-Insertis et al. 1995). Flux tubes with both a com-
plex topology, and with a sufficient magnetic flux to ascend
rapidly, may be expected to survive the longest, but eventually
these must also break up into thinner fragments, in order to as-
cend all the way to the surface where the vertical scale height
is very small.

The∼ 105 Gauss fields at the bottom of the convection zone
that have been shown to give consistent tilt angles and emer-
gence latitudes (D’Silva & Choudhuri 1993; Fan et al. 1993;
Fan et al. 1994; Caligari et al. 1995) can only do so if their
buoyant rise is reasonably well described by the thin flux tube
approximation. In particular, the speed of ascent is determined
by a balance between buoyancy and drag (and magnetic ten-
sion), and is derived assuming circular cross sections. If the
cross sections become distorted but the structure remains in-
tact, the speed of ascent will be approximately the same as for
a circular cross section (for a flattened structure the increased
drag will make it somewhat smaller), but if it breaks up into
many fragments, the drag will increase in proportion to the
number of fragments. Note that alternative models have been
proposed, where giant cell flows and exchange of longitudinal
momentum between the flux tube and its surroundings is in-
voked to produce the proper emergence patterns and tilt angles

even for fragmented flux tubes (Choudhuri & D’Silva 1990;
D’Silva & Choudhuri 1991; Choudhuri 1992; D’Silva 1993).

The requirement that the magnetic field in the buoyantly
ascending magnetic flux structures should have a non-trivial
topology may be considered as a reminder about the presumably
chaotic nature of the toroidal flux system at the bottom of the so-
lar convection zone. The power laws that describe the size distri-
bution of the emerging flux regions (Schrijver & Harvey 1994)
may indicate a selfsimilar and perhaps fractal structure of the
toroidal flux system. We thus envisage that a cross section of
the toroidal flux system would reveal an intermittent distribu-
tion of fragments of various sizes, where each fragment also has
a non-trivial internal topology.

Numerical simulations of a magnetic field embedded in a
turbulent medium (Nordlund et al. 1994) indeed illustrate how
cross-field convergence and divergence of the velocity field is
able to shape a distribution of magnetic field concentrations.
Each concentration is coherent along the magnetic field direc-
tion, but only for a limited distance. Over longer distances, the
magnetic field lines wander between individual flux concen-
trations that, given the appearance in 3D isosurface renderings
perhaps should be called ‘flux cigars’, rather than ‘flux tubes’.

With the differential rotation that is present at the bottom
of the solar convection zone, such a flux structure would be
continuously stretched out in the longitudinal direction, much as
the toroidal magnetic field in numerical simulations of accretion
disks (Brandenburg et al. 1995). As the magnetic field strength
increases because of the stretching, individual cross sectional
fragments will become buoyantly unstable and start to ascend.

In such a scenario it is natural to assume that the fragments
that break loose and start to ascend already has a chaotic internal
field line topology and some overall twist. They would thus,
according to the present investigation, be ‘immunized’ against
R-T like instabilities.

5. Conclusions

By conducting the numerical experiments summarized in Table
1, corresponding to different models of buoyantly rising flux
tubes in the Sun, we have obtained the following results:

– If the magnetic field lines of the initial flux tube are entirely
parallel (either with a constant field strength across the flux
tube cross section or with a peak at the center) the flux tube
is quickly disrupted by a R-T like instability.

– If the initial flux tube has a non-trivial topology, the flux
structure is held together for a longer time and is able to
keep most of its buoyancy.

– A weak field that eventually is mixed into the ambient
medium is shredded into the wake of the rising flux struc-
ture.

The main conceptual conclusion of this work is that the
topology of the magnetic field in buoyantly ascending magnetic
flux structures has a profound effect on their behavior. One might
say that, in order for the ‘thin flux tube approximation’ to be
valid, the magnetic field must not be in the form of ‘thin flux
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tubes’ with exatly parallel field lines. Rather they should be in
the form of ‘thin flux ropes’, i.e., there must be some internal
structure that makes the topology non-trivial, in order to prevent
buoyant magnetic fields from breaking apart.

Future work should address both the initial conditions
for the buoyantly rising flux structures, and their subse-
quent fate in layers close to the solar surface in more de-
tail than has been discussed here. The possibility of ‘explo-
sions’ (Moreno-Insertis et al. 1995) or ‘dynamic disconnection’
(Fan et al. 1994) of the magnetic flux structures beneath the so-
lar surface should be investigated.

An immediate extension of the current work would be to
continue the simulations into layers closer to the surface, where
the scale heights are much smaller than the typical size of the
ascending flux structures. This requires a large number of 3D
grid points, since the vertical direction must encompass several
well resolved scale heights, and the resolution in the two hori-
zontal directions should be comparable to the one in the vertical
direction. The horizontal scale should be of the order of 10 – 100
Mm, to cover the size of typical emerging flux regions. Such a
simulation would probably benefit from a possibility to rezone
the simulation at regular intervals, to follow the flux structure
as it ascends, and rescale the mesh resolution as dictated by the
local scale heights.

Simulations are currently being made to study the evolution
of an initially horizontal field at the very surface, on the scale of
the solar granulation (Bercik et al. 1997; Stein et al. 1998). On
this scale, one is essentially studying the small scale structure
of one of the fragments of an emerging flux regions. On the
basis of these simulations one will be able to better understand
the complicated interaction between the magnetic field and the
radiation-influenced convection in the surface boundary layer,
and make predictions about observable quantities,

Acknowledgements.This work was supported in part by the Danish
Research Foundation, through its establishment of the Theoretical As-
trophysics Center. Computing time on the CM-200 at the UNI•C com-
puting center was provided by the Danish Natural Science Research
Council

References

Babcock, H. 1961, ApJ, 133, 572
Bercik, D. J., Basu, S., Georgobiani, D., Nordlund,Å., Stein, R. F.
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