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Abstract. The phase mixing of Alfén waves in planar two- dimensional plasma configurations. Hood et al. (1997a) and
dimensional open magnetic plasma configurations is considibod et al. (1997h) have found an analytical self-similar solu-
ered. It is assumed that the characteristic vertical spatial scab®s describing Alfen wave phase mixing in open and closed
of the configuration is much larger than the horizontal scale, aode-dimensional configurations. Taking into account the ef-
that the latter is of the order of a wavelength. The WKB methddcts of finite amplitude and compressibility of the plasma,
is used to derive the governing equation for the wave amplitufidgkariakov et al. (1997) have shown that phase mixing can dra-
which in appropriate coordinates is the diffusion equation withatically increase the nonlinear coupling of Adfv and fast
the diffusion coefficient being spatially dependent. The depemagnetosonic waves. A mechanism of indirect heating of the
dency of the energy flux on the vertical coordinate is obtainpthsma by Alfien wave phase mixing due to nonlinear gen-
for monochromatic waves, and illustrated for three particularation of obliquely propagating fast magnetosonic waves has
cases. In all three cases, at low heights phase-mixeceAlfvbeen suggested. This work has been further developed for
waves damp at the same rate as in a one-dimensional configore-dimensional open magnetic configurations with inhomo-
tion. However, in the first and third cases phase mixing operatgEneous steady flows by Nakariakov et al. (1998). Possible ob-
only at low and intermediate heights and practically stops sgrvational evidence of coronal plasma heating by phase mixing
heights larger than a few characteristic vertical length scalesdiscussed by Ireland (1996).
Only a part of the energy flux is damped due to phase mixing. Up to now phase mixing of Alfén waves was analyti-
In the second case the situation is reversed: the damping of ¢h#ty studied in one-dimensional magnetic plasma configura-
energy flux with height is much faster that in one-dimensionabns where the equilibrium magnetic field is unidirectional and
configurations. The rate of damping of the energy flux witthe equilibrium state inhomogeneous only in the direction per-
height due to phase mixing in two-dimensional configuratiopendicular to the magnetic field lines. However, an important
thus depends strongly on the particular form of the configuraroperty of the solar corona is its stratification in the vertical
tion. The theory is applied to Alen wave damping in coronal direction. This stratification results in plasma inhomogeneity
holes. along the magnetic field lines. In addition, in typical coronal
structures the magnetic field lines are curved.
Key words: MHD — Sun: corona — Sun: oscillations — Sun:  Propagation of Alfén waves in stratified atmospheres has
magnetic fields — waves — methods: analytical been intensively studied as a source for the acceleration of stel-
lar winds (see, e.gl, Anetal. 7990; Moor et al. 1991, 1992;
Lou & Rosner (1994)). The acceleration is associated with the
reflection of Alfven waves from the longitudinal inhomogeneity
inthe Alfvén speed due to stratification and the radial divergence

The problem of solar coronal heating remains one of the m&§tmagnetic field lines. A model for such considerations is to
challenging problems for solar physicists. Heyvaerts & Prieggnsider a one-dimensional inhomogeneity in the radial direc-
(1983) proposed Alfén wave damping due to phase mixtion. However, it is important to take into account the inhomo-
ing as a possible source of coronal heating. Since this Orgbenei'ty of the plasma across the magnetic field, in accordance
inal paper phase mixing of Alesn waves has been consigWith observations of open regions of the solar corona (bound-
ered for both open and closed magnetic plasma Conﬁgu,'aéi_es of _coronal holes and_ streamers, coronal plumes_, etc.).
tions in the solar corona (see reviews in Browning 1991 and N this work, we consider the case when the ratio of the
Narain & Ulmschneider 1990, 1996; Parker 1991). In particnﬁ'fV en wave length and a characteristic spatial scale of the in-
lar, [Rytova & Habbal (1995) studied the effect on phase mikomogeneity along the magnetic field lines is supposed small.

ing of plasma flows along the magnetic field lines in ondMVe restrict ourself to a consideration of travelling waves, prop-
agating outward from the Sun without reflection. This assump-

Send offprint requests tM.S. Ruderman tion allows us to use the WKB approximation to describe the

1. Introduction
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effect of Alfven wave phase mixing in a smooth longitudinalvhere By (> 0) is the field strength at = z = 0. In open
inhomogeneity of the plasma. magnetic plasma configurations witky, > 0 everywhere we
The WKB method is a powerful tool for studying wave prophavedy/dx > 0. Magnetic surfaces are given by the equation
agation in inhomogeneous media. We use the WKB methodut@z, z) = const, and the equilibrium pressure and density are
study phase mixing of Alfén waves in a plasma structure infelated toy by the equation
homogeneous in both horizontal and vertical directions, under 5
the assumption that the characteristic spatial scale in the vertigal, = =20 v v2y) 4 gpo. (8)
direction is much greater than the horizontal spatial scale. The H
inhomogeneity of the plasma in the longitudinal direction has |n order to find the quantities, po, and+ we need an
important consequencies for phase mixing. additional equation. One possible choice is to assume that the
The paper is organized as follows. In the next section we dstasma is isothermal, so thaf is proportional tq,. Then O[B)
scribe the general properties of the two-dimensional magnejiges a closed set of two scalar equationsgpandq).
plasma configurations considered. In Sect. 3 we use the WKB |n what follows we consider open magnetic configurations
method to derive the diffusion equation (with the diffusion cawith characteristic scale in the-direction much larger than
efficient depending on spatial coordinates) that describes the characteristic scale in thedirection. Such a model can be
wave behaviour. In Sect. 4, three examples of two-dimensioagplied to a variety of open magnetic structures in the corona. In
magnetic plasma configurations are considered. Sect. 5 contaifigh configurations the variation of the total pressure across the
our general conclusions and an illustration of the theory appligthgnetic tube defined by the magnetic field lines with footpoints

specifically to coronal holes. atz = +x, is small. However, in the case where the plasma beta
is small as in the solar corona, the plasma pressure and density
2. Basic equations and equilibrium state can vary strongly across the magnetic tube. Trmomponent

he followi £ Vi . ; of the magnetic field is much smaller than theomponent,
Wf? !“'Sle the do 0_vvmg|set °_ viscous MHD equations for ag, g the |atter can be represented by the sum of a large term
Infinitely conducting plasma: independent of: and a small term that varies strongly in the

Op + V- (pv) = 0 (1) z-direction. If, in addition, we assume that the configuration is

ot pY) =" symmetric with respect to theaxis, then we can writ¢ in the
form

ov 1
Pl T Vv =-Vp+ (VX B)xB b =o(Z)x + et (2, 2), 9)
+ pg — V x (pvV x v) + V(pvV - v), (2) whereZ = ez, with e = 20/ H < 1 being the ratio of the hor-

OB izontal scalex to the vertical scalé/. Then thez-component

T V x (v x B), (3) of (@) gives the approximate equation

V- B=0. @) 9o _ By, (0%
o = o(Z) 57 (10)

Herep is the densityp the pressurey the velocity, and’ the

kinematic viscosity of the plasmdg is the magnetic field and SO that

1 is the magnetic permiability. The gravitational acceleragon 5  OY1

is assumed to be constant. in the momentum equation we tBké~ €P00Vao%o— = + Po(2), (11)

only the shear viscosity into account and neglect the Compr(\?vsﬁerepo(z) is an arbitrary function. Hergy is the density at

ional vi ity which not effect ABm waves. The ener . ,
Zou:tiorfc?;tg/no r((:)ledi??:w(r)]a? fgﬁowgm aves. THe NIy, — 2 = v andvy, = (B2y/1poo)'/? is the Alfven speed at
q play : that location. If now we assume that the plasma beta is of order

We adopt the Cartesian coordinatesy, z with the z-axis e g .
. o . . ¢, then the characteristic scale of variationpgfis x¢. Under
anti-parallel to the gravitational acceleration and consider a two-

dimensional static equilibrium in which all quantities depen%iur assumption thaf, has the same characteristic scale in the

onz andz only, and they-component of the magnetic field isx'd're.Ctlon aspo we arrive at the conclusion that the . 'ﬂ. N
A velocity V4 (z, z) = |Bol|/+/1po @lso hasg as a characteristic
zero. The equilibrium field3,, the plasma pressupg, and the D S : o
densityp, satisfy ' ' scale of variation in the-direction. This fact is important for
0

phase mixing of Alfién waves where the characteristic scale
Vpo — =(V x Bg) x Bo + gpo = 0, (5) ©f phase mixing is inversely proportional to t2he characteristic
scale of variation ol in the z-direction to thes power.

V:-By=0. (6)

The fieldBy = (Bo.,0, Bo.) can be expressed in terms of a3' WK solution for Alfv én wave phase mixing

magnetic flux function) through We start the analysis from the derivation of the governing equa-
N N tion for Alfvén waves. This derivation parallels that given by

Boy = —Boo5-, Bo: = Boo5— (7) |Ruderman et al. (1997) but differs from the later in that here

0z ox’
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4§ Eq.[14) as
d%v , 0 v

i o = Vil 557 5

N 2 a | d v 0 v

: — | = — — — 18
+Jat[aw<1/0h¢8¢>+a¢<1/0h¢8¢>], (18)

! whereo = pg/poo is the dimensionless density. The scale fac-

0 torsh,, andh, are given by

-3-2-10 1 2 3 2 2
hy =J 6793 + % , (29)
x 2] 2]
Fig. 1. A sketch of the locally orthogonal reference framtéz, z), 9 )
#(x, z). The unit vectok,, is directed along the magnetic field Iines.h¢ _ K &T) ( 0z > ]

oy )
we do not take plasma resistivity into account. We linearise We now make the following assumptions:

Egs. [(1)-(B) writingw = (0,v,0) andB = B+ (0, b, 0); this i) the ratio of the characteristic scales in the and z-
describes Alfén waves. Theg-components of the momentumdirection is smallzg/H = ¢ < 1;

(20)

and induction equations then yield i) the wavelength ob is of orderz;
iii) the characteristic scale of wave dampingHs

a’U 1 L H H - h
po—— = —(Bo-V)b+ V- (porVv), (12) In our curvilinear coordinates the coordinatés the ana-

o p logue of the coordinatein the Cartesian coordinates, whilds
P the analogue of coordinate Assumption i) enables us to intro-
— =(By - V). (13) duce the stretched coordinate= e¢, similar to the stretched
ot coordinateZ = ez introduced earlier. Phase mixing in a plasma

that is homogeneous in thedirection produces a characteris-

tic scale of wave damping of ordeg R'/?, where the Reynolds

v numberR = z(Vao/v (see Heyvaerts and Priest 1983). In or-

81&) : (4)  der to haveroR'/? of the orderH we takeR = O(e~3) and
introduce the scaled coefficient of viscosity= e 3v.

Eq. (I2) describes Alfen wave propagation in two-dimensional  We look for a solution that locally has the form of a propa-

Eliminatingd from this set of equations gives

0%v

1
PG = ;(Bo V) + V- (POVV

planar magnetic configurations. gating wave, so that
Introduce a functio ,y) satisfying the equation
(z, y) fying q v = (0, D) (21)
9y 9¢ + Y0 _ 0. (15) where the phasgis given by
Ox Oxr 0z 0z
0 =wt—ec1O(D,1)). (22)

This equation implies that the level lines of the functibgiven
by the equatiod(x, z) = const are perpendicular to the mag-Substitution of Eqs[{21) anfl{22) into Ef.118) yields
netic field lines. Since the functiei(z, z) is determined by (15) 21 oo

up to multiplication by a constant factor, we chogsia such a [o—w2 — V3,J? (8@) } v
way that it increases along a magnetic field line. At fixedhe o® ) | 062

quantity¢ is a coordinate along a field line. V2 ov 0 Ja@ 2J8® 0%v
The two functions) and¢ constitute an orthogonal curvi- = 7YY 15090 \ 7 0 + 0D 900D

linear coordinate system in the-plane, shown in Fi@l1. In this 90\ 2 93
coordinate system the operatBy, - V takes the simple form + Jevowhy, (5’1#) 879;] + O(). (23)
B,-V =B Jﬁ 16 We look for the solution of Eq[{23) in the form of the ex-

0 00 ) ( )

9¢ pansion
where.J, the Jacobian of the coordinate transformation, is giVN_ (9, &) + ev (0, @) + . . . . (24)
by
Substitution of this expansion into Eq._{23) gives, in the first
_ Wy 0y I9 (17) Order approximation (as a condition thatis non-zero), the
Or 0z 0z 0z’ result

Note that due to the particular choice of the signs ofthefunctior(38@> 2 wlo (25)

v andgy we have/ > 0. Now, withthe use of Eq.(16), werewrite \ 5¢ ) — V22
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For upwards® > 0) propagation we obtain two inequalities and the fact th&l,, ~ B, together with the
formulae
Fwol? 4 0@ 26) b 8 9
e = .
/0 7 4B+ O0(0,) (26) 9 106 0z 100 @)

o J oz 9y Jox’

In what follows we take) = 0 atx = x¢, 2 = 0 and we assume . .
we obtain the expressions

thaté is constant ath = 0, so that9, = 0.

In the second order approximation, we obtain -1
Jn B0 00 WBo@sb) (34)
2(]87@ 021)1 N %i < ae) BOO 0z BOQ 0z
0P 900 00 0% \ 0P With the aid of [3%) we rewrite expressidn {26) foras
waﬁhw <6®>2 831)1 z /
- — | == =0. 27 - dz
Vjo o 063 (27) O~ Ew/o Valz,2)" (35)
Using Eq. [26) we reduce this equation to Substitution of[(34) and(35) into expressién](30) foyields
ow 0w 212
— =\, (28) ~ 1 vw B 0z
o 902 AR e VABR, 00 1=, (36)
where where
w = oy, 29 P
' (29) I(z,2) = / %%dz’. (37)
Serl/2 2 o Vi Ox
vot/ hy (0O
A&, 9) = Wao \OU) (30)  Finally we arrive at
ol
Eq. (28) is the diffusion equation in coordinatesandd with ) — / (D', 1)) dD'
coefficient of diffusion\ spatially dependent oit and«). The 0
variabley is present in this equation only as a parameter. ~ w? *v(x, 2")BE(z, ') [*(x, 2') 5 38
Cosider a monochromatic wave and takeo be propor- =~ 2B2(x,2) Jo Val(x, 2') z- (38)

tional toe’*. Then Eq.[(2B) reduces to _ _ _ _
The quantityA determines the damping rate of the variable

ow — w 31) However, of greater interest is the energy flux in an elemental

0P ’ magnetic tube between the magnetic field ligiegnd) + Aq.

which is integrated to This flux i proportional tcpoVA(v(l))Q_Aw, andA is propor-
tional to By, so the energy flux per unit length in thedirection

<I> is

w = W(y)exp (— AP, ) d(b’) (32)

0 SAY = e Sy (z) A, (39)

where the functiorV’ (v) is determined by the boundary conwhereS,(x)Ax is the energy flux at = 0 wherey = z. Itis
dition at¢ = 0. In the next section we use this expression tetraightforward to check that in the case where the unperturbed
study the effect of inhomogeneity in thedirection on phase state is independent ebur results coincide with those obtained
mixing of Alfvén waves. by|Heyvaerts & Priest (1983).

We consider now three particular cases, assuming in each

4. Alfven wave damping thatv is a constant.

The rate of damping of Alfén waves is determined by the in- : - . .
. . . . .1. Uniform magnetic field and exponentially decreasing
tegral term in the exponent in EG._{32). In this section we study density

this integral term in different particular cases. However first of

all we rewrite it in a form that makes clear the physical meanife take By, = 0, Bo. = Bqgg, andpg(z, z) = ﬁo(m)e—z/H.

of its components. This case corresponds to a uniform vertical magnetic field in
Since we consider a magnetic plasma configuration withea isothermal atmosphere. We have to restrict our analysis to

vertical characteristic scale larger than its horizontal charactheightsz not larger than a few/ . This is because the exponen-

istic scale, the magnetic field is almost in the vertical directiotial growth of the wavelength with height means that the WKB

The functiomy can be represented by the approximate formuégpproximation is inappropriate far > H. Sincep, depends

Q) and |0vy/0x| > |0v/0z|. Then it follows from the or- onz, so also doeg,. However, as explained in Sect. 2, we can

thogonality condition (1I5) thab¢/0z| > |0¢/dx|, so thatthe neglect ther-dependence of the total pressure because of the

function¢ is almostindependent ef Taking into account thesefact that the plasma beta is small.
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Eq. [38) yields 4.3. Constant Alfen velocity

_ 3 For our third example we takgy, = po(z)e=2*/H with the
—z/2H
A= A(z) (1 —e 72 ) ) (40) magnetic field given by expressiofs{44). In this case thedhlfv
velocity V4 depends om only. The damping decrement is

where

2773 2 A A[l e2/H <1+ 2, = )} (47)
_ H dp = - Z =),
Az) = ;ng/2 1/2 (CZPO) : (41) H  2H?

3Vi0P00 Po v where
Whenz < H the quantityA is propor.tiona.ll t0z3/6H3 asfor VW HB AV 2
the case when the unperturbed state is uniformitowever, for A(z) = v\ (48)
A

values of: that are of the order of a fel we have\ ~ A(x), so
that there is then almost no damping of the energy flux. Henées in the previous examples, coincides with the damping
only a part of the energy is dissipated due to phase mixirggcrement for the one-dimensional case whea H. How-

The ratio of the dissipated energy flux to the energy flux at tleeer, forz of the order of a fewd we haveA ~ A and again we

bottom of the magnetic flux tube is see that only a part of wave energy is dissipated due to phase
_ mixing. Again, the ratio of the dissipated energy to the energy
K(z) =1— e @), (42) flux at the bottom is given by EqL (%2), with(z) given by
Eq. [48).
4.2. Density uniform in the vertical direction and
exponentially diverging magnetic field 5. Discussion and conclusions
Let us now take We have studied phase mixing in two-dimensional magnetic
plasma configurations assuming that the characteristic vertical
po = po(x), @ = Hexp(—z/H)sin(xz/H) (43) spatial scaleff of the configurations is much larger than the
. o o horizontal spatial scale which, in turn, was taken to be of the
with equilibrium magnetic field order of a wave length. Viscosity was scaled in such a way that
P S x a4 the characteristic damping length due to phase mixing was of
z = Doo€ S, Pe = Bo0€ €os 7 (44)  orderH. The WKB method was used to derive the dependence
of wave amplitude and energy flux on height.
then the magnetic field strengfB, = Byoe */H, declining Three particular examples were considered as illustrations

exponentially. The density does not change with height. Théthe general formula for the energy flux. In the first example the
vertical dependence of the unperturbed state is due to the diveagnetic field was vertical and uniform, while the equilibrium
gence of the magnetic field lines only. A sketch of this magnetiensity decreased exponentially with height. At a heiglf
configuration is given in Fig.]1. Recall that we are consideringfew H, phase mixing practically stops and then the Ativ

a thin magnetic tube restricted by the magnetic field lines withave propagates undamped.

footpointsz = +xz( atz = 0, wherezy < H. The thickness In the second example we considered the opposite situation,
of this magnetic tube grows with heightas(z/H ), and once where the density is independent of height while the magnetic
again we have to restrict our analysiszte< H. The damping field diverges with height. In this example the energy flux damps

decrement\ is now given by much faster than in the one-dimensional configurations consid-
B . i ered by Heyvaerts & Priest (1983). The damping decrement

A =A(x) (sinh T~ ﬁ) , (45) is proportional to the exponential of the height, instead of the

height cubed as in one-dimensional configurations.

where now In our third example, both the density and the magnetic
- ) field decrease exponentially with height but in such a way that

Az) = vw H <d/’0) . (46) the Alfvén velocity is constant. Again, phase mixing stops at

4‘/30/)3629(1)/2 dzx a distance of the order of a feW and then the Alfén wave

‘ propagates undamped.
Once again\ is proportional toz*, as in the one-dimensional  The dependences of the damping rates of the phase mixed
case, when <« H. However, for values of of the order off  Alfvén waves on the height for our three examples of open

the energy flux is proportional to magnetic structures are shown in Higy. 2. The dependences are
B calculated according to formulagq41),145) aid (47) and com-
exp (—Aez/H> , pared with the damping rate in the one-dimensional model of

Heyvaerts & Priest (1983), for which/A = 23 /6 H3.
and so the wave damping due to phase mixing is much faster The results obtained here may be applied to conditions typi-
than in the one-dimensional case. Note, that do() = 1. cal ofthe solar corona. As an example, we consider phase mixing
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_ Fig. 3. The dependence on the kinematic viscosity coefficieot the
Fig. 2. The dependence of the normalised damping refé of an ratip ) of the energy of the Alfén wave dissipated per second in
Alfvén wave on the normalised heightH for different models of the innomogeneous region of the hole between the levets0 and
the structure. The dotted curve corresponds to the case of a uniform 7 to the wave energy flux at= 0. The solid, dotted, dashed, and
magnetic field and exponentially decreasing density; the dashed clyyghed-dotted curves correspond to the waves with peiedg0 s,
applies to the case of uniform density and exponentially diverging s and100 s respectively.
magnetic field; the dash-dotted curve is for the case of constargéi\lfv

speed; the solid line corresponds to the case of a structure homogeneous 4 ]
in the vertical direction. withng ~ 6.43x 1014 m=3 andzy ~ 0.532 Mm; zis measured

in Mm. Note thatr = 0is the center of the inhomogeneous layer
where the transition from the low to the high density plasma oc-

of Alfv én waves in a coronal hole. The plasma in a coronal halers. TherV,o ~ 10° m/s atz = 0, and usingd ~ 100 Mm
is strongly inhomogeneous due to presence of plumes. We riggarrive at
that MHD waves in plumes have been registered in recent ELV__ 7. 9
observations (DeForest et al. 1998). The typical size ofaplu%\(/? 524 X 107w, (50)
at its base i$ Mm (see, e.g!, DeForest et al. 1997). Typicallwherew is measured ia—! andv in m? s—*.
the plasma density in a plume is one order of magnitude larger Itis straightforward to obtain that for the parameters choosen
than that in the surrounding plasma. The transition from the réinre mean ion collisional time i§ ~ 1 s and the gyrofrequency
efied surrounding plasma to the dense plume plasma may oceur~ 10° s~!. The WKB approximation used in the present
in plume boundary layers with thickness as much smaller thpaper is valid only when the wavelength is much smaller than
the plume horizontal size. H. This results in the restriction that the wave period has to
Atlow heights the magnetic field in coronal holes is stronglye smaller tharH /V4 ~ 100 s. Using Eqs.[(39) and_(40),
divergent. However, at larger heights it is almost radial. We age obtain that the rati@) of the energy of the Alfén wave
sume that Alfién waves are generated at the base of the uppégsipated in the inhomogeneous region of the hole per second
part of the hole, where the equilibrium magnetic field is approketween the levels = 0 andz = H to the wave energy flux at
imately radial. Then the characteristic scale of the equilibrium= 0 is given by
magnetic field variation is of the order of the solar radius, i.e, - _8 o
700 Mm. On the other hand, the characteristic scale of the deh-~ 1= exp(=0.1224) = 1 = exp(=6.4 x 1077 w7), (51)
sity variation in the vertical direction i ~ 100 Mm. Hence wherew isins~! andv in m?s~!.
the density varies with the height much faster than the magnetic The value of kinematic viscosity coefficients, is one of
field. This fact enables us to take the magnetic field apprake most uncertain parameters in the solar corona. Using the for-
imately constant and use the results obtained in Sect. 4.1malafor dynamical viscosity coefficient given|by Spitzer (1962)
describe the phase mixing of Awn waves propagating in a(see alsé Priest 1982) we obtain~ 10'° m?s~!. However,
coronal hole. the viscosity tensor in the solar corona is strongly anisotropic
In what follows we take the magnetic field in the hole to beue to the presence of strong magnetic field. In accordance with
10 G and the temperature of the plasmad @b K. We assume [Braginskii (1965) it is characterized by five coefficients of vis-
that there is sharp density gradient in the horizontal directignsity. The value, given by Spitzer (1962) corresponds to the
with the density varying from0'4 m—3 to 10> m—2 within first Braginskii coefficient of viscosity, the coefficient of com-
a distance of 1 Mm. We choose such a density profile that tpeessional viscosity. The viscosity tensor used in the present
quantity A given by Eq.[(4l) is independent of(recall thaty  paper describes the shear viscosity, which is the only part of
is assumed constant). This results in the following expressitve full Braginskii’s viscosity tensor that provides damping of
for the electron density,. atz = 0: Alfv én waves. According to Braginskii, the coefficient of the
shear viscosity is smaller than the coefficient of the compres-
ne(x) = no(1+ z/x0)¥?, (49) sional viscosity by the factafr;w;) =2, so that in our case we
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turbulence present in the coronal plasma. In this case it canRy@itova M.P., Habbal S.R., 1995, ApJ 451, 381

many orders of magnitude larger than that given by BraginskiBpitzer, L., 1962, Physics of Fully lonized Gases, Interscience, New
theory. This fact inspired us to consideas a free parameter. York

Braginskii's expression for the viscosity tensor is only valid
for collisional plasmas, so that we only consider waves with
periods larger tham; ~ 1 s. Since at present observational
information about waves in coronal holes with periods shorter
than 100 s is hardly available, we consideas a free parameter
as well. The dependences of the quan€iyn v for different
fixed values ofv, and onw for different fixed values of’ are
shown in Fig[B and Fi@]4 respectively. Hi@j. 3 shows that waves
with periods betweef s and100 s are practically undamped in
the part of the plume boundary layer betweea 0 andz = H
whenv < 10° m?s~!, and they are almost completely damped
whenv ~ 1019 m?s—1.

Our main conclusion is that the rate of wave damping due
to phase mixing in two-dimensional magnetic configurations
depends strongly on the particular geometry of the configu-
ration and can be either weaker or stronger than that in one-
dimensional configurations. The other very important quantities
determining the wave damping rate are kinematic coefficient of
the shear viscosity and the Aim wave frequency.

Our conclusions are of cause based on the simplified model
usedinthe present paper. Other effects, e.g. nonlinear generation
of fast MHD waves (Nakariakov et al. 1997, 1998) and the
stationary flow along magnetic field lines (Rytova & Habbal
1995; Nakariakov et al. 1998), can strongly affect our results.
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