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Abstract. The phase mixing of Alfv́en waves in planar two-
dimensional open magnetic plasma configurations is consid-
ered. It is assumed that the characteristic vertical spatial scale
of the configuration is much larger than the horizontal scale, and
that the latter is of the order of a wavelength. The WKB method
is used to derive the governing equation for the wave amplitude,
which in appropriate coordinates is the diffusion equation with
the diffusion coefficient being spatially dependent. The depen-
dency of the energy flux on the vertical coordinate is obtained
for monochromatic waves, and illustrated for three particular
cases. In all three cases, at low heights phase-mixed Alfvén
waves damp at the same rate as in a one-dimensional configura-
tion. However, in the first and third cases phase mixing operates
only at low and intermediate heights and practically stops at
heights larger than a few characteristic vertical length scales.
Only a part of the energy flux is damped due to phase mixing.
In the second case the situation is reversed: the damping of the
energy flux with height is much faster that in one-dimensional
configurations. The rate of damping of the energy flux with
height due to phase mixing in two-dimensional configurations
thus depends strongly on the particular form of the configura-
tion. The theory is applied to Alfv́en wave damping in coronal
holes.
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1. Introduction

The problem of solar coronal heating remains one of the most
challenging problems for solar physicists. Heyvaerts & Priest
(1983) proposed Alfv́en wave damping due to phase mix-
ing as a possible source of coronal heating. Since this orig-
inal paper phase mixing of Alfv́en waves has been consid-
ered for both open and closed magnetic plasma configura-
tions in the solar corona (see reviews in Browning 1991 and
Narain & Ulmschneider 1990, 1996; Parker 1991). In particu-
lar, Rytova & Habbal (1995) studied the effect on phase mix-
ing of plasma flows along the magnetic field lines in one-
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dimensional plasma configurations. Hood et al. (1997a) and
Hood et al. (1997b) have found an analytical self-similar solu-
tions describing Alfv́en wave phase mixing in open and closed
one-dimensional configurations. Taking into account the ef-
fects of finite amplitude and compressibility of the plasma,
Nakariakov et al. (1997) have shown that phase mixing can dra-
matically increase the nonlinear coupling of Alfvén and fast
magnetosonic waves. A mechanism of indirect heating of the
plasma by Alfv́en wave phase mixing due to nonlinear gen-
eration of obliquely propagating fast magnetosonic waves has
been suggested. This work has been further developed for
one-dimensional open magnetic configurations with inhomo-
geneous steady flows by Nakariakov et al. (1998). Possible ob-
servational evidence of coronal plasma heating by phase mixing
is discussed by Ireland (1996).

Up to now phase mixing of Alfv́en waves was analyti-
cally studied in one-dimensional magnetic plasma configura-
tions where the equilibrium magnetic field is unidirectional and
the equilibrium state inhomogeneous only in the direction per-
pendicular to the magnetic field lines. However, an important
property of the solar corona is its stratification in the vertical
direction. This stratification results in plasma inhomogeneity
along the magnetic field lines. In addition, in typical coronal
structures the magnetic field lines are curved.

Propagation of Alfv́en waves in stratified atmospheres has
been intensively studied as a source for the acceleration of stel-
lar winds (see, e.g., An et al. 1990; Moor et al. 1991, 1992;
Lou & Rosner (1994)). The acceleration is associated with the
reflection of Alfvèn waves from the longitudinal inhomogeneity
in the Alfvèn speed due to stratification and the radial divergence
of magnetic field lines. A model for such considerations is to
consider a one-dimensional inhomogeneity in the radial direc-
tion. However, it is important to take into account the inhomo-
geneity of the plasma across the magnetic field, in accordance
with observations of open regions of the solar corona (bound-
aries of coronal holes and streamers, coronal plumes, etc.).

In this work, we consider the case when the ratio of the
Alfv èn wave length and a characteristic spatial scale of the in-
homogeneity along the magnetic field lines is supposed small.
We restrict ourself to a consideration of travelling waves, prop-
agating outward from the Sun without reflection. This assump-
tion allows us to use the WKB approximation to describe the
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effect of Alfvèn wave phase mixing in a smooth longitudinal
inhomogeneity of the plasma.

The WKB method is a powerful tool for studying wave prop-
agation in inhomogeneous media. We use the WKB method to
study phase mixing of Alfv́en waves in a plasma structure in-
homogeneous in both horizontal and vertical directions, under
the assumption that the characteristic spatial scale in the vertical
direction is much greater than the horizontal spatial scale. The
inhomogeneity of the plasma in the longitudinal direction has
important consequencies for phase mixing.

The paper is organized as follows. In the next section we de-
scribe the general properties of the two-dimensional magnetic
plasma configurations considered. In Sect. 3 we use the WKB
method to derive the diffusion equation (with the diffusion co-
efficient depending on spatial coordinates) that describes the
wave behaviour. In Sect. 4, three examples of two-dimensional
magnetic plasma configurations are considered. Sect. 5 contains
our general conclusions and an illustration of the theory applied
specifically to coronal holes.

2. Basic equations and equilibrium state

We use the following set of viscous MHD equations for an
infinitely conducting plasma:

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p+

1
µ

(∇ × B) × B

+ ρg − ∇ × (ρν∇ × v) + ∇(ρν∇ · v), (2)

∂B

∂t
= ∇ × (v × B), (3)

∇ · B = 0. (4)

Hereρ is the density,p the pressure,v the velocity, andν the
kinematic viscosity of the plasma;B is the magnetic field and
µ is the magnetic permiability. The gravitational accelerationg
is assumed to be constant. In the momentum equation we take
only the shear viscosity into account and neglect the compres-
sional viscosity which does not effect Alfvén waves. The energy
equation plays no role it in what follows.

We adopt the Cartesian coordinatesx, y, z with thez-axis
anti-parallel to the gravitational acceleration and consider a two-
dimensional static equilibrium in which all quantities depend
on x andz only, and they-component of the magnetic field is
zero. The equilibrium fieldB0, the plasma pressurep0, and the
densityρ0 satisfy

∇p0 − 1
µ

(∇ × B0) × B0 + gρ0 = 0, (5)

∇ · B0 = 0. (6)

The fieldB0 = (B0x, 0, B0z) can be expressed in terms of a
magnetic flux functionψ through

B0x = −B00
∂ψ

∂z
, B0z = B00

∂ψ

∂x
, (7)

whereB00(> 0) is the field strength atx = z = 0. In open
magnetic plasma configurations withB0z > 0 everywhere we
have∂ψ/∂x > 0. Magnetic surfaces are given by the equation
ψ(x, z) = const, and the equilibrium pressure and density are
related toψ by the equation

∇p0 =
B2

00

µ
∇ψ∇2ψ + gρ0. (8)

In order to find the quantitiesp0, ρ0, andψ we need an
additional equation. One possible choice is to assume that the
plasma is isothermal, so thatp0 is proportional toρ0. Then 0(8)
gives a closed set of two scalar equations forρ0 andψ.

In what follows we consider open magnetic configurations
with characteristic scale in thez-direction much larger than
the characteristic scale in thex-direction. Such a model can be
applied to a variety of open magnetic structures in the corona. In
such configurations the variation of the total pressure across the
magnetic tube defined by the magnetic field lines with footpoints
atx = ±x0 is small. However, in the case where the plasma beta
is small as in the solar corona, the plasma pressure and density
can vary strongly across the magnetic tube. Thex-component
of the magnetic field is much smaller than thez-component,
and the latter can be represented by the sum of a large term
independent ofx and a small term that varies strongly in the
x-direction. If, in addition, we assume that the configuration is
symmetric with respect to thez-axis, then we can writeψ in the
form

ψ = ψ0(Z)x+ εψ1(x, Z), (9)

whereZ = εz, with ε = x0/H � 1 being the ratio of the hor-
izontal scalex0 to the vertical scaleH. Then thex-component
of (8) gives the approximate equation

∂p0

∂x
= ε

B2
00

µ
ψ0(Z)

∂2ψ1

∂x2 , (10)

so that

p0 = ερ00V
2
A0ψ0

∂ψ1

∂x
+ p̄0(Z), (11)

wherep̄0(Z) is an arbitrary function. Hereρ00 is the density at
x = z = 0 andVA0 = (B2

00/µρ00)1/2 is the Alfvén speed at
that location. If now we assume that the plasma beta is of order
ε, then the characteristic scale of variation ofp0 is x0. Under
our assumption thatρ0 has the same characteristic scale in the
x-direction asp0 we arrive at the conclusion that the Alfvén
velocityVA(x, z) = |B0|/√µρ0 also hasx0 as a characteristic
scale of variation in thex-direction. This fact is important for
phase mixing of Alfv́en waves where the characteristic scale
of phase mixing is inversely proportional to the characteristic
scale of variation ofVA in thex-direction to the2

3 power.

3. WKB solution for Alfv én wave phase mixing

We start the analysis from the derivation of the governing equa-
tion for Alfv én waves. This derivation parallels that given by
Ruderman et al. (1997) but differs from the later in that here
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Fig. 1. A sketch of the locally orthogonal reference frameψ(x, z),
φ(x, z). The unit vectoreφ is directed along the magnetic field lines.

we do not take plasma resistivity into account. We linearise
Eqs. (1)–(3) writingv = (0, v, 0) andB = B0 +(0, b, 0); this
describes Alfv́en waves. They-components of the momentum
and induction equations then yield

ρ0
∂v

∂t
=

1
µ

(B0 · ∇)b+ ∇ · (ρ0ν∇v), (12)

∂b

∂t
= (B0 · ∇)v. (13)

Eliminatingb from this set of equations gives

ρ0
∂2v

∂t2
=

1
µ

(B0 · ∇)2v + ∇ ·
(
ρ0ν∇∂v

∂t

)
. (14)

Eq. (14) describes Alfv́en wave propagation in two-dimensional
planar magnetic configurations.

Introduce a functionφ(x, y) satisfying the equation

∂ψ

∂x

∂φ

∂x
+
∂ψ

∂z

∂φ

∂z
= 0. (15)

This equation implies that the level lines of the functionφ given
by the equationφ(x, z) = const are perpendicular to the mag-
netic field lines. Since the functionφ(x, z) is determined by (15)
up to multiplication by a constant factor, we chooseφ in such a
way that it increases along a magnetic field line. At fixedψ, the
quantityφ is a coordinate along a field line.

The two functionsψ andφ constitute an orthogonal curvi-
linear coordinate system in thexz-plane, shown in Fig. 1. In this
coordinate system the operatorB0 · ∇ takes the simple form

B0 · ∇ = B00J
∂

∂φ
, (16)

whereJ , the Jacobian of the coordinate transformation, is given
by

J =
∂ψ

∂x

∂φ

∂z
− ∂ψ

∂z

∂φ

∂x
. (17)

Note that due to the particular choice of the signs of the functions
ψ andφwe haveJ > 0. Now, with the use of Eq. (16), we rewrite

Eq. (14) as

σ
∂2v

∂t2
= V 2

A0J
∂

∂φ
J
∂v

∂φ

+ J
∂

∂t

[
∂

∂ψ

(
νσhψ

∂v

∂ψ

)
+

∂

∂φ

(
νσhφ

∂v

∂φ

)]
, (18)

whereσ = ρ0/ρ00 is the dimensionless density. The scale fac-
torshψ andhφ are given by

hψ = J

[(
∂x

∂φ

)2

+
(
∂z

∂φ

)2
]
, (19)

hφ = J

[(
∂x

∂ψ

)2

+
(
∂z

∂ψ

)2
]
. (20)

We now make the following assumptions:
i) the ratio of the characteristic scales in thex- and z-

direction is small,x0/H = ε � 1;
ii) the wavelength ofv is of orderx0;
iii) the characteristic scale of wave damping isH.
In our curvilinear coordinates the coordinateφ is the ana-

logue of the coordinatez in the Cartesian coordinates, whileψ is
the analogue of coordinatex. Assumption i) enables us to intro-
duce the stretched coordinateΦ = εφ, similar to the stretched
coordinateZ = εz introduced earlier. Phase mixing in a plasma
that is homogeneous in thez-direction produces a characteris-
tic scale of wave damping of orderx0R

1/3, where the Reynolds
numberR = x0VA0/ν (see Heyvaerts and Priest 1983). In or-
der to havex0R

1/3 of the orderH we takeR = O(ε−3) and
introduce the scaled coefficient of viscosityν̄ = ε−3ν.

We look for a solution that locally has the form of a propa-
gating wave, so that

v = v(θ,Φ) (21)

where the phaseθ is given by

θ = ωt− ε−1Θ(Φ, ψ). (22)

Substitution of Eqs. (21) and (22) into Eq. (18) yields[
σω2 − V 2

A0J
2
(
∂Θ
∂Φ

)2 ]
∂2v

∂θ2

= −εV 2
A0J

[
∂v

∂θ

∂

∂Φ

(
J
∂Θ
∂Φ

)
+ 2J

∂Θ
∂Φ

∂2v

∂θ∂Φ

]

+ Jεν̄σωhψ

(
∂Θ
∂ψ

)2
∂3v

∂θ3
+ O(ε2). (23)

We look for the solution of Eq. (23) in the form of the ex-
pansion

v = v1(θ,Φ) + εv2(θ,Φ) + . . . . (24)

Substitution of this expansion into Eq. (23) gives, in the first
order approximation (as a condition thatv1 is non-zero), the
result(
∂Θ
∂Φ

)2

=
ω2σ

V 2
A0J

2 . (25)
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For upwards (Θ > 0) propagation we obtain

Θ =
∫ Φ

0

ωσ1/2

VA0J
dΦ + Θ0(Φ, ψ). (26)

In what follows we takeφ = 0 atx = x0, z = 0 and we assume
thatθ is constant atφ = 0, so thatΘ0 = 0.

In the second order approximation, we obtain

2J
∂Θ
∂Φ

∂2v1
∂θ∂Φ

+
∂v1
∂θ

∂

∂Φ

(
J
∂Θ
∂Φ

)

− ωσν̄hψ
V 2
A0

(
∂Θ
∂ψ

)2
∂3v1
∂θ3

= 0. (27)

Using Eq. (26) we reduce this equation to

∂w

∂Φ
= λ

∂2w

∂θ2
, (28)

where

w = σ1/4v1, (29)

λ(Φ, ψ) =
ν̄σ1/2hψ

2VA0

(
∂Θ
∂ψ

)2

. (30)

Eq. (28) is the diffusion equation in coordinatesΦ andθ with
coefficient of diffusionλ spatially dependent onΦ andψ. The
variableψ is present in this equation only as a parameter.

Cosider a monochromatic wave and takew to be propor-
tional toeiωt. Then Eq. (28) reduces to

∂w

∂Φ
= −λw, (31)

which is integrated to

w = W (ψ) exp

(
−
∫ Φ

0
λ(Φ′, ψ) dΦ′

)
(32)

where the functionW (ψ) is determined by the boundary con-
dition atφ = 0. In the next section we use this expression to
study the effect of inhomogeneity in thez-direction on phase
mixing of Alfv én waves.

4. Alfvén wave damping

The rate of damping of Alfv́en waves is determined by the in-
tegral term in the exponent in Eq. (32). In this section we study
this integral term in different particular cases. However first of
all we rewrite it in a form that makes clear the physical meaning
of its components.

Since we consider a magnetic plasma configuration with a
vertical characteristic scale larger than its horizontal character-
istic scale, the magnetic field is almost in the vertical direction.
The functionψ can be represented by the approximate formula
(9) and |∂ψ/∂x| � |∂ψ/∂z|. Then it follows from the or-
thogonality condition (15) that|∂φ/∂z| � |∂φ/∂x|, so that the
functionφ is almost independent ofx. Taking into account these

two inequalities and the fact thatB0z ≈ B0, together with the
formulae

∂x

∂φ
= − 1

J

∂ψ

∂z
,

∂z

∂φ
=

1
J

∂ψ

∂x
, (33)

we obtain the expressions

J ≈ B0

B00

∂φ

∂z
, hψ ≈ B0

B00

(
∂φ

∂z

)−1

. (34)

With the aid of (34) we rewrite expression (26) forΘ as

Θ ≈ εω

∫ z

0

dz′

VA(x, z′)
. (35)

Substitution of (34) and (35) into expression (30) forλ yields

λ ≈ ε−1 νω
2B2

0

2VAB2
00

∂z

∂φ
I2, (36)

where

I(x, z) =
∫ z

0

1
V 2
A

∂VA
∂x

dz′. (37)

Finally we arrive at

Λ ≡
∫ Φ

0
λ(Φ′, ψ) dΦ′

≈ ω2

2B2
00(x, z)

∫ z

0

ν(x, z′)B2
0(x, z′)I2(x, z′)
VA(x, z′)

dz′. (38)

The quantityΛ determines the damping rate of the variablew.
However, of greater interest is the energy flux in an elemental
magnetic tube between the magnetic field linesψ andψ+ ∆ψ.
This flux is proportional toρ0VA(v(1))2∆ψ, and∆ψ is propor-
tional toB0, so the energy flux per unit length in they-direction
is

S∆ψ = e−2ΛS0(x)∆x, (39)

whereS0(x)∆x is the energy flux atz = 0 whereψ = x. It is
straightforward to check that in the case where the unperturbed
state is independent ofz our results coincide with those obtained
by Heyvaerts & Priest (1983).

We consider now three particular cases, assuming in each
thatν is a constant.

4.1. Uniform magnetic field and exponentially decreasing
density

We takeB0x = 0, B0z = B00, andρ0(x, z) = ρ̂0(x)e−z/H .
This case corresponds to a uniform vertical magnetic field in
an isothermal atmosphere. We have to restrict our analysis to
heightsz not larger than a fewH. This is because the exponen-
tial growth of the wavelength with height means that the WKB
approximation is inappropriate forz � H. Sinceρ0 depends
onx, so also doesp0. However, as explained in Sect. 2, we can
neglect thex-dependence of the total pressure because of the
fact that the plasma beta is small.
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Eq. (38) yields

Λ = Λ(x)
(
1 − e−z/2H

)3
, (40)

where

Λ(x) =
νω2H3

3V 3
A0ρ

3/2
00 ρ̂

1/2
0

(
dρ̂0

dx

)2

. (41)

Whenz � H the quantityΛ is proportional toz3/6H3 as for
the case when the unperturbed state is uniform inz. However, for
values ofz that are of the order of a fewH we haveΛ ≈ Λ(x), so
that there is then almost no damping of the energy flux. Hence,
only a part of the energy is dissipated due to phase mixing.
The ratio of the dissipated energy flux to the energy flux at the
bottom of the magnetic flux tube is

K(x) = 1 − e−2Λ(x). (42)

4.2. Density uniform in the vertical direction and
exponentially diverging magnetic field

Let us now take

ρ0 = ρ0(x), ψ = H exp(−z/H) sin(x/H) (43)

with equilibrium magnetic field

Bx = B00e
−z/H sin

x

H
, Bz = B00e

−z/H cos
x

H
; (44)

then the magnetic field strengthB0 = B00e
−z/H , declining

exponentially. The density does not change with height. The
vertical dependence of the unperturbed state is due to the diver-
gence of the magnetic field lines only. A sketch of this magnetic
configuration is given in Fig. 1. Recall that we are considering
a thin magnetic tube restricted by the magnetic field lines with
footpointsx = ±x0 at z = 0, wherex0 � H. The thickness
of this magnetic tube grows with height asexp(z/H), and once
again we have to restrict our analysis toz ≤ H. The damping
decrementΛ is now given by

Λ = Λ(x)
(
sinh

z

H
− z

H

)
, (45)

where now

Λ(x) =
νω2H3

4V 3
A0ρ

3/2
00 ρ

1/2
0

(
dρ0

dx

)2

. (46)

Once againΛ is proportional toz3, as in the one-dimensional
case, whenz � H. However, for values ofz of the order ofH
the energy flux is proportional to

exp
(
−Λez/H

)
,

and so the wave damping due to phase mixing is much faster
than in the one-dimensional case. Note, that nowK(x) ≡ 1.

4.3. Constant Alfv́en velocity

For our third example we takeρ0 = ρ̂0(x)e−2z/H with the
magnetic field given by expressions (44). In this case the Alfvén
velocityVA depends onx only. The damping decrement is

Λ = Λ
[
1 − e−z/H

(
1 +

z

H
+

z2

2H2

)]
, (47)

where

Λ(x) =
νω2H3

V 5
A

(
dVA
dx

)2

. (48)

As in the previous examples,Λ coincides with the damping
decrement for the one-dimensional case whenz � H. How-
ever, forz of the order of a fewH we haveΛ ≈ Λ and again we
see that only a part of wave energy is dissipated due to phase
mixing. Again, the ratio of the dissipated energy to the energy
flux at the bottom is given by Eq. (42), withΛ(x) given by
Eq. (48).

5. Discussion and conclusions

We have studied phase mixing in two-dimensional magnetic
plasma configurations assuming that the characteristic vertical
spatial scaleH of the configurations is much larger than the
horizontal spatial scale which, in turn, was taken to be of the
order of a wave length. Viscosity was scaled in such a way that
the characteristic damping length due to phase mixing was of
orderH. The WKB method was used to derive the dependence
of wave amplitude and energy flux on height.

Three particular examples were considered as illustrations
of the general formula for the energy flux. In the first example the
magnetic field was vertical and uniform, while the equilibrium
density decreased exponentially with height. At a heightz of
a fewH, phase mixing practically stops and then the Alfvén
wave propagates undamped.

In the second example we considered the opposite situation,
where the density is independent of height while the magnetic
field diverges with height. In this example the energy flux damps
much faster than in the one-dimensional configurations consid-
ered by Heyvaerts & Priest (1983). The damping decrement
is proportional to the exponential of the height, instead of the
height cubed as in one-dimensional configurations.

In our third example, both the density and the magnetic
field decrease exponentially with height but in such a way that
the Alfvén velocity is constant. Again, phase mixing stops at
a distance of the order of a fewH and then the Alfv́en wave
propagates undamped.

The dependences of the damping rates of the phase mixed
Alfv én waves on the height for our three examples of open
magnetic structures are shown in Fig. 2. The dependences are
calculated according to formulae (40), (45) and (47) and com-
pared with the damping rate in the one-dimensional model of
Heyvaerts & Priest (1983), for whichΛ/Λ = z3/6H3.

The results obtained here may be applied to conditions typi-
cal of the solar corona. As an example, we consider phase mixing
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Fig. 2. The dependence of the normalised damping rateΛ/Λ of an
Alfv én wave on the normalised heightz/H for different models of
the structure. The dotted curve corresponds to the case of a uniform
magnetic field and exponentially decreasing density; the dashed curve
applies to the case of uniform density and exponentially diverging
magnetic field; the dash-dotted curve is for the case of constant Alfvén
speed; the solid line corresponds to the case of a structure homogeneous
in the vertical direction.

of Alfv én waves in a coronal hole. The plasma in a coronal hole
is strongly inhomogeneous due to presence of plumes. We note
that MHD waves in plumes have been registered in recent EUV
observations (DeForest et al. 1998). The typical size of a plume
at its base is5 Mm (see, e.g., DeForest et al. 1997). Typically
the plasma density in a plume is one order of magnitude larger
than that in the surrounding plasma. The transition from the rar-
efied surrounding plasma to the dense plume plasma may occur
in plume boundary layers with thickness as much smaller than
the plume horizontal size.

At low heights the magnetic field in coronal holes is strongly
divergent. However, at larger heights it is almost radial. We as-
sume that Alfv́en waves are generated at the base of the upper
part of the hole, where the equilibrium magnetic field is approx-
imately radial. Then the characteristic scale of the equilibrium
magnetic field variation is of the order of the solar radius, i.e.
700 Mm. On the other hand, the characteristic scale of the den-
sity variation in the vertical direction isH ' 100 Mm. Hence
the density varies with the height much faster than the magnetic
field. This fact enables us to take the magnetic field approx-
imately constant and use the results obtained in Sect. 4.1 to
describe the phase mixing of Alfvén waves propagating in a
coronal hole.

In what follows we take the magnetic field in the hole to be
10 G and the temperature of the plasma as106 K. We assume
that there is sharp density gradient in the horizontal direction
with the density varying from1014 m−3 to 1015 m−3 within
a distance of 1 Mm. We choose such a density profile that the
quantityΛ given by Eq. (41) is independent ofx (recall thatν
is assumed constant). This results in the following expression
for the electron densityne atz = 0:

ne(x) = n0(1 + x/x0)2/3, (49)

Fig. 3. The dependence on the kinematic viscosity coefficientν of the
ratio Q of the energy of the Alfv́en wave dissipated per second in
the inhomogeneous region of the hole between the levelsz = 0 and
z = H to the wave energy flux atz = 0. The solid, dotted, dashed, and
dashed-dotted curves correspond to the waves with periods6 s, 20 s,
50 s, and100 s respectively.

withn0 ≈ 6.43×1014 m−3 andx0 ≈ 0.532 Mm;x is measured
in Mm. Note thatx = 0 is the center of the inhomogeneous layer
where the transition from the low to the high density plasma oc-
curs. ThenVA0 ' 106 m/s atx = 0, and usingH ' 100 Mm
we arrive at

Λ ≈ 5.24 × 10−7 νω2, (50)

whereω is measured ins−1 andν in m2 s−1.
It is straightforward to obtain that for the parameters choosen

the mean ion collisional time isτi ' 1 s and the gyrofrequency
ωi ' 105 s−1. The WKB approximation used in the present
paper is valid only when the wavelength is much smaller than
H. This results in the restriction that the wave period has to
be smaller thanH/VA0 ' 100 s. Using Eqs. (39) and (40),
we obtain that the ratioQ of the energy of the Alfv́en wave
dissipated in the inhomogeneous region of the hole per second
between the levelsz = 0 andz = H to the wave energy flux at
z = 0 is given by

Q ≈ 1 − exp(−0.122Λ) = 1 − exp(−6.4 × 10−8 νω2), (51)

whereω is in s−1 andν in m2 s−1.
The value of kinematic viscosity coefficients,ν, is one of

the most uncertain parameters in the solar corona. Using the for-
mula for dynamical viscosity coefficient given by Spitzer (1962)
(see also Priest 1982) we obtainν ≈ 1010 m2 s−1. However,
the viscosity tensor in the solar corona is strongly anisotropic
due to the presence of strong magnetic field. In accordance with
Braginskii (1965) it is characterized by five coefficients of vis-
cosity. The value, given by Spitzer (1962) corresponds to the
first Braginskii coefficient of viscosity, the coefficient of com-
pressional viscosity. The viscosity tensor used in the present
paper describes the shear viscosity, which is the only part of
the full Braginskii’s viscosity tensor that provides damping of
Alfv én waves. According to Braginskii, the coefficient of the
shear viscosity is smaller than the coefficient of the compres-
sional viscosity by the factor(τiωi)−2, so that in our case we
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Fig. 4. The dependence on the wave periodω of the ratioQ of the
energy of the Alfv́en wave dissipated per second in the inhomogeneous
region of the hole between the levelsz = 0 andz = H to the wave
energy flux atz = 0. The solid, dotted, dashed, and dashed-dotted
curves correspond toν = 108 m2 s−1, 108.5 m2 s−1, 109 m2 s−1,
and109.5 m2 s−1 respectively.

takeν ≈ 1010 (τiωi)−2 ≈ 1 m2s−1. However, it is quite possi-
ble that in reality the coefficient of shear viscosity is determined
not by the momentum transfer due to ion diffusion, which is the
only process accounted in Braginskii’s theory, but by micro-
turbulence present in the coronal plasma. In this case it can be
many orders of magnitude larger than that given by Braginskii’s
theory. This fact inspired us to considerν as a free parameter.

Braginskii’s expression for the viscosity tensor is only valid
for collisional plasmas, so that we only consider waves with
periods larger thanτi ' 1 s. Since at present observational
information about waves in coronal holes with periods shorter
than 100 s is hardly available, we considerω as a free parameter
as well. The dependences of the quantityQ on ν for different
fixed values ofω, and onω for different fixed values ofν are
shown in Fig. 3 and Fig. 4 respectively. Fig. 3 shows that waves
with periods between6 s and100 s are practically undamped in
the part of the plume boundary layer betweenz = 0 andz = H
whenν <∼ 105 m2 s−1, and they are almost completely damped
whenν ' 1010 m2 s−1.

Our main conclusion is that the rate of wave damping due
to phase mixing in two-dimensional magnetic configurations
depends strongly on the particular geometry of the configu-
ration and can be either weaker or stronger than that in one-
dimensional configurations. The other very important quantities
determining the wave damping rate are kinematic coefficient of
the shear viscosity and the Alfvén wave frequency.

Our conclusions are of cause based on the simplified model
used in the present paper. Other effects, e.g. nonlinear generation
of fast MHD waves (Nakariakov et al. 1997, 1998) and the
stationary flow along magnetic field lines (Rytova & Habbal
1995; Nakariakov et al. 1998), can strongly affect our results.
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