## Appendix A: The strip brightness method to derive the luminosity density of an axisymmetric ellipsoidThe strip density method was first introduced by Schwarzschild (1954) to evaluate the gravitational potential of the Coma cluster. In the following we describe the method and extend it to the more general situation of an oblate, axisymmetric, ellipsoidal distribution of mass (and luminosity). This technique offers a quite simple and straightforward way to recover the spatial density distribution, and the potential and rotation curve of such systems, especially when they are not described parametrically but rather observed as projected distributions on the sky. Let us consider an ellipsoidal distribution, centered at where the constant is the intrinsic eccentricity. The projected distribution on the plane of the sky () has elliptical symmetry with an apparent eccentricity . The surface brightness is then
We now define the strip brightness at distance from the image minor axis [Fig. 6a] as On the other hand is the luminosity of a
section perpendicular to In practice, the observed image is divided in strips normal to and integrated in the direction. This gives for spanning from 0 to the outermost radius of the image. Eq. A6 is then used to derive , and with it the potential and circular speed. From a numerical point of view the method is easy to implement and was tested on a number of analytical solutions. Due to the strip integration prior to the differentiation in Eq. A6, the noise introduced is low and hardly appreciable even in the outer regions. © European Southern Observatory (ESO) 1998 Online publication: October 21, 1998 |