Astron. Astrophys. 341, 567573 (1999) ASTRONOMY
AND
ASTROPHYSICS

On the flow topology in contact binaries

J. Hazlehurst

Hamburger Sternwarte, UnivergitHamburg, Gojenbergsweg 112, D-21029 Hamburg, Germany

Received 26 November 1997 / Accepted 14 October 1998

Abstract. Using a simple model we investigate how the flowhere is a steady circulation of gas through the system involving
field in a contact binary can alter its topology under the infliboth supply and removal of material from the surface layers.
ence of Coriolis forces. In the case studied, closed streamliffdgs means that not all of the surface streamlines will close up
form over a relatively large area. This result causes us to reviewthe surface itself. | shall use the simplest possible model, to
critically the argument that all surface streamlines can meetlie described in the next section, to represent this situation.

a stagnation point, leading to a constant Jacobi energy over the

whole surface. A general statement by Landau & Lifshitz con- .

cerning Bernoulli's constant is fully confirmed by the presert A Simple model

investigation. We shall in this paper assume the principle possibility of two
o _ stars being able to form a stable, stationary contact binary in
Key words: stars: binaries: close — hydrodynamics which strong motions occur across the surface. We do not spec-

ify the evolutionary state of the system.

We shall regard the material involved in these motions as
flowing from one star (say, the primary) to the other via the
outer layers and then back again through the inside. Then, as
In recent discussions a strong difference of views has emergégn from the surface, there would appear to be a source on the
concerning the correct fluid-dynamical treatment of the flow #fimary side of the system and a sink on the secondary side.
gas over the surface of a contact binary. This difference of views We start by agreeing with the statement in K 97 that the sur-
concerns the question of whether there are any hydrodynafare of a contact binary is topologically equivalent to a sphere.
cal arguments for assuming constancy of Jacobi energy (sliRis being so, we can go a step further and attempt to represent
of potential and kinetic energy) over the system surface. TH system by means of a rotating, roughly spherical object —at
answer to this question could be of relevance for the theorylefst as a topological analogue. A rather similar approach was
systems where very high velocities (in addition to the normesed by Tassoul (1992); in our case we would require that the
velocities of orbital and synchronised motions) seem to hakgtating object be supplied with a source on one side and a sink
been observed (Frasca et al., 1996). on the other.

My view (Hazlehurst 1997; hereafter H 97) that there are no In order to make the model ‘realistic’ (and not merely topo-
hydrodynamical arguments favouring constant Jacobi enefggically similar) a rather large depth of contact for the system
derived largely from a consideration of the symmetry-breakirigpresented by the model would appear advantageous.
properties of the Coriolis forces. After referring to ttier of Finally, our simple model says nothing about the driving
these forces in this respect | went on to state that they migh€chanism of the circulation and is merely intended to represent
even lead to topological changes in the flow. the situation as seen from the surface layers. Nevertheless we

This view has however been sharply challengeéh(i¢r have in mind something like the thermally-driven circulation of
1997; hereafter K 97) in a paper where the author sees no ®dariai (1976), Webbink (1977) and others.
son whatever for expecting a change in fluid topology from the
above cause. 3. Continuity of motions in the surface layer

| shall therefore in this paper try to give a detailed picture’ y Y
of how the topological changes can actually occur. Since thehydrodynamical considerations concerning the outer layers
differences of view described above do notinvolve the ‘viscositf a star it is practicable to take a mechanical rather than an
question’ I shall retain the inviscid assumption in the interests oftical definition of the surface. Consistent with both H 97 and
simplicity and, | hope, of transparency. | shall also assume th&97 we shall assume the surface to be an isobar:

1. Introduction

Send offprint requests tdohn Hazlehurst (address above) P = constant (1)
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where the ‘constant’ in Eq. (1) has some small (normally vepan expect to be quite small. The question we therefore have

small) value. to answer is whether we can simply drop the k-term in Eq. (8)
Assuming the material to be an ideal gas we have: or whether we must solve the full equatifirst and then go to

BT the limit £ — 0 in the resulting full solutions.
P=p— @) Although we can not answer this question in general, we

K can answer it in particular cases. A particular solution of Eq. (8)
so that the continuity equation: of special interest here is:
div (pv) = 0 @) o, = A vy =0 ©)

sind
leads to: which corresponds to a source-sink pair with the source and
pdivv + Lv.gradP _ ﬁv.gde -0 (4) sink located a¥ = 0 andd = respgctively. Thus we see
s not only that the source and sink are diametrically opposite but

where we have assumed constancy.of that we can now define the polar axis of coordinates much more

Now the concept of ‘surface streamlines’ used by bofifecisely as being the axis which joins source and sink. We also
authors referred to above is clearly only meaningful if the§®te thatthé:-term modulates the solutions but does not change
streamlines actually lie in the surface; in view of Eq. (1) thiheir essential character.
means that the vectotsand grad P must be taken to be mutu- Going now to the limitt — 0 we find
ally perpendicular. Hence Eq. (4) simplifies to:

Vg — Vg = 0 (10)

sinf
so that, at least in this particular case, the ‘short cut’ of simply

The assumption underlying Eq. (5) should perhaps be stage[ pping the:-term in Eq. (8) seems to work. We shall assume

in more detail. Itis that the ‘surface’ of the system can be taken out proof that this procgdure Is also viable i@r 7 0 or
at least for those cases which we shall treat later in this paper.

to be one on which the pressure is constant and that, at points_. . . .
. . Finally, we note that the use of the strictly two-dimensional
on that surface, the velocity of the flow is parallel to the surface

and, hence, perpendicular to the pressure gradient. We comrﬁgr&ma(:h of this section introduces the disadvantage that the
on this assumption in the Appendix A. velocity becomes arbitrarily high (see Egs. (9) and (10)) in the

S L immediate neighbourhood of the source or sink centre. This
In the approximation used in this paper we regard the mo-, "~ . .
. . . . : o behaviour can however be avoided by using a more general
tions as becoming essentially 2-dimensional “motions on_a . . .
N : roach. We shall discuss this aspect in Sect. 7.

sphere” as the surface is approached. Here a new assump?Po%
is involved, namely that the radial component of the velocit . o
does not contribute significantly to the divergence of the velo®- Dynamical description of the flow
ity on the surface. This approximation could be more serioge motion of an inviscid fluid under the action of the total
than the one involving the constancy of surface pressure; ”p'§tential<1> is given by:
also discussed in the Appendix A. 1 1

Introducing a polar coordinate systemd, ¢ we then have — gradv? — v x curlv +2Q x v = — grad® — —gradP(11)
on the surface = R: 2 p

1
divv — Tv.gradT =0 (5)

wherev denotes the velocity in the rotating frame and station-
. I 8v¢ (9 . . .
divv = e \ Do + %S’LTLQUQ (6) arity is assumed.
s ¢ We now confine our considerations to motions in the surface
We next introduce the temperature distribution over the su@yer. As in Sect. 3 we shall treat these as if they occurred over a
face; we take for this the simple form: spherical surface (see, however, below). We shall use spherical
polarsr, 8, ¢ (with » = R on the surface) and the coordinate
~ gradT k ~ . . . . . L. .
0. T TR ¢.gradT = 0 (7) axisalignedinthe source-sink directioni.e. perpendicular to the

rotation axis. Taking the vector product of Eq. (11) witleads

(k = constant) where the unit vectéris always assumed tot0 afurther vector equation the components of which yield, after
point away from the source and towards the sink in the simgieme reduction:

model of Sect. 2. 0 15 .
Substituting now from Egs. (6) and (7) into Eq. (5) we findgg (& T 3v") = (1 + 2Qsinfeosg)uy (12)
1 8U¢ 0 . 1 9 P 1 2\ .
—_® —_ — ——(® + —v*) = —(n, + 2Qsinbcoso)v 13
sind (8(;5 + 90 sm@vg) + kvg = 0 @) Sino 3(;5( B ) (n ¢)ve (13)

Now the thermal capacity of the surface layers is extremel{€re we have again used Eq. (1). The quantity
low so thatt will be (mainly) determined by energy transport in 1 ovg 0 .
the deeper layers. For good contact (as assumed in Sect. 2J'W& Rging \ 95 @Sme% (14)
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represents the component of vorticity perpendicular to the sur- We next attempt a separation of variables:
face. 1 )
As in Sect.3 and as assumed earlier (H97 and K97) the = sing f(6) (21)
pressure has been taken to be constant on the boundary. If {fdgjing to
condition is not fulfilled, Egs. (12) and (13) must be modified
accordingly (for details see Appendix A). vy = cospcosd f(0) + cospsinb () (22)

Itfollows from Egs. (12) and (13) that: where the integration constant vanishes singenust be zero

9 (1, + 20sinbcosd)vy) — at the equatof¢ = +7/2).

o Using Egs. (17), (19), (21) and (22) we obtain:

- %sin@ [(n- + 2Qsinfcosd)vy] (15) f" + 3ot f' —2f —2QR =0 (23)
So far we have treated all motions as if they occurred ovfé)lr which the only non-singular solution is:

a spherical surface. The surface will however in practice adqut;g) = constant = —QR (24)

its form in order that the potential there can satisfy the above

equations. As we have noted in H 97 this does not represent Hence Egs. (19), (21), (22) and (24) give:

an inconsistency since the spherical approximation can still be A

used to tell us in which way the adjustment must occur. As v = —— — (iEsing (25)

Tassoul 1992, the grgwtatlonal com_pongnt of the potential cgn _ —QRcosbcosd (26)

be taken to be spherically symmetrical in order to support th

pseudospherical approach. We must next consider the source strength A. This should
We see from the above equations that a necessary conditiohbe taken to be so large that the pseudospherical approxima-

for constant Jacobi energy+ 1v? everywhere is: tion breaks down. Let us suppose, somewhat arbitrarily, that the

object introduced in Sect. 2 can be considered roughly spheri-
1+ 2Qsinfcosg = 0 (16) calif for 99% of the surface the r.m.s. radius variation does not
gxceed 10% of the average radius. We find this criterion leads

for non-zero velocities. This will also represent a sufficient co

dition, assuming that the continuity equation (see Sect. 3) can

also be satisified. A< 0150R (27)
We shall first consider the case where Eq. (16) is satisfied.

This will serve as a useful basis for the discussion later of tié1ere we have take® to be equal to one third of the quadratic

more general case. angular velocity needed for rotational break-up (Whelan 1972).
In order to see what Eq. (16) implies we substitutesfpor Inordertolie reasonably safely within the limitgiven by Eq. (27)
from Eq. (14) into Eq. (16) to give: we shall assume that
1 A=01QR 28
- (81}9 - asin@v¢) + 2Qsinfcosp = 0 a7) (28)
Rsind \ 0¢ 90 in what follows.

This must now be combined with the continuity equation.

Following the arguments of Sect. 3 we adopt this in the simph: The streamlines for constant Jacobi energy
fied form (k— 0): ) )
In the chosen coordinate system the general equation of the

vy + ﬁ(smgve) -0 (18) streamlines is:
o6 ~ 90 46 sinfds
. — = 29)
We look for solutions of the form: Vg Vg (
vo = — v (19) Substituting foruy andv,, from Egs. (25) and (26) we find:
L ) ) ) ao B sinfdo 30
Wher_evg_ls restricted to be aon-smgularfun_ctlonHence the A QRsing —QRcoslcosé (30)
solution includes, but does not entirely consist of, a source-sifk*?
pair. The additional function} is included in order to allow us Using the identity:
to satisfy the full set of equations. A solution of the form given 40 d
in Eq. (19) should therefore permit us to study mathematicaltysf cos¢) — = — (sinfcosd) + sinb sing (31)
the simple model proposed in Sect. 2. Substituting from Eq. (19) dp d¢
into Eq. (18) we find: we can rewrite Eq. (30) as:
%1;;75 + %sin@vé =0 (20) %(sine cosQp) = Q—A (32)
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which integrates to give: Hence there is nothing to prevent us, in an ideal experiment,
from introducing vorticity over this whole area. If viscosity is

constant — . . - . -
constant — ¢ (33) required for carrying out this experiment, it is of course removed

QRsind=A

oS} . .
immediately afterwards.
or, for the choice of A given in Eq. (28): It is not difficult to show that, under the assumption that
' constant — ¢ Eq. (18) is_correct, the perpen(_jicular component of the vorticity
sinf = 0-1W (34)  will, following the above experiment, remain constant on every

streamline. We can imagine the vortices as moving around in
Depending on the choice of the “streamline constant” ih enclosed area (“vortex patch”) thereafter.

Eq. (34) the streamlines are open or closed.lifhiéing stream- The expression in brackets on the R.H.S. of Eq.(12) and
line separating the two groups is given by: Eq. (13) i.e. the total perpendicular vorticity, including the rota-

. /2 — ¢ tional contribution, is the relevant quantity in the above consid-
sind = 0.1 (35) erations. We note that, if this is non-zero, as it is following the

cos¢ above experiment, then the Jacobi energy on the L.H.S. of the

The properties of this limiting streamline are as follows. Thgpove equations can not be constant. Outside the vortex patch,
streamline begins at a stagnation pdifit= 5.74°;¢ = 90°)  where the (total) vorticity is still zero, the Jacobi energy will
on the equator. It then moves inwards, at first at almost constggihain constant as before.
¢, and crosses the ‘top’ of the star@t= 9.04°;¢ = 0°. It In order to simplify matters as far as possible, let us as-
then continues over to the other side, making this excursigfime that, in the enclosed region, the (perpendicular) vorticity
as far ag) = 90°;¢ = —73.43°. After passing through this js yniform. There is a vorticity jump (but not a velocity jump)
extremity, it returns over the top of the star again, this time gfong the edge of the vortex patch, including the stretch along
0 = 170.96% ¢ = 0°, finally returning to the equator again at ahe equator where the patches from the two hemispheres touch.

second stagnation point locateddat 174.26°; ¢ = 90°. The usual symmetry conditions across the equator are not af-
The very large loop which we have described above togethggted by this.

with the remaining equatorial segment betwées 174.26° In the enclosed region, therefore:

andf# = 5.74°, encircles all of the closed streamlines. Recall-

ing that the sink and source are locate€ at 180° andf = 0° 7, + 2Qsinfcos¢p = F (37)

respectively, we see that the system of closed streamlines covers ) i
almost the whole surface of the star. The ‘open’ streamlines cdf1€r€£” is some constant. It follows thét is also constant on
necting the source and sink are confined to a C-shaped narﬁﬁﬁh streamline in this region. Now, before the extra vorticity
channel around the equator so that the material flowing froiffS introduced we had:

source to sink can only proceed along that side of the equator

on which no stagnation points occur. The maximum width of” +2sinfcosp =0 (38)
the channel amounts to only.57°. from which it follows that:

This particular flow topology is a direct consequence of the
action of the Coriolis forces. To see this, let us simply omit thg. — 7,.= F (39)

Coriolis term in Eq. (11) (i.e. the third term on the L.H.S.) and ) ) .
repeat the analysis. We then find instead of Egs. (25) and (%6) L(Jsmgu to denote thehangein velocity we then have from
g. :

the solution: 14):
A 1 Oug 0
Vg = — vy =0 36 Y g —
0= g ¢ (36) Roind (8925 8952n9u¢> F (40)

corresponding to @omplete systerof open streamlines. One

can hardly imagine a more dramatic change in the flow topology.
An immediate consequence of the change in flow topolo% = sing f(sinfcos) (41)

caused by the Coriolis forces is that most points on the stel-

lar surface ar@ot accessibléo a streamline coming from theso that Eq. (18) then requires that:

source or going to the sink. Hence it is not valid to argue that )

the Jacobi energyustbe constant over the surface of a contaéte = cosfcosg f(sinfcosg) (42)

binary on the grounds that all streamlines can be traced back 4o, . .\« have used the condition thavanishes atthe equator.

a point where they all come together. This argumentation was Substituting from Egs. (41) and (42) into Eq. (40) we then
used for contact binaries of the ‘reversing layer’ type in K97¢ 4 ~oor <ome reduction:

We look for solutions of the form:

6. Velocity fields with non-constant Jacobi energy f'(1 = sin*0cos®¢) — 2fsinfcos + RF =0 (43)

Let us consider once more the situation described in Sect. 5.\Blyere /' denotes differentiation with respect to the complete
farthe greatest part of the star is covered with closed streamliregumentsinfcosa.
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The particular integral of Eq. (43) of interest for usis: 7. Conditions where the surface streamlines meet

. RF (44) So far, we have used the idealization of a point source or sink
1+ sinfcosd within the context of a 2-dimensional flow field. The conse-

f

At very low latitudes this equation can only be regarde%uence of this is that the velgcny increases to very high values
the source or sink centre is approached.

as an approximation since the assumption is made that for Kl : . : .
higher latitudes than the one under consideration each parallelm.orfjerto connect with a proper 3-dimensional analysis let
of latitude is filled with vortex elements. However since we shaf® write:

only be interested in the qualitative consequence of introducify= pv (53)
these vortex elements the approximation represented by Eq.

44) . . .
should be adequate. (angl introduce the surface divergence:

Using Egs. (25), (26), (41), (42), and (44) we now obtainfor, 1 o . 9
the total velocity: 5= Rsind \ 00 sinbFy + ¢ Fo (54)
A , F still using the spherical approximatiac = R for thesurface
ve tug = —— — Rsing {Q T 1T sinfeosd ¢} (45)  jtself. . _
r We can now invert Eq. (54) and regard the quantity S as
Vg + uy = —Rcosbcose {Q — 1+9¢} (46) being the source-function for the 2-dimensional flow pattern on
stnvcos

the surface. In particular we can, within a certsinalldistance
The streamlines corresponding to this velocity field can meeasured along the surface from the source or sink centre, take
calculated by the same method as was used for the simple ¥do be non-zero and finite {® for source and 80 for sink).
locity field in Sect.5. Once more using the identity given i@utside this ‘near zone’ we can assu® = 0 as pnaously and
Eg. (31) we find after integration that the limiting streamline igell outside it we can expect the solutions to be substantially

given by: the same as before.
RF OR Ir_13ide the ‘_near zongs’ however the situation has cha_nged
o= 7ln(l + sinfcosd) — 7sin@cosgb +7/2 (47) relative to that in the 2-dimensional case. Instead of containing
a singularity the central portion of the source (or sink) region
provided that will now contain a stagnation point at which the ‘open’ surface

streamlines can meet. At this meeting point the Jacobi energy

will be the same for the various streamlines. Hence if it were
The analysis can be simplified if we consider only thogeossible to connect every point on the object surface by means

cases for which, on the limiting streamline, the produef a streamline to the source or sink then it would be correct, as

sinfcos¢ is everywhere sufficiently small to permit the expanroted in K97, to infer from Bernoulli’'s equation that the Jacobi

sion of the logarithm in Eq. (47) to first order. In these casesgnergy must be constant over the whole surface.

However when a change of topology occurs closed stream-

F<Q-A/R (48)

sinfd ~ Aﬁ/z —¢ 1 (49) lines cover a large part of the surface and the above argumen-
cosp  R(Q—F) tation can not be used. The Coriolis forces, being the cause of
so that we see that the above approximation can be used wHBg:topological change, are also the cause of the non-constancy
(in general) of the Jacobi energy over the surface.
A<<R(Q-F) (50)
We further confirm, by comparing Egs. (47) and (49), th& General discussion
Eq. (49) leads to exact results in the cdSe- 0. In K97, Sect. 2.6 various examples (Nariai (1976), Webbink

As an illustrative example let us také= —0.52 and A =
0.1QR (as before) and compare the results with thoséfer 0
(see Sect. 5) which will be given in brackets below. Then we fi
for the locations of the stagnation points-£ 90°):

(1977), Zhou & Leung (1990)) are quoted as fitting in well with

the author’'s proposed scheme of constant Jacobi energy plus
complete system of ‘open’ surface streamlines to represent

a thermally-driven circulation. Since the above series of refer-

6 = 3.82°(5.74°) and 6 = 176.18°(174.26°) (51) ences follows immediately after a critical comment directed at
H 97 it is clear that we are obliged to take a position on these

and for the extremity of the limiting streamline: specific examples.

¢ = —T8.68°(—73.43°) for 0 = 90° (52) The situation regarding the first two examples listed above

has already been discussed in H97 — as long as Coriolis forces
We see that, relative to the case considered in Sect.5 die neglected the condition of constant Jacobi energy is auto-
brackets) there has been a general increase in the area covenatitally satisfied; insofar the situation is not controversial. It
by the closed streamlines. Conversely a contraction of the remains to consider the third paper.
gion occupied by the ‘open’ streamlines has occurred. We shall In the paper of Zhou & Leung Fig. 4 illustrates the equatorial
consider conditions in this latter region in the following sectiorilow field with the effect of the Coriolis forces clearly shown
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in the diagram. Now it is shown in H97 and accepted in K97 An argument, based upon analytical continuation, in favour
that constant Jacobi energy implies a very strong net retrograd¢he view that Coriolis forces can not be expected to influence
motion in the surface layers. There is however no indication tife flow topology, is subjected to criticism.
such a net (i.e. phase-averaged) retrograde effect in the outerReturning now to the Jacobi energy (Bernoulli constant) sit-
parts of the diagram, so that we must conclude that the Jacohiion our conclusion can best be summarized by noting that our
energy can not be a surface invariant. Furthermore the referenessilts are exactly in line with the view expressed in Landau &
to cyclones and anticyclones on opposite sides of the systeifshitz (1959) that “In general the constant (Bernoulli’'s con-
would point to the presence of closed streamlines in the surfatant) takes different values for different streamlines”. Indeed
layers. Hence we can not argree that this model fits in well witte regard our calculations as confirming that nothing should be
the picture proposed in K97. added to, or taken from, this statement.

We next consider the general argument brought in K97 to
support the view that, in a situation corresponding to therma|@cknowledgementsThe author is grateful to a referee (Dr. Peter Van-
driven circulation, a complete system of ‘open’ surface streaffvoort) whose comments led to an improved discussion of the as-
lines is to be expected. Since this same topology also charactdfPtions and approximations involved in this paper.
izes the case of zero Coriolis forces, this is at the same time an
argument against these forces causing any topological changgpendix A: some comments on the assumptions

The basic consideration is that if we multiply the Corio- . h _ funi ;
lis forces everywhere by the factér and allow® to increase We first comment on the assumption of uniform surface pressure

gradually from zero then there is really no reason why an abrLS Fe Secp 3). This was made principally to preserve ur_nformlty
change in the ‘solutions’ should arise from this procedure. jth previous papers (H97, K97 and references therein). Nev-

principle,® = 1 could be (and, for the purposes of Sect. 2.6, C%gtheless it may reasonably be asked whether this simplified

be) reached in this way oundary condition is a) permissible and b) representative.
Letus consider this argument in relation to the simple model .Let us see how this simplified boundary con@ﬂo_n wold

of the present paper. Then we find that, as the paran@telf't in with, for example, the geostrophic approm_matlon (see

is gradually increased, the flow velocity does indeed chanGé" Tassoul 1992). Here th_e pressure gradient IS regar'ded as

continuously all the way t® = 1. However it is only necessary“¢c'd non-zeren equipotentiatsthis is however notin confllc_t

to consider the formation of the first closed streamline to si4in Prescribing aconstant pressure on the actual contact binary

that topological changes can occur even when the velocitysférface'
changing continuously. Nevertheless we must ask whether a departure from our

We therefore see that itimt permissibléo assume that con- simple boundary condition would be likely to change the flow

tinuity of the velocity also implies preservation of the topolog)Pattern so much as to invalidate our general conclusions. To

This is the essential weakness in tlt&-argument’ described fix matters, let us assume thaf[ th? specmc entropy Is ‘"?'fofm
over the surface (barotropy); this will give us a situation which is

above. e ! . .
thermally similar to that obtained by seftik =0 inSect. 3. If, as
previously, the gas is assumed perfect, with constant molecular
9. Conclusion weight, then the thermal equation of state can be written:
In this paper we investigated the specialer of the Coriolis p — K725 (A1)

forces in influencing the flow topology over the surface of a

contact binary. In order to follow the dynamical effects more Rather than returning with this equation to Sect. 3, with P

easily, the surface geometry was drastically simplified and tRew variable over the surface, it is more useful to go directly to

mass flow was imagined to be generated by a source-sink pHIg equations of motion. We then find that there is an extra term
We found that, whereas under neglect of Coriolis forces thside the brackets on the L.H.S. of Egs. (12) and (13):

surface is covered by streamlines connecting source and sink, 1 R

the inclusion of these forces gave a quite different picture. MoBt+ —v? — ® + 51)2 +2.5— K 04po4 (A2)

of the surface was found to be covered by closed streamlines s

and the flow between source and sink was restricted to a narmtere the above triple sum is sometimes referred to as

equatorial channel running around one side of the object onBernoulli’'s integral. There is however no change on the R.H.S.
Freedom to change the vorticity distribution over the closed Egs. (12) and (13).

streamlines brought us also the freedom to influence the distri- For small surface pressures and supersonic motorg

bution of Jacobi energy over the part of the surface covered e surface the pressure-dependent correction term will be quite

closed streamlines. Hence there is no reason why in any giwnall so that its influence can be compensated by small changes

situation the Jacobi energy should be constant over the surfagther in® (slight change in surface shape) orinHence our

This last result assumes that the Coriolis forces have beenanclusions based on the surface flow structure should not be

lowed for. Itis not in conflict with the properties of the publishederiously affected by possible variations in surface pressure. The

models listed in the last section provided this important provispiestion of the constancy of the Jacobi energy is now replaced

is observed. by the question of whether Bernoulli’s integral (triple sum) is
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constant over the_whole surface, or whether it _is just constant _ .14252'”9 5 — QRsing (A5)
along the streamlines. Thus the controversy discussed in this  sin?f +a
paper still persists, but with slight changes in the details. vy = —QRcosfcos¢ (AB)

Somewhat more serious than the assumption of constant
surface pressure is perhaps the neglect of the contribution of
the radial velocity component to the velocity divergence; th]l

is our 2-dimensional approximation of settiap,./0r = 0 ve
everywhere on the surface except of course at the singular poin : h : .
yw P 9 P as a meeting point for those streamlines which do not close up

where the source and sink are located. : . .
. L . : T on the surface. The structure of the flow in the region outside
We can improve on this highly idealized situation by allow:- o .
. . - the source radius is however the same as for the simpleacase
ing both source and sink to have a finite lateral extRt(a

. . ot ; = 0 calculated in Sect. 5.
small); we can then ‘parametrize’ this new picture (no longer

2-dimensional) by writing:

It is worth noting that Egs. (A5) and (A6) predict (for small

he presence of stagnation points on the equator as already
oundin Sect. 5. There are however two further stagnation points
gclose to the geometrical poleés- 0 andd = = which serve
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Keeping closely to the methods used in the text, but now
assuminga # 0, we find that Egs. (25) and (26) now become
replaced by:
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