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Abstract. Using a simple model we investigate how the flow
field in a contact binary can alter its topology under the influ-
ence of Coriolis forces. In the case studied, closed streamlines
form over a relatively large area. This result causes us to review
critically the argument that all surface streamlines can meet in
a stagnation point, leading to a constant Jacobi energy over the
whole surface. A general statement by Landau & Lifshitz con-
cerning Bernoulli’s constant is fully confirmed by the present
investigation.
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1. Introduction

In recent discussions a strong difference of views has emerged
concerning the correct fluid-dynamical treatment of the flow of
gas over the surface of a contact binary. This difference of views
concerns the question of whether there are any hydrodynami-
cal arguments for assuming constancy of Jacobi energy (sum
of potential and kinetic energy) over the system surface. The
answer to this question could be of relevance for the theory of
systems where very high velocities (in addition to the normal
velocities of orbital and synchronised motions) seem to have
been observed (Frasca et al., 1996).

My view (Hazlehurst 1997; hereafter H 97) that there are no
hydrodynamical arguments favouring constant Jacobi energy
derived largely from a consideration of the symmetry-breaking
properties of the Coriolis forces. After referring to the rôle of
these forces in this respect I went on to state that they might
even lead to topological changes in the flow.

This view has however been sharply challenged (Kähler
1997; hereafter K 97) in a paper where the author sees no rea-
son whatever for expecting a change in fluid topology from the
above cause.

I shall therefore in this paper try to give a detailed picture
of how the topological changes can actually occur. Since the
differences of view described above do not involve the ‘viscosity
question’ I shall retain the inviscid assumption in the interests of
simplicity and, I hope, of transparency. I shall also assume that
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there is a steady circulation of gas through the system involving
both supply and removal of material from the surface layers.
This means that not all of the surface streamlines will close up
in the surface itself. I shall use the simplest possible model, to
be described in the next section, to represent this situation.

2. A simple model

We shall in this paper assume the principle possibility of two
stars being able to form a stable, stationary contact binary in
which strong motions occur across the surface. We do not spec-
ify the evolutionary state of the system.

We shall regard the material involved in these motions as
flowing from one star (say, the primary) to the other via the
outer layers and then back again through the inside. Then, as
seen from the surface, there would appear to be a source on the
primary side of the system and a sink on the secondary side.

We start by agreeing with the statement in K 97 that the sur-
face of a contact binary is topologically equivalent to a sphere.
This being so, we can go a step further and attempt to represent
the system by means of a rotating, roughly spherical object – at
least as a topological analogue. A rather similar approach was
used by Tassoul (1992); in our case we would require that the
rotating object be supplied with a source on one side and a sink
on the other.

In order to make the model ‘realistic’ (and not merely topo-
logically similar) a rather large depth of contact for the system
represented by the model would appear advantageous.

Finally, our simple model says nothing about the driving
mechanism of the circulation and is merely intended to represent
the situation as seen from the surface layers. Nevertheless we
have in mind something like the thermally-driven circulation of
Nariai (1976), Webbink (1977) and others.

3. Continuity of motions in the surface layer

In hydrodynamical considerations concerning the outer layers
of a star it is practicable to take a mechanical rather than an
optical definition of the surface. Consistent with both H 97 and
K 97 we shall assume the surface to be an isobar:

P = constant (1)
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where the ‘constant’ in Eq. (1) has some small (normally very
small) value.

Assuming the material to be an ideal gas we have:

P = ρ
<T

µ
(2)

so that the continuity equation:

div (ρυ) = 0 (3)

leads to:

ρ divυ +
µ

<T
υ.grad P − ρ

T
υ.grad T = 0 (4)

where we have assumed constancy ofµ.
Now the concept of ‘surface streamlines’ used by both

authors referred to above is clearly only meaningful if these
streamlines actually lie in the surface; in view of Eq. (1) this
means that the vectorsυ and grad P must be taken to be mutu-
ally perpendicular. Hence Eq. (4) simplifies to:

div υ − 1
T

υ.grad T = 0 (5)

The assumption underlying Eq. (5) should perhaps be stated
in more detail. It is that the ‘surface’ of the system can be taken
to be one on which the pressure is constant and that, at points
on that surface, the velocity of the flow is parallel to the surface
and, hence, perpendicular to the pressure gradient. We comment
on this assumption in the Appendix A.

In the approximation used in this paper we regard the mo-
tions as becoming essentially 2-dimensional “motions on a
sphere” as the surface is approached. Here a new assumption
is involved, namely that the radial component of the velocity
does not contribute significantly to the divergence of the veloc-
ity on the surface. This approximation could be more serious
than the one involving the constancy of surface pressure; it is
also discussed in the Appendix A.

Introducing a polar coordinate system,r, θ, φ we then have
on the surfacer = R:

div υ =
I

Rsinθ

(
∂ υφ

∂ φ
+

∂

∂ θ
sinθυθ

)
(6)

We next introduce the temperature distribution over the sur-
face; we take for this the simple form:

θ̂.
gradT

T
= − k

R
φ̂.gradT = 0 (7)

(k = constant) where the unit vector̂θ is always assumed to
point away from the source and towards the sink in the simple
model of Sect. 2.

Substituting now from Eqs. (6) and (7) into Eq. (5) we find:

1
sinθ

(
∂υφ

∂ φ
+

∂

∂ θ
sinθυθ

)
+ kυθ = 0 (8)

Now the thermal capacity of the surface layers is extremely
low so thatk will be (mainly) determined by energy transport in
the deeper layers. For good contact (as assumed in Sect. 2) we

can expectk to be quite small. The question we therefore have
to answer is whether we can simply drop the k-term in Eq. (8)
or whether we must solve the full equationfirst and then go to
the limit k → 0 in the resulting full solutions.

Although we can not answer this question in general, we
can answer it in particular cases. A particular solution of Eq. (8)
of special interest here is:

υθ =
Ae−kθ

sinθ
υφ = 0 (9)

which corresponds to a source-sink pair with the source and
sink located atθ = 0 and θ = π respectively. Thus we see
not only that the source and sink are diametrically opposite but
that we can now define the polar axis of coordinates much more
precisely as being the axis which joins source and sink. We also
note that thek-term modulates the solutions but does not change
their essential character.

Going now to the limitk → 0 we find

υθ → A

sinθ
υφ = 0 (10)

so that, at least in this particular case, the ‘short cut’ of simply
dropping thek-term in Eq. (8) seems to work. We shall assume
without proof that this procedure is also viable forυφ 6= 0, or
at least for those cases which we shall treat later in this paper.

Finally, we note that the use of the strictly two-dimensional
approach of this section introduces the disadvantage that the
velocity becomes arbitrarily high (see Eqs. (9) and (10)) in the
immediate neighbourhood of the source or sink centre. This
behaviour can however be avoided by using a more general
approach. We shall discuss this aspect in Sect. 7.

4. Dynamical description of the flow

The motion of an inviscid fluid under the action of the total
potentialΦ is given by:

1
2

gradυ2 − υ × curlυ +2Ω×υ = − gradΦ− 1
ρ
gradP (11)

whereυ denotes the velocity in the rotating frame and station-
arity is assumed.

We now confine our considerations to motions in the surface
layer. As in Sect. 3 we shall treat these as if they occurred over a
spherical surface (see, however, below). We shall use spherical
polarsr, θ, φ (with r = R on the surface) and the coordinate
axis aligned in the source-sink direction i.e. perpendicular to the
rotation axis. Taking the vector product of Eq. (11) withr̂ leads
to a further vector equation the components of which yield, after
some reduction:
∂

∂θ
(Φ +

1
2
υ2) = (ηr + 2Ωsinθcosφ)υφ (12)

1
sinθ

∂

∂φ
(Φ +

1
2
υ2) = −(ηr + 2Ωsinθcosφ)υθ (13)

where we have again used Eq. (1). The quantity

ηr =
1

Rsinθ

(
∂υθ

∂φ
− ∂

∂θ
sinθυφ

)
(14)
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represents the component of vorticity perpendicular to the sur-
face.

As in Sect. 3 and as assumed earlier (H97 and K97) the
pressure has been taken to be constant on the boundary. If this
condition is not fulfilled, Eqs. (12) and (13) must be modified
accordingly (for details see Appendix A).

It follows from Eqs. (12) and (13) that:

∂

∂φ
[(ηr + 2Ωsinθcosφ)υφ] =

− ∂

∂θ
sinθ [(ηr + 2Ωsinθcosφ)υθ] (15)

So far we have treated all motions as if they occurred over
a spherical surface. The surface will however in practice adjust
its form in order that the potential there can satisfy the above
equations. As we have noted in H 97 this does not represent
an inconsistency since the spherical approximation can still be
used to tell us in which way the adjustment must occur. As in
Tassoul 1992, the gravitational component of the potential can
be taken to be spherically symmetrical in order to support the
pseudospherical approach.

We see from the above equations that a necessary condition
for constant Jacobi energyΦ + 1

2υ2 everywhere is:

ηr + 2Ωsinθcosφ = 0 (16)

for non-zero velocities. This will also represent a sufficient con-
dition, assuming that the continuity equation (see Sect. 3) can
also be satisified.

We shall first consider the case where Eq. (16) is satisfied.
This will serve as a useful basis for the discussion later of the
more general case.

In order to see what Eq. (16) implies we substitute forηr

from Eq. (14) into Eq. (16) to give:

1
Rsinθ

(
∂υθ

∂φ
− ∂

∂θ
sinθυφ

)
+ 2Ωsinθcosφ = 0 (17)

This must now be combined with the continuity equation.
Following the arguments of Sect. 3 we adopt this in the simpli-
fied form (k−→ 0):

∂υφ

∂φ
+

∂

∂θ
(sinθυθ) = 0 (18)

We look for solutions of the form:

υθ =
A

sinθ
+ υ1

θ (19)

whereυ1
θ is restricted to be anon-singular function. Hence the

solution includes, but does not entirely consist of, a source-sink
pair. The additional functionυ1

θ is included in order to allow us
to satisfy the full set of equations. A solution of the form given
in Eq. (19) should therefore permit us to study mathematically
the simple model proposed in Sect. 2. Substituting from Eq. (19)
into Eq. (18) we find:

∂υφ

∂φ
+

∂

∂θ
sinθυ1

θ = 0 (20)

We next attempt a separation of variables:

υ1
θ = sinφf(θ) (21)

leading to

υφ = cosφcosθf(θ) + cosφsinθf ′(θ) (22)

where the integration constant vanishes sinceυφ must be zero
at the equator(φ = ±π/2).

Using Eqs. (17), (19), (21) and (22) we obtain:

f ′′ + 3cotθ f ′ − 2f − 2 Ω R = 0 (23)

for which the only non-singular solution is:

f(θ) = constant = −ΩR (24)

Hence Eqs. (19), (21), (22) and (24) give:

υθ =
A

sinθ
− ΩRsinφ (25)

υφ = −ΩRcosθcosφ (26)

We must next consider the source strength A. This should
not be taken to be so large that the pseudospherical approxima-
tion breaks down. Let us suppose, somewhat arbitrarily, that the
object introduced in Sect. 2 can be considered roughly spheri-
cal if for 99% of the surface the r.m.s. radius variation does not
exceed 10% of the average radius. We find this criterion leads
to:

A < 0.15 ΩR (27)

where we have takenΩ2 to be equal to one third of the quadratic
angular velocity needed for rotational break-up (Whelan 1972).
In order to lie reasonably safely within the limit given by Eq. (27)
we shall assume that

A = 0.1 ΩR (28)

in what follows.

5. The streamlines for constant Jacobi energy

In the chosen coordinate system the general equation of the
streamlines is:

dθ

υθ
=

sinθ d φ

υφ
(29)

Substituting forυθ andυφ from Eqs. (25) and (26) we find:

d θ
A

sinθ − Ω R sin φ
=

sin θ d φ

−Ω R cosθ cosφ
(30)

Using the identity:

cosθ cosφ
d θ

d φ
=

d

d φ
(sinθcosφ) + sinθ sinφ (31)

we can rewrite Eq. (30) as:

d

d φ
(sinθ cosφ) =

−A

Ω R
(32)
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which integrates to give:

Ω R sinθ = A
constant − φ

cosφ
(33)

or, for the choice of A given in Eq. (28):

sinθ = 0.1
constant − φ

cosφ
(34)

Depending on the choice of the “streamline constant” in
Eq. (34) the streamlines are open or closed. Thelimiting stream-
line separating the two groups is given by:

sinθ = 0.1
π/2 − φ

cosφ
(35)

The properties of this limiting streamline are as follows. The
streamline begins at a stagnation point(θ = 5.74◦;φ = 90◦)
on the equator. It then moves inwards, at first at almost constant
θ, and crosses the ‘top’ of the star atθ = 9.04◦;φ = 0◦. It
then continues over to the other side, making this excursion
as far asθ = 90◦;φ = − 73.43◦. After passing through this
extremity, it returns over the top of the star again, this time at
θ = 170.96◦;φ = 0◦, finally returning to the equator again at a
second stagnation point located atθ = 174.26◦;φ = 90◦.

The very large loop which we have described above together
with the remaining equatorial segment betweenθ = 174.26◦

andθ = 5.74◦, encircles all of the closed streamlines. Recall-
ing that the sink and source are located atθ = 180◦ andθ = 0◦

respectively, we see that the system of closed streamlines covers
almost the whole surface of the star. The ‘open’ streamlines con-
necting the source and sink are confined to a C-shaped narrow
channel around the equator so that the material flowing from
source to sink can only proceed along that side of the equator
on which no stagnation points occur. The maximum width of
the channel amounts to only16.57◦.

This particular flow topology is a direct consequence of the
action of the Coriolis forces. To see this, let us simply omit the
Coriolis term in Eq. (11) (i.e. the third term on the L.H.S.) and
repeat the analysis. We then find instead of Eqs. (25) and (26)
the solution:

υθ =
A

sinθ
υφ = 0 (36)

corresponding to acomplete systemof open streamlines. One
can hardly imagine a more dramatic change in the flow topology.

An immediate consequence of the change in flow topology
caused by the Coriolis forces is that most points on the stel-
lar surface arenot accessibleto a streamline coming from the
source or going to the sink. Hence it is not valid to argue that
the Jacobi energymustbe constant over the surface of a contact
binary on the grounds that all streamlines can be traced back to
a point where they all come together. This argumentation was
used for contact binaries of the ‘reversing layer’ type in K 97.

6. Velocity fields with non-constant Jacobi energy

Let us consider once more the situation described in Sect. 5. By
far the greatest part of the star is covered with closed streamlines.

Hence there is nothing to prevent us, in an ideal experiment,
from introducing vorticity over this whole area. If viscosity is
required for carrying out this experiment, it is of course removed
immediately afterwards.

It is not difficult to show that, under the assumption that
Eq. (18) is correct, the perpendicular component of the vorticity
will, following the above experiment, remain constant on every
streamline. We can imagine the vortices as moving around in
an enclosed area (“vortex patch”) thereafter.

The expression in brackets on the R.H.S. of Eq. (12) and
Eq. (13) i.e. the total perpendicular vorticity, including the rota-
tional contribution, is the relevant quantity in the above consid-
erations. We note that, if this is non-zero, as it is following the
above experiment, then the Jacobi energy on the L.H.S. of the
above equations can not be constant. Outside the vortex patch,
where the (total) vorticity is still zero, the Jacobi energy will
remain constant as before.

In order to simplify matters as far as possible, let us as-
sume that, in the enclosed region, the (perpendicular) vorticity
is uniform. There is a vorticity jump (but not a velocity jump)
along the edge of the vortex patch, including the stretch along
the equator where the patches from the two hemispheres touch.
The usual symmetry conditions across the equator are not af-
fected by this.

In the enclosed region, therefore:

ηr + 2Ωsinθcosφ = F (37)

whereF is some constant. It follows thatF is also constant on
each streamline in this region. Now, before the extra vorticity
was introduced we had:

◦
ηr + 2Ωsinθcosφ = 0 (38)

from which it follows that:

ηr − ◦
ηr= F (39)

Usingu to denote thechangein velocity we then have from
Eq. (14):

1
R sinθ

(
∂uθ

∂φ
− ∂

∂θ
sinθuφ

)
= F (40)

We look for solutions of the form:

uθ = sinφf(sinθcosφ) (41)

so that Eq. (18) then requires that:

uφ = cosθcosφf(sinθcosφ) (42)

where we have used the condition thatuφ vanishes at the equator.
Substituting from Eqs. (41) and (42) into Eq. (40) we then

find, after some reduction:

f ′(1 − sin2θcos2φ) − 2fsinθcosφ + RF = 0 (43)

wheref ′ denotes differentiation with respect to the complete
argumentsinθcosφ.
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The particular integral of Eq. (43) of interest for us is:

f =
RF

1 + sinθcosφ
(44)

At very low latitudes this equation can only be regarded
as an approximation since the assumption is made that for all
higher latitudes than the one under consideration each parallel
of latitude is filled with vortex elements. However since we shall
only be interested in the qualitative consequence of introducing
these vortex elements the approximation represented by Eq. (44)
should be adequate.

Using Eqs. (25), (26), (41), (42), and (44) we now obtain for
the total velocity:

υθ + uθ =
A

sinθ
− Rsinφ

{
Ω − F

1 + sinθcosφ

}
(45)

υφ + uφ = −Rcosθcosφ

{
Ω − F

1 + sinθcosφ

}
(46)

The streamlines corresponding to this velocity field can be
calculated by the same method as was used for the simple ve-
locity field in Sect. 5. Once more using the identity given in
Eq. (31) we find after integration that the limiting streamline is
given by:

φ =
RF

A
ln(1 + sinθcosφ) − ΩR

A
sinθcosφ + π/2 (47)

provided that

F < Ω − A/R (48)

The analysis can be simplified if we consider only those
cases for which, on the limiting streamline, the product
sinθcosφ is everywhere sufficiently small to permit the expan-
sion of the logarithm in Eq. (47) to first order. In these cases:

sinθ ' A
π/2 − φ

cosφ

1
R(Ω − F )

(49)

so that we see that the above approximation can be used when:

A << R(Ω − F ) (50)

We further confirm, by comparing Eqs. (47) and (49), that
Eq. (49) leads to exact results in the caseF = 0.

As an illustrative example let us takeF = −0.5Ω andA =
0.1ΩR (as before) and compare the results with those forF = 0
(see Sect. 5) which will be given in brackets below. Then we find
for the locations of the stagnation points (φ = 90◦):

θ = 3.82◦(5.74◦) and θ = 176.18◦(174.26◦) (51)

and for the extremity of the limiting streamline:

φ = −78.68◦(−73.43◦) for θ = 90◦ (52)

We see that, relative to the case considered in Sect. 5 (in
brackets) there has been a general increase in the area covered
by the closed streamlines. Conversely a contraction of the re-
gion occupied by the ‘open’ streamlines has occurred. We shall
consider conditions in this latter region in the following section.

7. Conditions where the surface streamlines meet

So far, we have used the idealization of a point source or sink
within the context of a 2-dimensional flow field. The conse-
quence of this is that the velocity increases to very high values
as the source or sink centre is approached.

In order to connect with a proper 3-dimensional analysis let
us write:

F = ρυ (53)

and introduce the surface divergence:

S =
1

Rsinθ

(
∂

∂θ
sinθFθ +

∂

∂φ
Fφ

)
(54)

still using the spherical approximation r = R for thesurface
itself.

We can now invert Eq. (54) and regard the quantity S as
being the source-function for the 2-dimensional flow pattern on
the surface. In particular we can, within a certainsmalldistance
measured along the surface from the source or sink centre, take
S to be non-zero and finite (S>0 for source and S<0 for sink).
Outside this ‘near zone’ we can assume S = 0 as previously and
well outside it we can expect the solutions to be substantially
the same as before.

Inside the ‘near zones’ however the situation has changed
relative to that in the 2-dimensional case. Instead of containing
a singularity the central portion of the source (or sink) region
will now contain a stagnation point at which the ‘open’ surface
streamlines can meet. At this meeting point the Jacobi energy
will be the same for the various streamlines. Hence if it were
possible to connect every point on the object surface by means
of a streamline to the source or sink then it would be correct, as
noted in K 97, to infer from Bernoulli’s equation that the Jacobi
energy must be constant over the whole surface.

However when a change of topology occurs closed stream-
lines cover a large part of the surface and the above argumen-
tation can not be used. The Coriolis forces, being the cause of
the topological change, are also the cause of the non-constancy
(in general) of the Jacobi energy over the surface.

8. General discussion

In K 97, Sect. 2.6 various examples (Nariai (1976), Webbink
(1977), Zhou & Leung (1990)) are quoted as fitting in well with
the author’s proposed scheme of constant Jacobi energy plus
a complete system of ‘open’ surface streamlines to represent
a thermally-driven circulation. Since the above series of refer-
ences follows immediately after a critical comment directed at
H 97 it is clear that we are obliged to take a position on these
specific examples.

The situation regarding the first two examples listed above
has already been discussed in H 97 – as long as Coriolis forces
are neglected the condition of constant Jacobi energy is auto-
matically satisfied; insofar the situation is not controversial. It
remains to consider the third paper.

In the paper of Zhou & Leung Fig. 4 illustrates the equatorial
flow field with the effect of the Coriolis forces clearly shown
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in the diagram. Now it is shown in H 97 and accepted in K 97
that constant Jacobi energy implies a very strong net retrograde
motion in the surface layers. There is however no indication of
such a net (i.e. phase-averaged) retrograde effect in the outer
parts of the diagram, so that we must conclude that the Jacobi
energy can not be a surface invariant. Furthermore the references
to cyclones and anticyclones on opposite sides of the system
would point to the presence of closed streamlines in the surface
layers. Hence we can not argree that this model fits in well with
the picture proposed in K 97.

We next consider the general argument brought in K 97 to
support the view that, in a situation corresponding to thermally-
driven circulation, a complete system of ‘open’ surface stream-
lines is to be expected. Since this same topology also character-
izes the case of zero Coriolis forces, this is at the same time an
argument against these forces causing any topological changes.

The basic consideration is that if we multiply the Corio-
lis forces everywhere by the factorΘ and allowΘ to increase
gradually from zero then there is really no reason why an abrupt
change in the ‘solutions’ should arise from this procedure. In
principle,Θ = 1 could be (and, for the purposes of Sect. 2.6, can
be) reached in this way.

Let us consider this argument in relation to the simple model
of the present paper. Then we find that, as the parameterΘ
is gradually increased, the flow velocity does indeed change
continuously all the way toΘ = 1. However it is only necessary
to consider the formation of the first closed streamline to see
that topological changes can occur even when the velocity is
changing continuously.

We therefore see that it isnot permissibleto assume that con-
tinuity of the velocity also implies preservation of the topology.
This is the essential weakness in the ‘Θ-argument’ described
above.

9. Conclusion

In this paper we investigated the special rôle of the Coriolis
forces in influencing the flow topology over the surface of a
contact binary. In order to follow the dynamical effects more
easily, the surface geometry was drastically simplified and the
mass flow was imagined to be generated by a source-sink pair.

We found that, whereas under neglect of Coriolis forces the
surface is covered by streamlines connecting source and sink,
the inclusion of these forces gave a quite different picture. Most
of the surface was found to be covered by closed streamlines
and the flow between source and sink was restricted to a narrow
equatorial channel running around one side of the object only.

Freedom to change the vorticity distribution over the closed
streamlines brought us also the freedom to influence the distri-
bution of Jacobi energy over the part of the surface covered by
closed streamlines. Hence there is no reason why in any given
situation the Jacobi energy should be constant over the surface.
This last result assumes that the Coriolis forces have been al-
lowed for. It is not in conflict with the properties of the published
models listed in the last section provided this important proviso
is observed.

An argument, based upon analytical continuation, in favour
of the view that Coriolis forces can not be expected to influence
the flow topology, is subjected to criticism.

Returning now to the Jacobi energy (Bernoulli constant) sit-
uation our conclusion can best be summarized by noting that our
results are exactly in line with the view expressed in Landau &
Lifshitz (1959) that “In general the constant (Bernoulli’s con-
stant) takes different values for different streamlines”. Indeed
we regard our calculations as confirming that nothing should be
added to, or taken from, this statement.

Acknowledgements.The author is grateful to a referee (Dr. Peter Van-
dervoort) whose comments led to an improved discussion of the as-
sumptions and approximations involved in this paper.

Appendix A: some comments on the assumptions

We first comment on the assumption of uniform surface pressure
(see Sect. 3). This was made principally to preserve uniformity
with previous papers (H97, K97 and references therein). Nev-
ertheless it may reasonably be asked whether this simplified
boundary condition is a) permissible and b) representative.

Let us see how this simplified boundary condition would
fit in with, for example, the geostrophic approximation (see
e.g. Tassoul 1992). Here the pressure gradient is regarded as
being non-zeroon equipotentials; this is however not in conflict
with prescribing a constant pressure on the actual contact binary
surface.

Nevertheless we must ask whether a departure from our
simple boundary condition would be likely to change the flow
pattern so much as to invalidate our general conclusions. To
fix matters, let us assume that the specific entropy is uniform
over the surface (barotropy); this will give us a situation which is
thermally similar to that obtained by setting k = 0 inSect. 3. If, as
previously, the gas is assumed perfect, with constant molecular
weight, then the thermal equation of state can be written:

P = KT 2.5 (A1)

Rather than returning with this equation to Sect. 3, with P
now variable over the surface, it is more useful to go directly to
the equations of motion. We then find that there is an extra term
inside the brackets on the L.H.S. of Eqs. (12) and (13):

Φ +
1
2
υ2 −→ Φ +

1
2
υ2 + 2.5

<
µ

K−0.4P 0.4 (A2)

where the above triple sum is sometimes referred to as
Bernoulli’s integral. There is however no change on the R.H.S.
of Eqs. (12) and (13).

For small surface pressures and supersonic motionsalong
the surface the pressure-dependent correction term will be quite
small so that its influence can be compensated by small changes
either inΦ (slight change in surface shape) or inυ. Hence our
conclusions based on the surface flow structure should not be
seriously affected by possible variations in surface pressure. The
question of the constancy of the Jacobi energy is now replaced
by the question of whether Bernoulli’s integral (triple sum) is
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constant over the whole surface, or whether it is just constant
along the streamlines. Thus the controversy discussed in this
paper still persists, but with slight changes in the details.

Somewhat more serious than the assumption of constant
surface pressure is perhaps the neglect of the contribution of
the radial velocity component to the velocity divergence; this
is our 2-dimensional approximation of setting∂ υr/∂r = 0
everywhere on the surface except of course at the singular points
where the source and sink are located.

We can improve on this highly idealized situation by allow-
ing both source and sink to have a finite lateral extentaR (a
small); we can then ‘parametrize’ this new picture (no longer
2-dimensional) by writing:

∂υr

∂r
=

−εcosθ

(sin2θ + a2)2
(A3)

whereε is a small positive constant; the previous idealized case
corresponds toε = 0, a = 0. The minus sign in Eq. (A3) comes
from the consideration that, for example, rising material (source)
is decelerated on approaching the surface as far as the radial
motion is concerned. Denoting as previously the source strength
by A, and going to the limita −→ 0 we confirm that the results
of Sect. 3 are recovered if we identify:

ε = 2Aa2 (A4)

Keeping closely to the methods used in the text, but now
assuminga /= 0, we find that Eqs. (25) and (26) now become
replaced by:

υθ =
Asinθ

sin2θ + a2 − ΩRsinφ (A5)(A5)

υφ = −ΩRcosθcosφ (A6)

It is worth noting that Eqs. (A5) and (A6) predict (for small
a) the presence of stagnation points on the equator as already
found in Sect. 5. There are however two further stagnation points
very close to the geometrical polesθ = 0 andθ = π which serve
as a meeting point for those streamlines which do not close up
on the surface. The structure of the flow in the region outside
the source radius is however the same as for the simple casea
= 0 calculated in Sect. 5.
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