![]() | ![]() |
Astron. Astrophys. 342, 15-33 (1999) 1. IntroductionMass reconstruction from gravitational distortion inversion is a
promising technique to probe the mass distribution and the clustering
on very large scales, regardless of the nature and the dynamical state
of the dark and luminous matter. Pioneering theoretical work done by
Gunn (1967), Jaroszy The scientific impact on the determination of cosmological
parameters from weak lensing surveys has been underlined by recent
theoretical work. Most of the papers quoted above show that the
distortion two-point correlation function can be used to constrain the
mass power spectrum. Villumsen (1996) remarked that the amplitude of
the local distortion is proportional to the amplitude of the 3D
density fluctuations and roughly to the density parameter
Recently many theoretical and observational aspects have been investigated in detail in order to converge towards an unbiased measurement of such small distortions (Bonnet & Mellier 1995, Kaiser et al. 1995, and Van Waerbeke et al. 1997). The technical limitations that have been recognized so far come from systematics due to the correction of spurious distortions generated by the optic defects, fuzzy-shaped point spread function (PSF), and pixel convolution (sampling). Available image analysis techniques and image quality ensure that such systematics can now be reduced to a one percent level, which is necessary for these weak lensing applications, but beyond the need for cluster mass reconstruction. The ultimate limitation for the use of weak lensing surveys as a cosmological probe depends therefore on the accuracy with which the correction of the spurious distortions can be corrected. On the other hand, if the systematics can be reduced to the sub-percent level, the weak lensing analyses are limited by the intrinsic ellipticities of galaxies which acts as a shot noise for the gravitational distortion effect. In this paper we investigate the effects of the shot noise and finite size survey (cosmic variance) on the determination of the cosmological parameters and the power spectrum. In particular, two goals are looked for,
This study is made in particular in the perspective of ongoing and future wide field deep imaging surveys devoted to weak lensing analysis (for instance the MEGACAM project, Boulade et al. 1998) at CFHT 2 or the SDSS project, Stebbins 1996). In such a perspective, there are still open issues concerning the optimal observing strategy that should be adopted:
In addition, since the reconstruction of the projected mass from the shape of the galaxies is neither local nor linear in terms of the distortion field (Kaiser 1995) and of the intrinsic ellipticities of the galaxies, it is essential to understand how the noise propagates in the reconstructed mass maps. In order to investigate how these different effects may couple together, we built a series of projected mass maps that contain a realistic amount of non-Gaussianity. The associated distortion field is then derived on the basis of the full non-linear lens equation. A noise is added on the distortion maps, and the convergence is finally reconstructed. This paper presents the statistical analysis of those reconstructed maps for different cosmological models and different observational contexts. The details of mass map generation and useful definitions are
presented in Sect. 2. Sect. 3 presents the power spectrum analysis,
the noise properties in the reconstructed mass maps, and the cosmic
variance on the estimated power spectrum. Sect. 4 repeats similar
analysis on moments in real space, where a comparison between top hat
and compensated filter is done. It contains also some highlights about
other possible statistical quantities that could be used to measure
![]() ![]() ![]() ![]() © European Southern Observatory (ESO) 1999 Online publication: December 22, 1998 ![]() |