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Modal tomography for adaptive optics
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Abstract. Multiple Laser Guide Stars can be used to retrieve y y'

the three—dimensional distribution of the perturbing layers on ]

the coming wavefront in Adaptive Optics system and to derive

corrections for conical anisoplanatism. We outline the basic an- al

alytical details of a modal approach to this problem. The ad- '

vantages of this approach with respect to the traditional zonal % ,
one are pointed out along with a preliminary discussion of the Ay, P . X
way the involved matrices are to be treated in order to minimiz \ 0 0 / \ X
noise propagation problems. O [Ax
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1. Introduction

Laser Guide Stars (LGSs) as reference beacon for Adaptive Op-
tics (AO) compensation (Foy & Labeyrie, 1985; Happer et alig. 1. Definition of the coordinate systems (see text).
1994) potentially provide diffraction—limited imaging capabili-

ties over the whole sky for large ground based telescopes. Focal . o ] ) )
anisoplanatism (Fried & Belsher, 1994: Parenti & Sasiela, 199%)Z€ike polynomials in a circular portion of a pupil

is (along with absolute tip—tilt retrieval, not addressed here)@this section we demonstrate some properties of Zernike po
fundamental limitation of LGS adaptive optics. nomials that will be useful in the next section. In the coordina
Several schemes to correct for focal anisoplanatism haygmework Ozy the usual polar coordinates are defined sud
been proposed (Sasiela, 1994; Fried, 1995). Three-dimensiafgt , — 1 at the edge of the circular pupil centeredin(see
tomography (Tallon & Foy 1990, TF90 hereafter) sounds likeig. 1). In this framework the wavefront is defined as the sum
one of the most promising technique to fully correct focal anis@ernike polynomials up to a given radial ordgrThis ensemble

planatism. can always be re—arranged in terms of Hamilton polynomia
Based on the same tomography concept, we propose hegga

modalapproach to the 3D—sensing, in contrast with zbeal
approach proposed in TF90. There are several potential advgn- Q n .

tages of the modal approach. In TF90 layers are subdivided irﬂ%(p ,0) = Z p" [Anm cos(mb) + Bpm sin(mb)] (1)
a grid and rays are geometrically traced from the pupil to LGSs
and science object. Noise can be introduced when rays passigren > m andn — m is even. In the case ofi = 0 clearly
within a given grid position are considered as characterizing tthe coefficientB,,o is meaningless so the total amount of inde
whole grid portion (on the other hand, interpolation introducgendent coefficentd,,,,, and B,,.,, is given by:
even further arithmetic manipulation problems) while the modal

approach does not imply any of these assumption. In additioff +*+(Q+1) = @ +3Q+2 (2)
the modal approach allows naturally modal filtering and can be 2

easily extended to non—circular (e.g. with central obstruction) A smaller circular region inside the original one will be
pupils. characterized by a coordinate systé&fx’y’. Such coordinate

n,m=0
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system has the origin displaced Byr and Ay in the Ozy
coordinates, and the unit lengthigimes smaller, wheré is
the ratio of radii of the smaller vs. the larger circular regions. | gs 1
We demonstrate now that it exists a gét ., B;,,., limited by
the same highest radial ter@\ defined in this region such that
the wavefrontiV’ defined within such area match exactly the LGS 2
related portion defined by Eq. (1).

In order to provide such demonstration we recall the
Franmis Viete formulae for the cosinus:

LGS 3

cos(mb) = cos™ 0 — ™= co5m=2 ggin? g4

1-2
3)
+m(m_1)1(.gf;i)(m_3) cos™ 4@sin* 0 — ...
and for the sinus: #
sin(m#) = mcos™ ! §sin f—
(m—1)(m~2) 3 ) )ZD
m(m—1)(m— -3 . VA
_Tcosm @sin® 0+ ... LaCer 3 \ 77\ )(W
Using Egs. (3) and (4) one can write the cosinus term |/n/Layﬁr/2 \
rectangular coordinates instead of the polar ones, obtaining: Telescope
Pupil
cos(mb) = (22 + 3/2)_m/2 X Layer 1

(5) Fig. 2. Geometrical view of the LGSs beam as passes through the per-
X [aomy™ — a1my™ 20?4 agmy™ tat — .. ] turbing layers and reaches the entrance pupil of the telescope. In this
caseN = M = 3.
and for the sinus:
. -m/2 . . .
sin(md) = (332 + yz) "2 ©) 3. Modal tomography: Presentation and discussion
6
% [bomym_lx — biy™ 323+ boyy™ 02 — . ] We assume in the following thaV different LGSs are con-
veniently projected on the sky and the wavefronts relative to

Finally Eq. (1) can be rewritten in solely rectangular cooeach star are sensed through the telescope entrance pupil by

dinates as: N different wavefront sensors. We also assume that the com-
0 ing wavefront is perturbed essentially By layers, located at
a-m different altitudes. The geometry of the LGSs, the layers and
Wi(z,y) = { 249%) 7 x . > s
(z,9) Z (x Ty ) conical shaped beams down to the telescope is shown in Fig. 2.

n,m=0

In the following we use = 1... N as the running index
(") for the LGSs angi = 1...M as the running index for the
perturbing layers.
1 —3 .3 For the generig—th layer one can defin¥ -+ 2 overlapping
+ Bum (bomy™ '@ = bimy™ P2’ £ . )]} regions located on the layer itself. These arethiotprints of
the LGSs beam, the footprint of the science object beam down to

This represent a polynomial in y of order@, here denoted . ; :
by P(Q) (2, ). The number of independent coefficients of tyFit{he telescope and a dummy outer circular region, referred in the

X I:Anm (aOmym - almym_2$2 + .. ) —+

27y (obeying to the rule + ¢ < O) is the same as describe ollowing asmetapupil encompassing all of the LGSs beams

Q) ) see Fig. 3).
by Eq. (2) so that any'*/(z, y) can be described by a prope Itis assumed that some circular symmetry is adopted in the

cho_lce of coefficients of Zernike polynqmlals up t_o e relative positions of the LGSs with respect to the telescope pupil
radial order. In the case of the smaller circular portion one can : L : ;
o and that the science target is aligned with the optical axes of the
write: : . -
telescope. These assumptions are essentially similar to the TF90
W' y') = W(Az + k', Ay + ky') = P9 (z,y) (8) ones. .

The fired LGSs are ndixedin the sky because of the up-
with (n —m)/2 being an integer greater or equal to zero. Thisard wandering of the laser beam. This translates into some
prove the statement at the beginning of this section. In othercertainty of the exact position of th¥ footprint on each
words, provided &-limited Zernike description of a wavefrontlayer, the error being larger for the highest layers and nulling at
on a large pupil, any circular portion inside it can be describélde telescope pupil. This error has been discussed in Ragazzoni,
by another Zernike ensemble, limited to the same Esposito & Riccardi (1998) where it has been shown that under
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corresponding to the various;; varies with the layer height. '-l'_J
However, we have: E

M —
Li=> Ly (10)
j=1

In a similar way, we can define the expansion of the met
pupil, W;, and the expansion of the science object bé&tgy.

Given the known geometry between these circular regio
one can define a set of matricds; of size P x P such that:

Lij = Aij Wj (11)

It is worth noting that Eq[(111) is an exact relationsHip;
being defined on a region larger and including any of the su
regionsL;;.

The wavefront seen by the-th wavefront sensor can be
expressed as the sum of all the perturbations introduced by
of theM perturbing layers. Putting Eqs.]10 11togetherlea
to:

Fig. 3. Relative positions and overlaps of tAé+ 2 circular regions. M M
Note that central obstruction is not considered here. As previous}y, — ZLU = ZAij W, (12)
N = 3in the drawing. = =1

These equations, for all LGSs, can be combined in a sing

) N ) o matrix equation, including all th&/ layers and all théV LGSs
median conditions the displacement of the footprintis more thghe same relationship:

one order of magnitude smaller than the Fried parameter. This

estimation is even far too pessimistic. In fact it is known thaf L1 Ay A oo Ay Wi
the Fried parameter associated with the higher layers is substanL: Agp Ay - Aoy W
tially larger than the overall one (see for instance Roggemanniet - = : . : : (13)
al., 1995). Hence, the effects of such uncertainty are very smajl.,’ A. Ay - A ' W
Furthermore, itis to be pointed out that this phenomenon shou N1 N2 M M
affect equally the TF90 technique. which can be written in a more compact form as:
In the following we use the Zernike definition as in Noll
(1976). Because it is not accessible, we omit the piston termfin= 4 W (14)

the Zernike wavefront expansion. Because of the tip-tilt inde- In the same fashion, the wavefront expansitipfrom the

terrrématlon pr??rllt_amt,hwe dalso ont1|t :_he t'p't"t t_ergqs. t2d metapupil can be projected onto the smaller and co—axial s
e ool Jon dfine by 1 projecton of e teescope pupon
including all the Zernike polynomials and ignoring the first'[hre]e_th layer denoted by the Zernike expansio;:

at the end. In practice one omit these from the beginning awdrj =1T; W; (15)
allows for undetermined differences in the piston and tip—tilt
terms between the various wavefront involved. that defines univoquely tHE; matrix, again of size> x P.
For thei—th LGS, the wavefront can be expanded intoasum The wavefront perturbation, free from focal anisoplanatis
of P Zernike polynomials, as: experienced by the science target on the axis of the telesco
expanded in a Zernike serié#gr can now be written as the sum
ay of all the perturbations introduced by all of tii¢ layers and
as re—written using Eq[{15):
L; = . 9)
. Wl
ap+3 M M Wa
! Wr=3"Wr =S T, W= T, .. Tw] | . | (16)
We call L; the modal expansion (vector of Zernike coeffi- j=1 j=1 :

cients) of the wavefront coming from LGS integrated over Wu
the layers.L;; is the expansion of the wavefront included iny,q in a more compact form:
the beam coming from LG8Sat layer; (footprint of LGSi on

layerj). Itis clear that the physical dimension of the wavefrontd’ = T W a7)
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The matricesA (N x P rows andM x P columns) and” the opinion of the authors, it should be easier to deal with a
(P rows andM x P columns) are a collection of numerical conumber of practical situation (e.g. non—zero obstruction of the
efficients rigorously derived from the geometry of the problentelescope). A detailed analysis of the technique requires at least
The vectorL (including N x P elements) is estimated by thean in—deep simulation and is beyond the limits of this Letter.
LGSs fed wavefront sensors. Provid®¥d> M (this requiresto Its extension to deal with the absolute tip—tilt indetermination
fire at least as much LGSs as significant layers are in the optipabblem (Ragazzoni & Rigaut, 1998), conical anisokinetism
path), using Eqs[{14) and (17) one can easily retri€yehatis (Esposito, Riccardi & Ragazzoni, 1996; Neymann, 1996) and
the desired perturbation of the science target, to be applied tevantually to include piston term to deal with interferometry
conveniently placed deformable mirror in order to compensatéth other telescopes can also find space in a through study of
the atmospheric image degradation. This involves non—squtre technique.
matrices and a least—squares determination must be adopted.
This can be done through the use of fieeudo—inversef the AcknowledgementsSpecial thanks are due to Silene Soci for helpful
generic rectangular matriX, usually denoted byx+ (Luen- hlgts in some mathematllca_l treatmzn:]and to an ?nr(])_nyLmous $§ferkee
berger, 1969; Wild, 1997; Wild, Kibblewhite & Scor, 1994)Whose suggestions greatly improved the content of this Letter. Thanks

. . are due for the several discussions on related topics to the 8m Laser

Such pseudo—inverse (sometimes reffered as Moore—Penré)s L o
. . ) . . uide Star European Training and Mobility Resources Network of the
inverse) is, under the circumstances we described, unique g pean Community.
is equivalent to the best least—square estimator in an Euclidean

space. For instance one can wiitg- in terms of A, T and L
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4. Conclusion
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