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Abstract. We discuss the stability of a flux tube model for qui-
escent solar prominences. The main result is that the config-
urations are stable only up to a critical width (defined as the
extension of the central part of the flux tube with prominence
matter at low temperatures) of about1 000 km to3 000 km. The
dependence of the critical width on the prominence parameters
height, temperature, density contrast, external magnetic field,
external gas pressure and external temperature is analysed. The
normal modes and eigenfrequencies obtained numerically cover
the range of observational data for prominence oscillations.
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1. Introduction

Quiescent solar prominences are cool, dense clouds in the solar
corona which are suspended against gravity by the curvature-
forces of magnetic fields penetrating them. The lifetimes of qui-
escent prominences are up to a few month which justifies the
theoretical modeling on the basis of mechanical and thermal
equilibria.

A local description of the mechanical properties was first
given by Kippenhahn & Schlüter (1957), who gave the intuitive
picture of a magnetic hammock. In order to get a global model
for a prominence it is necessary to extend this local description
to a field structure which is rooted down in the solar photosphere.
There are mainly two different types of models which are char-
acterized by the directions of the transverse magnetic field in
the prominence and the photosphere. The same direction cor-
responds to the normal polarity models, the opposite direction
to the inverse polarity models, where the prominence rests in a
current sheet above a X-type neutral point. A model of the latter
case was first proposed by Kuperus & Raadu (1974). Observa-
tional data gives evidence, that the normal polarity prominences
are mainly prominences with heights less than about30 000 km,
whereas the higher prominences are of the inverse polarity type
(Leroy et al. 1984). Alternatively a prominence can be described
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by twisted field structures which was modeled by Priest et al.
(1989).

Different attempts has been made to include an energy equa-
tion. Hood & Anzer (1988) or Steele & Priest (1990) solved the
energy equation for a given field line without treating the full
mechanical equilibrium. The mechanical and thermal equilib-
rium was solved consistently by Lerche & Low (1977) for a
simplified energy equation or by Milne et al. (1979) for a one-
dimensional Kippenhahn-Schlüter model.

Stability investigations performed by Galindo-Trejo &
Schindler (1984) and Galindo-Trejo (1987) show the stability
of the models developed by Menzel (1951), Dungey (1953),
Kippenhahn & Schl̈uter (1957) and Lerche & Low (1980). De-
Bruyne & Hood (1993) analysed the stability of the model de-
veloped by Hood & Anzer (1990) with help of the energy prin-
ciple of Bernstein et al. (1958) and showed instability for many
cases. Longbottom et al. (1994) give stability conditions for 2D
current sheet models. Schutgens (1997a), (1997b) discusses the
different influences of the photospheric boundary conditions on
prominences of normal and inverse type.

Stability analysis gives also information about possible
prominence oscillations. The different modes are discussed on
the basis of idealized models by Joarder & Roberts (1992, 1993),
Oliver et al. (1993), Oliver & Ballester (1995) and Joarder et al.
(1997).

This work is based on a flux tube model for quiescent so-
lar prominences developed first by Ballester & Priest (1989).
Degenhardt & Deinzer (1993), Degenhardt (1995) and Cramp-
horn (1996) extended this model by self-consistently includ-
ing an energy balance (Schmitt & Degenhardt 1995). A quies-
cent prominence is modeled as a sequence of static slender flux
tubes arranged behind each other and embedded in an isother-
mal corona as shown in a sketch in Fig. 1. This model belongs
to the normal polarity type. The prominence rests as cool, dense
plasma in a dip at the summit of the arch like flux tubes which
reach out far into the corona and are rooted down in the chromo-
sphere along lines of opposite magnetic polarity. For each flux
tube the magnetohydrostatic force equilibrium and an energy
balance between radiative losses, heat conduction and coronal
heating is solved numerically.

We tested these models for their dynamical stability by ap-
plying the stability formalism for thin magnetic flux tubes de-
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Fig. 1. Sketch of the described model

rived by Schmitt (1995, 1998). He obtained a canonical form of
the linear stability equations for slender flux tubes which leads
to a self-adjoint force operator for adiabatic perturbations. The
analysis yields the conditions for stability and the frequencies
of the oscillations in the (neutrally) stable case or growth rates
of the disturbances in the unstable case, respectively. The eigen-
functions give hints on the possible instability mechanism. We
remark that we only investigate the global stability of an indi-
vidual thin flux tube of the prominence. The interaction with
the environment is given by the lateral pressure balance and a
retroaction of the flux tube on the external plasma is neglected.

The eigenvalue problem is solved numerically. As a first step
we used a matrix eigenvalue formulation with expansions into
fourier modes for a complete spectrum of approximate eigenval-
ues. For a refined treatment of particular modes we applied the
Riccati shooting method (see Gautschy & Glatzel 1990) with
adaptive step size integration for the corresponding initial value
problem. The use of this method was necessary due to vastly
different values of the stability coefficients inside and outside
the prominence along the tube. Moreover, we applied the energy
principle for a test of the results.

2. Equilibrium models

In the thin flux tube approximation the force balance tangential
(̂l0) and normal(n̂0) to the flux tube atr0(l0) is given by (the
subscript ‘0’ denotes the equilibrium values)

∂p0

∂l0
= %0 g0

(
ĝ0 · l̂0

)
(1)

κ0B
2
0

µ0
= −%0g0 (ĝ0 · n̂0) + n̂ · grad

(
p0 +

B2
0

2µ0

)
, (2)

where the curvatureκ0 of the flux tube follows from

∂ l̂0
∂l0

= κ0n̂0 . (3)

The pressure balance in lateral direction is given by

B2
0

2µ0
+ p0 =

B2
e

2µ0
+ pe , (4)

The usual notation of variables is adopted, a subscript ‘e’ denotes
external quantities, a hat unit vectors. As equation of state we
used the ideal gas law

p0 =
k

µ mp
%0T0 , (5)

with the Boltzmann constantk, the mass of the protonmp and
the number of particles per nucleonµ−1. In our models we
adoptedµ = 0.6 according to the solar chemical composition.

These equations are solved in a cartesian coordinate frame,
where the path of the flux tube is given by(x0, z0(x0)). The
gravitational fieldg0 is considered as constant with only a ver-
tical component̂g0 = (0,−1).

The corona is assumed to be isothermal, leading to

pe = pe0 exp(−z0/He) , (6)

with the pressure scale heightHe = kTe/(µmpg0) and the
pressurepe0 at the levelz0 = 0. This assumption does not
consider the temperature decrease towards the photosphere. As
the transition layer is very thin, this is a good approximation for
our investigation. However, the transition to the photosphere
is important for the stability analysis (photospheric boundary
condition) which is discussed in detail in Sect. 3.2.

The equilibrium models calculated by Cramphorn and De-
genhardt include an energy balance between radiative losses,
heat conduction and coronal heating:

divq + Lr − H = 0 , (7)

where the heat fluxq is given by Spitzer (1962)

q = −κ T
5/2
0

dT0

dl0
l̂0 (8)

with κ = 10−11Wm−1K−7/2. The radiative losses are deter-
mined by loss functions given by Hildner (1974), Cox & Tucker
(1969) and Kuin & Poland (1991). The coronal heating is chosen
as

H = h%0 (9)

with a constanth. This energy balance leads to temperature
profiles with mainly constant temperatures in the central part of
the prominence, a steep gradient in the transition region to the
coronal part and a slowly increasing temperature in the corona
as shown in Fig. 2.

Using this energy and force balance basic parameters of
prominences can be reproduced except for the width which is
smaller than observed. Widths bigger than about500 km can
only be achieved by using very small density contrasts and
small central temperatures. But the prominence width has an
important influence on the stability, so that the restriction on
these models is not very reasonable. In order to analyse wider
prominences we worked with a model in which the temperature
profile inside the flux tube is prescribed analytically and ap-
proximately represents the self-consistent treatment mentioned
above. These models are only in magnetohydrostatic force equi-
librium and we only investigate the dynamical stability due to
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Fig. 2.Temperature profile inside the flux tube for a prominence model
with self-consistent energy balance. The central part with low temper-
atures is shown enlarged in the left plot. The prominence has a width
of about400 km.

adiabatic perturbations. We remark that for the stability analy-
sis only the temperature profiles of the equilibrium model are
important and not the energy equations used for obtaining these
profiles.

The internal temperature profile of the model is described
by

T0(x0) = Tprom + (Te − Tprom) · (10)

1
2

[
1 + tanh

(
2.65

x0 − b − s

s

)]

with the half widthb of the prominence, the widths of the tran-
sition region, the prominence central temperatureTprom and the
external temperatureTe. This temperature profile shows (for ap-
propriate values of s) the steep gradient in the transition region
and is a good approximation for the central part of the promi-
nence. In the coronal part of the flux tube the temperature inside
the flux tube is equal toTe. This is the simplest possible choice
but fortunately the results are not strongly dependent on the
coronal temperature profile, as long as the temperature is close
to the external temperature. This is discussed in detail later.

The influence of an external magnetic field depends mainly
on the particular configuration. We used a common arch like
potential field

Bx = Be0 cos
(

x0

2He

)
exp

(
− z0

2He

)
(11)

Bz = −Be0 sin
(

x0

2He

)
exp

(
− z0

2He

)
, (12)

whereHe denotes the external pressure scale height andBe0
the field strength at the levelz0 = 0. This field is a reasonable
approximation for the external background field of prominences
with normal polarity we want to describe with our model. An-
other reason for taking this field is the fact that the stability
formalism we want to apply was derived for the case without
external magnetic field. But it is possible to include this field
by a formal substitution we describe in the following lines. A

useful property of this field structure is that the field lines are
mainly parallel to the path of the flux tube and that the magnetic
pressurepm has the same dependence on height as the exter-
nal gas pressurepe. This enables an analytical treatment of the
external field by the substitution

pe → p̃e = pe + pm (13)

%e → %̃e =
µmp

kTe
(pe + pm) , (14)

wherep̃e and%̃e satisfy the equation

gradp̃e = %̃e g0

(
ĝ0 · l̂0

)
(15)

because of the same height dependence ofpm andpe. By making
use of this property it is possible to write Eqs. (2) and (4) in the
form

κ0B
2
0

µ0
= (%̃e − %0) g0 (ĝ0 · n̂0) (16)

and

B2
0

2µ0
+ p0 = p̃e , (17)

which is mathematically equivalent to the case without an ex-
ternal magnetic field, but corresponds to a solution with another
effective density contrast between prominence and corona.

The effective central density contrast of the prominence is
given by

%0

%̃e
=

%0

%e

pe0

pe0 + B2
e0/2µ0

, (18)

which is smaller than the real density contrast%0/%e and is
dependent on the external plasma betaβe = pe0/(B2

e0/2µ0).
The real density contrast of prominences is about100. Taking
an external magnetic field of about1–5 G and an external gas
pressure of0.005 Pa, we receive effective density contrasts in
the range of5–50.

Thus using the above described external magnetic field it is
sufficient to solve the flux tube equations without an external
magnetic field, but keeping in mind that the density contrast is
modified by Eq. (18).

If the internal temperature profile, the external plasma beta,
external temperature and the (real) density contrast are fixed,
the path of the flux tube is unaffected by changing the external
gas pressure. The other physical values scale linear with the
external gas pressure so that changing the external gas pressure
does not produce new solutions. Thus it is possible to reduce
the free parameterspe0, Be0 and%0/%e(x0 = 0) of the model
in the following way:

pe0
Be0

}
→ βe

%0/%e


 → %0/%̃e

The other free parameters are:

– external temperature:Te
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– internal temperature profile:Tprom, b, s
– height of prominence:z0(x0 = 0)

For solving the equations in the cartesian coordinates the
following relations are useful. As independent variable we use
the horizontal distancex0, related to the arclengthl0 and height
z0 by dl0

2 = dx0
2 + dz0

2.
In the cartesian coordinate frame we get for the Frénet basis

(′ = d/dx0)

l̂0 =
(1, z′

0)√
1 + z′2

0

and n̂0 =
(−z′

0, 1)√
1 + z′2

0

. (19)

The curvature of the flux tube is given by

κ0 =
z′′
0

(1 + z′2
0 )3/2 . (20)

Using these expressions, Eqs. (1) and (16) can be written as

p′
0 = −%0g0z

′
0 (21)

and

z′′
0 =

1
2

(
1 + z′2

0
) 1

p̃e − p0
(%0 − %̃e) g0 (22)

Using Eqs. (5), (6) and (10) these equations can be integrated
with standard routines for ODE’s.

A typical prominence model is shown in Fig. 3. Pressure
and density profiles of the central part are shown on an enlarged
scale. Note that the density contrast inside the flux tube is larger
than the density contrast between the prominence and the ex-
ternal corona.

3. Stability analysis

3.1. Global stability analysis

The stability analysis is done in terms of the Lagrangian dis-
placementξ expressed in the Frenet basis vectors as

ξ(l0, t) = r(l, t) − r0(l0, t)

= η(l0, t) l̂0 + ε(l0, t) n̂0 + ζ(l0, t) b̂0 , (23)

with the unperturbed arclengthl0, the equilibrium locationr0
and the Lagrangian displacement componentsη, ε andζ in the
tangential direction̂l0, the normal direction̂n0 and the binormal
directionb̂0 of the unperturbed flux tube, respectively.

Linearisation of the time dependent thin flux tube equations
with respect toξ and separation of the time dependence as

ξ(l0, t) = eiωt ξ(l0) (24)

results in the eigenvalue equation( ′ = d/dl0 )

−ω2P
(

η

ε

)
= F

(
η

ε

)
=

( A ε + Bε′ + C η + (Eη′)′

A η − (B η)′ + H ε + (J ε′)′

)
(25)

for the tangential and normal components. The decoupled binor-
mal component of the perturbation equation yieldsstableAlfv én
waves running along the flux tube.F is a differential operator

Fig. 3a and b. Equilibrium model for a typical prominence with a
prescribed temperature profile. The height is20 000 km, the width
2 000 km, the central temperature8 000 K and the effective density
contrast between prominence and corona10. The prominence is em-
bedded in an isothermal corona of106 K. a Path of the flux tube. The
cool and dense prominence matter rests in the dip at the very center.
b Pressure (solid line, left axis) and density (dotted line, right axis)
profile, enlarged.

of second order whose coefficientsA, B,... are functions of the
unperturbed arclengthl0. For details see Schmitt (1995, 1998).
For later application it is useful to transform the independent
variable of Eq. (25) from the arclengthl0 to the horizontal dis-
tancex0. Except for the redefinition′ = d/dx0 Eq. (25) remains
unaltered. The coefficients are given in detail in the Appendix.
Using the equilibrium model shown in Fig. 3 we obtain coeffi-
cients with steep gradients in the prominence-corona transition
region and largely constant values in the prominence and coro-
nal part of the flux tube Fig. 4.

It can be shown that the operatorF is self-adjoint thus yield-
ing only real eigenvaluesω2. The equilibrium is stable, if all
eigenvaluesω2 are positive, and unstable, if at least one eigen-
value exists withω2 < 0.

As a consequence of the self-adjointness ofF it is possible
to define the change of the potential energy due to perturbations
as

δW = −1
2

∫
ξ∗ F (ξ ) dx0 . (26)

Stability corresponds toδW > 0 for all perturbations and in-
stability prevails if at least one perturbation exists withδW < 0
(energy principle). Using Eq. (25) yields

δW = −1
2

∫ xend

0

[A (η∗ε + ηε∗) + B (
η∗ε′ + ηε∗′) +

Cη∗η + Hε∗ε − Eη∗′η′ − J ε∗′ε′] dx0 . (27)
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Fig. 4.Coefficients of the stability equation for a typical model. The first
coefficient corresponds to a solid line and the left ordinate, the second
coefficient to a dash-dotted line and the right ordinate, respectively.
The unperturbed horizontal distancex0 is normalized to its maximum
value. The small inner part with the prominence and the sharp interface
to the corona is shown in the left diagrams, the large part of the arch
through the corona in the right diagrams.

with appropriate boundary conditions (see below) at the end
pointsx0 = 0 andx0 = xend of the flux tube. Ifξ is an eigen-
function we have the relation

δW = ω2 1
2

∫ xend

0
P (η∗η + ε∗ε) dx0 , (28)

which can be used to test the numerically obtained eigenfunc-
tions and eigenvalues by a simple integration.

3.2. Boundary conditions and eigenfunctions

For solving the eigenvalue problem, boundary conditions have
to be specified. The symmetry of the equilibrium model causes
a symmetry of the coefficients with respect to the center of
the prominence. The coefficientA is antisymmetric, the other
coefficients are symmetric. The structure of Eq. (25) allows for
two different symmetries of the eigenfunctions with respect to
x0 = 0:

Fig. 5. Eigenfunctions and eigenvalues of the first six eigensolutions
for the boundary conditionsη′(0) = ε(0) = 0 (antisymmetric pertur-
bation) on the left andη(0) = ε′(0) = 0 (symmetric perturbation) on
the right. Tangential displacementsη correspond to solid lines and the
left ordinate, normal displacementsε to dash-dotted lines and the right
ordinate, respectively. Eigenfunctions are normalized by the maximum
of |η|, x0 by its maximum value.

(i) η symmetric,ε antisymmetric= antisymmetric perturba-
tion

(ii) ε symmetric,η antisymmetric= symmetric perturbation

As a consequence, it is sufficient to consider only one half of
the flux tube and to use the boundary conditions

(i) η′(0) = 0, ε(0) = 0
(ii) η(0) = 0, ε′(0) = 0

at the centerx0 = 0 of the prominence. We assume that the foot
point of the archx0 = xend is kept fixed in the photosphere
of the sun, which implies the boundary conditionε(xend) = 0
for the normal component of the Lagrangian displacement. The
tangential component does not need to vanish because a plasma
flow along the flux tube induced by the perturbation shall not be
excluded. However, taking into account the increase of density
in the photosphere, which causes a decrease of any flow speed,
the fixed boundary conditionη(xend) = 0 leads to similar re-
sults. We checked this numerically by modeling the transition
from the corona to the photosphere and solving the eigenvalue
problem with the less restrictive conditionη′(xend) = 0. No
significant difference was found.

The effect of line-tying on the stability of coronal magnetic
fields is discussed in detail by Hood (1986) and Van der Linden
et al. (1994).

The first six eigenfunctions together with their eigenval-
ues are shown in Fig. 5. Note the steep decrease of the normal
displacementε and the tangential displacementη near the ori-
gin for the antisymmetric and symmetric fundamental mode,
respectively, displayed on an appropriate scale in Fig. 6. It is
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Fig. 6.Enlarged presentation of the first two eigenmodes, which shows
the sharp decrease of the normal (antisymmetric mode) and tangential
(symmetric mode) displacements at the center. It is caused by the large
density and temperature differences between prominence and coronal
matter along the flux tube and the associated changes of the coefficients
shown in Fig. 4.

Fig. 7.Variation of the smallest eigenvalue with the prominence width
for the effective density contrasts10 (solid),30 (dashed) and50 (dash-
dotted). The left graph corresponds to a prominence with a height
of 20 000 km, the right to a prominence with a height of40 000 km.
The central prominence temperature is8 000 K, the external corona
temperature106 K.

conspicuous that in all models only the eigenvalue of the an-
tisymmetric fundamental mode withη′(0) = 0, ε(0) = 0 is
very small compared to the other eigenvalues and may become
negative, which implies instability. Thus only the sign of this
eigenvalue is important for the stability of the configuration. In
the following section we discuss the dependence on the different
prominence parameters of this eigenvalue.

3.3. Results

The variation of the smallest eigenvalueω2 as a function of the
different model parameters

– height of the prominence
– width of the prominence
– effective central density contrast of the prominence
– central temperature
– external temperature

is investigated in order to study their influence on the stability of
the configuration. For this purpose, different prominence mod-
els have been considered, where only one parameter was varied
and the other parameters were kept fixed.

The variation of the smallest eigenvalue as a function of
height, width and effective density contrast for prominences
with a central temperature of8 000 K and a corona temperature
of 106 K is shown in Fig. 7. From Fig. 7 we deduce the tendency
that an increase of the height and the effective density contrast
causes a decrease of the critical width at which the prominence

Fig. 8. The same quantities as shown in Fig. 7., but for an external
temperature of1.5 · 106 K.

Fig. 9. The same quantities as shown in Fig. 7., but for an external
temperature of1.5 · 106 K and a central temperature of10 000 K.

becomes unstable. The loss of stability with increasing height
corresponds to the observational fact that prominences with nor-
mal polarity are usually observed at lower heights.

Fig. 8 is the counterpart of Fig. 7 for a prominence embedded
in a corona of1.5 · 106 K. A comparison with Fig. 7 shows the
stabilizing effect of increasing the coronal temperature. This ef-
fect is correlated to the destabilization by increasing the height
because the coronal part of the prominence solution is deter-
mined by the external pressure scale height. Thus an increase
of temperature (and pressure scale height) is equivalent to a de-
crease of the prominence height. A similar result is obtained by
increasing the central temperature of the prominence.

In Fig. 9 the variation of the eigenvalues with width and
effective density contrast is shown for a prominence with a cen-
tral temperature of10 000 K, embedded in a1.5 · 106 K corona.
Compared to Fig. 8 the critical widths are increased up to about
3 000 km in the model with the effective density contrast of10.

Note that these figures contain the full information of in-
cluding an external magnetic field as described above. The con-
nection between (real) density contrast, external magnetic field
strength and effective density contrast is given by Eq. (18) which
shows that the effective density contrast decreases with increas-
ing field strength. Accordingly, (see the results displayed in
Figs. 7, 8 and 9) an external magnetic field has a stabilizing ef-
fect. These arguments hold only up to a critical field strength be-
cause for%0 < %̃e the central dip of the flux loop vanishes and in-
side the flux tube a density inversion will occur. Rayleigh-Taylor
instability, however, is not allowed for by our one-dimensional
stability formalism.

If an external magnetic field is included, a prominence model
with a central temperature of10 000 K, an external temperature
of 1.5 · 106 K and a density contrast of about100 can be stable
up to a width of3 000 km if we useβe ≈ 0.1.

The temperature profile we used is a very good approxima-
tion for the central part of the prominence. In the coronal part
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Fig. 10.Variation of the smallest eigenvalue with the prominence width
for the effective density contrasts10 (solid),30 (dashed) and50 (dash-
dotted). The height is in both plots20 000 km, the central prominence
temperature is8 000 K and the external corona temperature106 K.
The left graph corresponds to a prominence with a temperature of
T = 0.5Te and the right graph corresponds to a prominence with a
temperature ofT = 1.5Te in the coronal part of the flux tube.

of the flux tube are other profiles thanT = Te possible. In or-
der to demonstrate that the temperature in the coronal part does
not affect the stability strongly, we present the results obtained
with temperature profiles, having coronal valuesT = 0.5Te

andT = 1.5Te (Fig. 10). Comparison of the left graph of Fig. 7
with Fig. 10 shows that changing the temperature only affects
the critical width of models with a high effective density con-
trast. Decreasing the temperature in the coronal part of the flux
tube means decreasing the internal pressure scale height, leading
to an increasing gas pressure (and internal plasma beta) inside
the flux tube towards the foot points. This can only affect the
stability if the internal plasma beta is sufficiently high enough
which is only the case in models with high effective density
contrast. But the models with low effective density contrasts
are more reasonable if an external magnetic field is included.
This means that our restriction to the prescribed temperature
profile is a good approximation to more realistic temperature
profiles as long as we only consider the dynamical stability.

As mentioned above, changing the external gas pressure
(keeping the internal temperature profile, the external plasma
beta, external temperature and the (real) density contrast fixed)
leads to solutions with the same path but rescaled profiles of
pressure and density inside and outside the flux tube. It can
also be shown that all coefficients of Eq. (25) have the same
dependence on the external pressure, which thus has no effect
on the linear eigenvalue problem.

So far we presented the stability analysis for a simplified
flux tube model in which we prescribed the temperature pro-
file. As mentioned above the models of Degenhardt (1995) and
Cramphorn (1996) have small widths (lower than500 km) and
thus show no instabilities consistent with the results discussed
here. The polytropic model of Degenhardt & Deinzer (1993) is
found to be unstable.

3.4. Interpretation of the instability

In order to get an intuitive idea of the instability, it is useful
to transform the eigenfunctions back into cartesian coordinates.
For the eigensolution with the smallest eigenvalue the vertical
and horizontal displacements of the flux tube∆x and∆z are
shown in Fig. 11.

Fig. 11.Vertical and horizontal displacements∆z and∆x of the un-
stable mode.

Obviously the central part of the prominence moves only
horizontally (here to the left), whereas the coronal part moves
down on the left side and up on the right side. The main point is
the fact that the dense plasma of the prominence does not need
to flow upward against gravity in order to flow out of the central
dip. If this instability occurs, the plasma flows horizontally at
x0 = 0 without changing its potential energy.

3.5. Oscillations of prominences

Although we are primarily interested in stability considerations,
the analysis also provides a variety of oscillatory modes. Oscil-
lations of prominences have recently received much attention,
both observationally and theoretically. Observational data of
prominences show long-term oscillations with periods of about
50–80 min and short-term oscillations with periods of about
3–15 min (Tandberg-Hanssen 1995, Sütterlin et al. 1997). A
classification of the modes has been achieved on the basis of
idealized models by Joarder & Roberts (1992, 1993), Oliver et
al. (1993), Oliver & Ballester (1995) and Joarder et al. (1997).
In the stable case the smallest eigenvalue of our models corre-
sponds to periods larger than40 min. The next two oscillations
are in the range of about15–20 min and the higher order oscil-
lations have periods below10 min. Our modes can be compared
to the modes classified by Oliver et al. They distinguish between
kink and sausage modes, which correspond to our antisymmetric
and symmetric modes. Comparing eigenfunctions and eigenval-
ues there is a close correspondence between their hybrid slow
(mainly horizontal motion) and our antisymmetric fundamen-
tal mode. These modes can be observed in prominences at the
limb because of their dominating horizontal motion. Binormal
displacements of the flux tube correspond to Alfvén modes.

We note that the inertia of the external plasma accelerated
by the moving flux tube influences the eigenfrequencies. The
exact description of this effect is still under controversial de-
bate (Moreno-Insertis et al. 1996). As long as this effect is
parametrized as an enhanced inertia in the normal component
of Eq. (25) (Spruit 1981) this leads only to longer oscillation
periods, but does not change the sign of the eigenvaluesω2.
This can be proven in the following way: The left hand side of
Eq. (25) is modified by the substitutionε → µ ε whereas the
right hand side remains unaltered. Thus Eq. (27) which deter-
mines the sign ofω2 remains unaltered, too. Spruit introduced
µ = 1 + %e/%0 assuming a potential flow around the tube.
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4. Conclusions

Our stability analysis has shown a flux tube model for quiescent
prominences to be stable up to a critical width in the range of
1 000–3 000 km. Increasing the central and external tempera-
ture and decreasing the height and the effective density contrast
results in an increase of the critical width. The effective density
contrast Eq. (18) contains the influence of the real density con-
trast, the external magnetic field and the external gas pressure.
Decreasing the real density contrast and the external plasma
beta stabilizes the prominence.

The critical widths we obtained are too small compared
to observational data showing typical widths in the range of
5 000 km to15 000 km.

The periods of the oscillations for stable models are in good
agreement with observed prominence oscillations.

The thin flux tube approximation represents an extreme of
modeling solar prominences. Useful to describe fibril structures
along the magnetic field lines it is an oversimplification when
a whole prominence is to be described. Another extreme is the
description with a continuous magnetic field, where the global
stability analysis is more complicated than in the case of flux
tubes. We found an external field to have a stabilizing effect
on flux tube models. However, in contrast to a model with a
continuous magnetic field, an interaction between the flux tube
and the external plasma is not considered in the thin flux tube
approximation. Thus it is interesting to compare our results with
the stability of such a model. DeBruyne & Hood (1993) anal-
ysed the stability of the prominence model developed by Hood
& Anzer (1990), which is the “continuous counterpart” of our
flux tube model. They found stability for prominences with rea-
sonable widths of4 000–6 000 km only below a height of about
7 000 km. Using the parameters of their most stable models and
taking into account that they adoptedµ = 1 inside the promi-
nence andµ = 0.6 in the corona, we obtain a critical width of
only about2 700 km for a height of7 000 km in our models. This
shows that the coupling of the whole field in a continuous model
stabilizes the configuration. This can be understood intuitively
on the basis of Fig. 11. The vertical displacement would cause a
compression (on the left side) or a decompression (on the right
side) of external field lines resulting in an increase or a decrease
of the magnetic pressure, thus implying an additional restoring
force, which stabilizes the configuration.

In Sect. 2 we showed that it is not possible to explain
the observed prominence widths in terms of an equilibrium
model which makes use of the thermal equilibrium described
by Eq. (7). The stability analysis we presented here is based on
equilibrium models which exclude the thermal equilibrium in
order to be able to describe prominences with realistic widths by
using temperature profiles with reasonable prominence proper-
ties. As the stability analysis is only dependent on the tempera-
ture profiles and not on the thermal equilibrium which is used to
determine these profiles, our results give strong restrictions for
the possible widths in flux tube models. There may exist ther-
mal equilibria which allow for wider prominences. But if the

widths exceed the critical values presented here, the dynamical
stability gives the stronger restriction on the prominence width.
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Appendix A: coefficients of the stability equation

The coefficients of the stability equation (25) are determined by
the equilibrium model (subscript “0”) and thus are functions of
the unperturbed arclengthl0 or alternatively of the unperturbed
horizontal distancex0. In the latter case they read in detail:
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with the path of the flux tubez0(x0), ′ = d/dx0, the cross-
sectionA0, the sound speedcS = (γp0/%0)1/2, the Alfvén
speedvA = B0/(µ0%0)1/2 and the tube speedcT , given by
c2
T = (c2

S v2
A)/(c2

S + v2
A). The subscript ‘e’ corresponds to the

external plasma.H%e
denotes the density scale height, given by

H−1
%e

= −d ln %e/dz0. Note thatJ is a constant.
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