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Abstract. We discuss the stability of a flux tube model for quiby twisted field structures which was modeled by Priest et al.
escent solar prominences. The main result is that the con{f989).
urations are stable only up to a critical width (defined as the Different attempts has been made toinclude an energy equa-
extension of the central part of the flux tube with prominend®mn. Hood & Anzer[(198B) or Steele & PrieSt(1990) solved the
matter at low temperatures) of abdui00 km to3 000 km. The energy equation for a given field line without treating the full
dependence of the critical width on the prominence parameterachanical equilibrium. The mechanical and thermal equilib-
height, temperature, density contrast, external magnetic figlidym was solved consistently by Lerche & Low (1977) for a
external gas pressure and external temperature is analysed.slimglified energy equation or by Milne et al. (1979) for a one-
normal modes and eigenfrequencies obtained numerically cosignensional Kippenhahn-Sdher model.
the range of observational data for prominence oscillations.  Stability investigations performed by Galindo-Trejo &
Schindler (1984) and Galindo-Trejo (1987) show the stability
Key words: instabilities — Magnetohydrodynamics (MHD) —of the models developed by Menzél (1951), Dundey (1953),
Sun: filaments — Sun: magnetic fields — Sun: prominences Kippenhahn & Schiter (1957) and Lerche & Low (1980). De-
Bruyne & Hood [(1993) analysed the stability of the model de-
veloped by Hood & Anzei (1990) with help of the energy prin-
1. Introduction ciple of Bernstein et all (1958) anq showeq instabiI.iFy for many
cases. Longbottom et dl. (1994) give stability conditions for 2D
Quiescent solar prominences are cool, dense clouds in the sgigfent sheet models. Schutgens (1997a). (1997b) discusses the
corona which are suspended against gravity by the curvatugiferent influences of the photospheric boundary conditions on
forces of magnetic fields penetrating them. The lifetimes of qidrominences of normal and inverse type.
escent prominences are up to a few month which justifies the stability analysis gives also information about possible
theoretical modeling on the basis of mechanical and thermabminence oscillations. The different modes are discussed on
equilibria. the basis ofidealized models by Joarder & Robérts (1992]1993),
A local description of the mechanical properties was firgjjiver et al. [1998), Oliver & Ballester (1995) and Joarder et al.
given by Kippenhahn & Schiter (1957), who gave the intuitive (1997).
picture of a magnetic hammock. In order to get a global model Thijs work is based on a flux tube model for quiescent so-
for a prominence it is necessary to extend this local descriptiRi prominences developed first by Ballester & Priest (1989).
to afield structure whichis rooted down in the solar photosphefegenhardt & Deinzef (1993), Degenhafdt (1995) and Cramp-
There are mainly two different types of models which are chajorn [1996) extended this model by self-consistently includ-
acterized by the directions of the transverse magnetic fieldify an energy balance (Schmitt & Degenhardt 1995). A quies-
the prominence and the photosphere. The same direction ¢@it prominence is modeled as a sequence of static slender flux
responds to the normal polarity models, the opposite directiifbes arranged behind each other and embedded in an isother-
to the inverse polarity models, where the prominence rests ifal corona as shown in a sketch in Fig. 1. This model belongs
current sheet above a X-type neutral point. A model of the lati@ythe normal polarity type. The prominence rests as cool, dense
case was first proposed by Kuperus & Raadu (1974). Obserggzsma in a dip at the summit of the arch like flux tubes which
tional data gives evidence, that the normal polarity prominengesich out far into the corona and are rooted down in the chromo-
are mainly prominences with heights less than aBo0D0 km,  sphere along lines of opposite magnetic polarity. For each flux
whereas the higher prominences are of the inverse polarity tygge the magnetohydrostatic force equilibrium and an energy
(Leroy etall 1984). Alternatively a prominence can be describpglance between radiative losses, heat conduction and coronal

* Present addresKiepenheuer-Institutifr Sonnenphysik, heating is solved numerically. . . .
Sctbneckstrasse 6, D-79104 Freiburg, Germany We tested these models for their dynamical stability by ap-
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The usual notation of variables is adopted, a subs&igenotes
external quantities, a hat unit vectors. As equation of state we
used the ideal gas law
k
pmmp

with the Boltzmann constart, the mass of the protom,, and
the number of particles per nucleit!. In our models we
adoptedu = 0.6 according to the solar chemical composition.

These equations are solved in a cartesian coordinate frame,
Fig. 1. Sketch of the described model where the path of the flux tube is given By, zo(zo)). The

gravitational fieldg, is considered as constant with only a ver-
tical componeng, = (0, —1).

rived by Schmitt[(1995, 1998). He obtained a canonical form of The corona is assumed to be isothermal, leading to
the linear stability equations for slender flux tubes which leads
to a self-adjoint force operator for adiabatic perturbations. THe = Peo exp(—zo/He) , (6)
analysis yields the conditions for stability and the frequenciggth the pressure scale heighf. = kT, /(um,go) and the
of the oscillations in the (neutrally) stable case or growth ratggessurep,, at the levelz, = 0. This assumption does not
of the disturbances in the unstable case, respectively. The eiggshsider the temperature decrease towards the photosphere. As
functions give hints on the possible instability mechanism. Wge transition layer is very thin, this is a good approximation for
remark that we only investigate the global stability of an indpur investigation. However, the transition to the photosphere
vidual thin flux tube of the prominence. The interaction witls important for the stability analysis (photospheric boundary
the environment is given by the lateral pressure balance angoadition) which is discussed in detail in Sect. 3.2.
retroaction of the flux tube on the external plasma is neglected. The equilibrium models calculated by Cramphorn and De-

The eigenvalue problemis solved numerically. As afirst stgenhardt include an energy balance between radiative losses,
we used a matrix eigenvalue formulation with expansions int@at conduction and coronal heating:

fourier modes for a complete spectrum of approximate eigenval-

ues. For a refined treatment of particular modes we applied g + Lr — H =0, (7)
Riccati shooting method (see Gautschy & Glafzel 1990) WiWhere the heat fluyg is given by Spitzer (1962)

adaptive step size integration for the corresponding initial value )

problem. The use of this method was necessary due to vastly _ -.5/2 @[ ®)
different values of the stability coefficients inside and outsi 0 d °

the prominence along the tube. Moreover, we applied the energ
principle for a test of the results. wi

Do = 0010 , )

th » — 10-1'Wm~'K~7/2, The radiative losses are deter-
mined by loss functions given by Hildnér (1974), Cox & Tucker
(1969) and Kuin & Poland (1991). The coronal heating is chosen

2. Equilibrium models as

In the thin flux tube approximation the force balance tangentiéll = hoo 9)
(lp) and normaln) to the flux tube at((ly) is given by (the

subscript & denotes the equilibrium values) with a constanth. This energy balance leads to temperature

profiles with mainly constant temperatures in the central part of

po . the prominence, a steep gradient in the transition region to the
BN = 00 9o (go : lo) (1) coronal part and a slowly increasing temperature in the corona
as shown in Fid.]2.
B2 B2 Using this energy and force balance basic parameters of
Ko 0 N N N 0 . . . .
= —0090 (o - To) + 1 - grad (po + 2) , (2) prominences can be reproduced except for the width which is
Ho Ho

smaller than observed. Widths bigger than abgiitkm can
only be achieved by using very small density contrasts and
small central temperatures. But the prominence width has an
important influence on the stability, so that the restriction on

where the curvaturg, of the flux tube follows from

) = KoMy - (3) these models is not very reasonable. In order to analyse wider
9lo prominences we worked with a model in which the temperature
The pressure balance in lateral direction is given by profi!e inside the flux tube is prescr?bed analytically and.ap—
proximately represents the self-consistent treatment mentioned
B2 B? above. These models are only in magnetohydrostatic force equi-
QTLO +po= Tuo + pe (4) librium and we only investigate the dynamical stability due to
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2.5%10° [T 1.2x108 T useful property of this field structure is that the field lines are
o106 mainly parallel to the path of the flux tube and that the magnetic
2.0x10° ' pressurep,, has the same dependence on height as the exter-
8.0x105 nal gas pressure.. This enables an analytical treatment of the
_1.5%10° _ external field by the substitution
= = 6.0x10° .
al 1.0%10° = . Pe — Pe = ]Z;T;" Pm (13)
4.0%10 Qe — @e = k‘Tp (pe +pm) y (14)
4 e
SRS 2.0%10° . B . .
wherep. and g, satisfy the equation
O Il O Il Il Il
0.0 05 1.0 0 20 40 60 80 gradp. = de 9o (go .20) (15)
Xo [Mm] Xo [Mm]

Fig. 2. Temperature profile inside the flux tube for a prominence modafcause of the same height dependenpg,@ndp. . By making
with self-consistent energy balance. The central part with low temp&ts€ Of this property it is possible to write EGS. (2) aiid (4) in the
atures is shown enlarged in the left plot. The prominence has a widgfm

of about400 km. Ko Bg A
o (0e — 00) 90 (go - Te0) (16)
adiabatic perturbations. We remark that for the stability analy-
sis only the temperature profiles of the equilibrium model afdd
important and not the energy equations used for obtaining thegg R
profiles. 20 + po = pe 17)
The internal temperature profile of the model is described
by which is mathematically equivalent to the case without an ex-
ternal magnetic field, but corresponds to a solution with another
To(wo) = Tprom + (Te — Tprom) - (10) effective density contrast between prominence and corona.
1 xog—b—s The effective central density contrast of the prominence is
- [1 + tanh (2.65 )} given by
with the half widthb of the prominence, the widthof the tran- €0 _ €0 Pe0 (18)

.. . . = - 2 ’
sition region, the prominence central temperaffyg,, andthe Qe e Peo + B /240
external temperatufE.. This temperature profile shows (for apy,hich is smaller than the real density contrasfo. and is

propriate values of s) the steep gradient in the transition regi&é‘pendent on the external plasma béta= peo/(B2,/210).

and is a good approximation for the central part of the proming rea| density contrast of prominences is akigt Taking
nence. In the coronal part of the flux tube the temperature insige o :arnal magnetic field of abolt5 G and an external gas
the flux tube is equal t@.. This is the simplest possible choice, oqqre 0.005 Pa, we receive effective density contrasts in
but fortunately the results are not strongly dependent on range ob—50.

coronal temperature profile, as long as the temperature is closery s ysing the above described external magnetic field it is
to the external temperature. This is discussed in detail later. o ¢sriiont to solve the flux tube equations without an external

The influence of an external magnetic field depends mainly, yhetic field, but keeping in mind that the density contrast is
on the particular configuration. We used a common arch like, jitiaq by Eq.[(AB).

potential field If the internal temperature profile, the external plasma beta,

2 external temperature and the (real) density contrast are fixed,

> ( 2He> (11) the path of the flux tube is unaffected by changing the external
gas pressure. The other physical values scale linear with the
o 20 external gas pressure so that changing the external gas pressure
2He> eXp (_ 2He) ’ (12) " does not produce new solutions. Thus it is possible to reduce
the free parametets.o, B.o andog/g.(zo = 0) of the model

where H. denotes the external pressure scale heightiid in the following way:
the field strength at the leve = 0. This field is a reasonable
approximation for the external background field of prominenced’<0 } = Be ~
with normal polarity we want to describe with our model. An- Beo — 00/8e
other reason for taking this field is the fact that the stabilit)ﬁ’O/Qe
formalism we want to apply was derived for the case withog,q gther free parameters are:
external magnetic field. But it is possible to include this field
by a formal substitution we describe in the following lines. A— external temperaturé:,

Zo
B, = B,
0 COS <2He

B, = —Bysin (
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— internal temperature profil&, .o, b, s 25¢ ‘ ‘ ‘ a

— height of prominencez(zy = 0) = 20+ E
For solving the equations in the cartesian coordinates the= '° 3 E
following relations are useful. As independent variable we useg 10 ]
the horizontal distancey, related to the arclengfg and height & ¢
20 by dl()2 = d.f(?()2 + dZOZ. i
In the cartesian coordinate frame we get for theriet basis

0 20 40 60 80

(' = d/dz) X [Mm]
7 (Lzé) ~ (_Z67 1)
ly=—= and ny = ——— . (29)
V142 1+ 2P _ 2.50F ‘ ‘ ‘ C 3255
o Eo E
The curvature of the flux tube is given by > 2:40 : ;2'0 §
2:6/ "9 2.30? 21.5:‘
Ko = ————7 - (20) = 220+ : 1102
(1+ =) 30 : o
) ) ) \E 2.10 “ 10.5 ’E
Using these expressions, EqS. (1) dnd (16) can be written as 2 00L ‘ R o
o / 0.0 0.5 1.0 1.5 2.0
Po = —0090%( (21) v [Mm]
and

Fig. 3a and b. Equilibrium model for a typical prominence with a
" 9 - prescribed temperature profile. The heigh2is000 km, the width

075 (1+20) Pe — Do (00 — ) 90 @2) 5000 km, the central temperatu®000 K and the effective density

. . . contrast between prominence and cor@fiaThe prominence is em-
Using Egs/[(b),[(6) and(10) these equations can be integraggdlded in an isothermal coronaldf® K. a Path of the flux tube. The
with standard routines for ODE’s. cool and dense prominence matter rests in the dip at the very center.

A typical prominence model is shown in Fg. 3. PressutePressure (solid line, left axis) and density (dotted line, right axis)
and density profiles of the central part are shown on an enlargedfile, enlarged.
scale. Note that the density contrast inside the flux tube is larger

than the density contrast between the prominence and the ex- . )
ternal corona. of second order whose coefficiends B3,... are functions of the

unperturbed arclengtly. For details see Schmiit (1995, 1998).
- ) For later application it is useful to transform the independent
3. Stability analysis variable of Eq.[Zb) from the arclengthto the horizontal dis-
3.1. Global stability analysis tancer,. Except forthe_ redefinitio_h: d_/dxo Eq._@) remains _
unaltered. The coefficients are given in detail in the Appendix.
The stability analysis is done in terms of the Lagrangian digrsing the equilibrium model shown in FIg. 3 we obtain coeffi-

placemeng expressed in the Frenet basis vectors as cients with steep gradients in the prominence-corona transition
region and largely constant values in the prominence and coro-
t) = [,t) — lo,t .
£lo.t) = r(l.) . ro(lo;?) X . nal part of the flux tube Figl4.
= n(lo,t) lo + £(lo, t) o + ((lo, ) bo , (23) It can be shown that the operatBiis self-adjoint thus yield-

ing only real eigenvalues?. The equilibrium is stable, if all
eigenvalues,? are positive, and unstable, if at least one eigen-
value exists withu? < 0.

As a consequence of the self-adjointnesgafis possible
define the change of the potential energy due to perturbations

with the unperturbed arclength, the equilibrium locatiorr
and the Lagrangian displacement componentsand( in the
tangential directioi!o, the normal directiomy and the binormal
directionb, of the unperturbed flux tube, respectively.
Linearisation of the time dependent thin flux tube equatioﬁ%l
with respect t&¢ and separation of the time dependence as as

(1o, 1) = " £(1o) ay W= [€F (). (26)

results in the eigenvalue equatioh= d/do ) Stability corresponds t61% > 0 for all perturbations and in-

Ac+Be +Cn+ (EnY stability prevails if at least one perturbation exists witli < 0
—w*P (Z) = 7<77> = (An — By + 7;75 +( (Zi,)/>(25) (energy principle). Using EJ_(25) yields
1

for the tangential and normal components. The decoupled bingpy — _,/ o [A (e +ne") + B (0"’ +ne*’) +
mal component of the perturbation equation yiei@bleAlfv én 2 Jo
waves running along the flux tubg. is a differential operator Cn*n+ He*e — En*'y — js*’s’] dzxg . (27)

3
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Fig. 5. Eigenfunctions and eigenvalues of the first six eigensolutions
for the boundary conditiong' (0) = ¢(0) = 0 (antisymmetric pertur-
bation) on the left ang(0) = £’(0) = 0 (symmetric perturbation) on
the right. Tangential displacementgorrespond to solid lines and the
0.0280 ‘ 0.42  0.0260 ‘ 0.42 left ordinate, normal displacemerst$o dash-dotted lines and the right
ordinate, respectively. Eigenfunctions are normalized by the maximum
of |n|, zo by its maximum value.

-6.0 -0.003
0.000 0.010 0.020 0.

0.150

0.0255 ¢ 00245 _ _ _ _ _ _ _ _ _ _.40.40
0.0250 055 00950 o 58 0] 1 symmetric,e antisymmetric= antisymmetric perturba-
0.000 0.010 0.020 0.0 0.5 1.0 tion
Xo/Xeng X0/ Xeng (i) e symmetric,n antisymmetric= symmetric perturbation

Fig. 4.Coefficients of the stability equation for atypical model. The firsAs a consequence, it is sufficient to consider only one half of

coefficient corresponds to a solid line and the left ordinate, the secqf@ flux tube and to use the boundary conditions
coefficient to a dash-dotted line and the right ordinate, respectively.

The unperturbed horizontal distancgis normalized to its maximum (i) #'(0) = 0,¢(0) =0
value. The small inner part with the prominence and the sharp interfdiig 7(0) = 0, /(0) = 0

to the corona is shown in the left diagrams, the large part of the arch .
through the corona in the right diagrams. atthe center, = 0 of the prominence. We assume that the foot

point of the archeg = xz.,4 is kept fixed in the photosphere

of the sun, which implies the boundary conditigfr.,q) = 0
with appropriate boundary conditions (see below) at the efut the normal component of the Lagrangian displacement. The
pointszy = 0 andzg = x.,q Of the flux tube. If§ is an eigen- tangential component does not need to vanish because a plasma

function we have the relation flow along the flux tube induced by the perturbation shall not be
1 [Tend excluded. However, taking into account the increase of density
oW = w? B / P (n*n+e*e) dxg , (28) in the photosphere, which causes a decrease of any flow speed,
0

the fixed boundary condition(z.,q) = 0 leads to similar re-
which can be used to test the numerically obtained eigenfurscits. We checked this numerically by modeling the transition
tions and eigenvalues by a simple integration. from the corona to the photosphere and solving the eigenvalue
problem with the less restrictive conditiofi(z.,4) = 0. No
significant difference was found.

The effect of line-tying on the stability of coronal magnetic
For solving the eigenvalue problem, boundary conditions hafields is discussed in detail by Hoad (1986) and Van der Linden
to be specified. The symmetry of the equilibrium model causetal. [1994).

a symmetry of the coefficients with respect to the center of The first six eigenfunctions together with their eigenval-
the prominence. The coefficient is antisymmetric, the other ues are shown in Fifgl 5. Note the steep decrease of the normal
coefficients are symmetric. The structure of Eql (25) allows fdisplacement and the tangential displacemenhear the ori-

two different symmetries of the eigenfunctions with respect gin for the antisymmetric and symmetric fundamental mode,
xo = 0: respectively, displayed on an appropriate scale in[Fig. 6. It is

3.2. Boundary conditions and eigenfunctions
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Fig. 6.Enlarged presentation of the first two eigenmodes, which shof- 8. The same quantities as shown in fg. 7., but for an external
the sharp decrease of the normal (antisymmetric mode) and tanger@gPerature of.5 - 10°K.

(symmetric mode) displacements at the center. It is caused by the large

density and temperature differences between prominence and coronal'° 1.0

matter along the flux tube and the associated changes of the coefficiehtsd-5p. "~ YOS
shown in Fig#. ORI S 5 ool

1.0 - 1.0 "3 —0.5F ) \-\'\’:-:,:j "3 —0.5F

\ \ NN
= o05F {1 = osf ] —-1.0 -1.0
< N < AN 1250 1750 2250 2750 3250 1250 1750 2250 2750 3250
O 0.0f N O 00f NN width [km] width [km]
3 —05F S \f\\\\ "3 —0.5F SO ] Fig. 9. The same quantities as shown in [Elg. 7., but for an external
-1.0 S T -1.0 AN temperature of .5 - 10° K and a central temperature t6 000 K.
500 1000 1500 2000 2500 500 1000 1500 2000 2500
width [km] width [km]

Fig. 7. Variation of the smallest eigenvalue with the prominence widthecomes unstable. The loss of stability with increasing height
for the effective density contrasts (solid), 30 (dashed) and0 (dash- corresponds to the observational fact that prominences with nor-
dotted). The left graph correqunds toa promin_ence with a heighg| polarity are usually observed at lower heights.
of 20 000km, the right to a prominence with a height 46 000 km. Fig[8 is the counterpart of Figj. 7 for a prominence embedded
The central prominence temperature8i800 K, the external corona in a corona ofi.5 - 10° K. A comparison with Fig-J7 shows the
temperature 0° K. oo . . )
stabilizing effect of increasing the coronal temperature. This ef-
fect is correlated to the destabilization by increasing the height
conspicuous that in all models only the eigenvalue of the afecause the coronal part of the prominence solution is deter-
tisymmetric fundamental mode withf (0) = 0, £(0) = 0is mined by the external pressure scale height. Thus an increase
very small compared to the other eigenvalues and may becogiéemperature (and pressure scale height) is equivalent to a de-
negative, which implies instability. Thus only the sign of thigrease of the prominence height. A similar result is obtained by
eigenvalue is important for the stability of the configuration. Imcreasing the central temperature of the prominence.
the following section we discuss the dependence on the different In Fig[9 the variation of the eigenvalues with width and

prominence parameters of this eigenvalue. effective density contrast is shown for a prominence with a cen-
tral temperature of0 000 K, embedded in &.5 - 10° K corona.
3.3. Results Compared to Fid.]8 the critical widths are increased up to about

3000 km in the model with the effective density contrastiof
The variation of the smallest eigenvalué as a function of the Note that these figures contain the full information of in-
different model parameters cluding an external magnetic field as described above. The con-
nection between (real) density contrast, external magnetic field
strength and effective density contrastis given by[Ed. (18) which
shows that the effective density contrast decreases with increas-
ing field strength. Accordingly, (see the results displayed in
Figs[T[8 anfl9) an external magnetic field has a stabilizing ef-
fect. These arguments hold only up to a critical field strength be-
is investigated in order to study their influence on the stability chuse fopg < g. the central dip of the fluxloop vanishes and in-
the configuration. For this purpose, different prominence maoside the flux tube a density inversion will occur. Rayleigh-Taylor
els have been considered, where only one parameter was vairisthbility, however, is not allowed for by our one-dimensional
and the other parameters were kept fixed. stability formalism.

The variation of the smallest eigenvalue as a function of Ifanexternal magneticfieldisincluded, a prominence model
height, width and effective density contrast for prominencegth a central temperature @ 000 K, an external temperature
with a central temperature 80000 K and a corona temperatureof 1.5 - 10° K and a density contrast of abol0 can be stable
of 106 K is shown in FiglY. From Fi@l7 we deduce the tendenayp to a width of3 000 km if we uses. ~ 0.1.
that an increase of the height and the effective density contrast The temperature profile we used is a very good approxima-
causes a decrease of the critical width at which the prominenizen for the central part of the prominence. In the coronal part

height of the prominence

width of the prominence

effective central density contrast of the prominence
central temperature

external temperature
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Fig. 10.Variation of the smallest eigenvalue with the prominence widthig. 11. Vertical and horizontal displacements: and Ax of the un-
for the effective density contrasts (solid), 30 (dashed) and0 (dash- stable mode.

dotted). The height is in both plo2§ 000 km, the central prominence
temperature i8 000K and the external corona temperature® K.

The left graph corresponds to a prominence with a temperature of
T = 0.5T. and the right graph corresponds to a prominence with a

temperature of’ = 1.57 in the coronal part of the flux tube. Obviously the central part of the prominence moves only

horizontally (here to the left), whereas the coronal part moves
down on the left side and up on the right side. The main point is

of the flux tube are other profiles thdh= T, possible. In or- the fact that the dense plasma of the prominence does not need
der to demonstrate that the temperature in the coronal part dtmeffow upward against gravity in order to flow out of the central
not affect the stability strongly, we present the results obtaindip. If this instability occurs, the plasma flows horizontally at
with temperature profiles, having coronal valiBs= 0.57., x¢ = 0 without changing its potential energy.
andT = 1.5T, (Fig.[10). Comparison of the left graph of Fig. 7
with Flg[E §hows that changlng thg temperature on!y aﬁecg%_ Oscillations of prominences
the critical width of models with a high effective density con-
trast. Decreasing the temperature in the coronal part of the flikhough we are primarily interested in stability considerations,
tube means decreasing the internal pressure scale height, leatieginalysis also provides a variety of oscillatory modes. Oscil-
to an increasing gas pressure (and internal plasma beta) ingidiens of prominences have recently received much attention,
the flux tube towards the foot points. This can only affect tHeoth observationally and theoretically. Observational data of
stability if the internal plasma beta is sufficiently high enougbrominences show long-term oscillations with periods of about
which is only the case in models with high effective density0—80min and short-term oscillations with periods of about
contrast. But the models with low effective density contrasis-15 min (Tandberg-Hanssen 1995{it&rlin et al[1997). A
are more reasonable if an external magnetic field is includethssification of the modes has been achieved on the basis of
This means that our restriction to the prescribed temperatittealized models by Joarder & Robefts (1992, 71993), Oliver et
profile is a good approximation to more realistic temperatued (1993), Oliver & Ballester (1995) and Joarder etlal. (1997).
profiles as long as we only consider the dynamical stability. In the stable case the smallest eigenvalue of our models corre-

As mentioned above, changing the external gas pressspends to periods larger thdfimin. The next two oscillations
(keeping the internal temperature profile, the external plasi@e in the range of abowb—20 min and the higher order oscil-
beta, external temperature and the (real) density contrast fixedijons have periods below¥) min. Our modes can be compared
leads to solutions with the same path but rescaled profilestothe modes classified by Oliver et al. They distinguish between
pressure and density inside and outside the flux tube. It dénk and sausage modes, which correspond to our antisymmetric
also be shown that all coefficients of Hq.J(25) have the samed symmetric modes. Comparing eigenfunctions and eigenval-
dependence on the external pressure, which thus has no effiestthere is a close correspondence between their hybrid slow
on the linear eigenvalue problem. (mainly horizontal motion) and our antisymmetric fundamen-

So far we presented the stability analysis for a simplifiddl mode. These modes can be observed in prominences at the
flux tube model in which we prescribed the temperature priimb because of their dominating horizontal motion. Binormal
file. As mentioned above the models of Degenhardt (1995) agidplacements of the flux tube correspond to Alivmodes.
Cramphorn((1996) have small widths (lower tH#® km) and We note that the inertia of the external plasma accelerated
thus show no instabilities consistent with the results discusdagdthe moving flux tube influences the eigenfrequencies. The
here. The polytropic model of Degenhardt & DeinZer (1993) exact description of this effect is still under controversial de-
found to be unstable. bate (Moreno-Insertis et dl._1996). As long as this effect is
parametrized as an enhanced inertia in the normal component
of Eq. [25) (Spruif 1981) this leads only to longer oscillation
periods, but does not change the sign of the eigenvaldes
In order to get an intuitive idea of the instability, it is usefuThis can be proven in the following way: The left hand side of
to transform the eigenfunctions back into cartesian coordinates. [2%) is modified by the substitutian— ¢ whereas the
For the eigensolution with the smallest eigenvalue the verticajht hand side remains unaltered. Thus Ed. (27) which deter-
and horizontal displacements of the flux tuhe andAz are mines the sign of,?> remains unaltered, too. Spruit introduced
shown in Fig[TlL. u =1+ o./00 assuming a potential flow around the tube.

3.4. Interpretation of the instability
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4. Conclusions widths exceed the critical values presented here, the dynamical

stability gives the stronger restriction on the prominence width.
Our stability analysis has shown a flux tube model for quiescen ? Y9 9 P

prominences to be stable up to a critical width in the range gknowledgementsThe authors would like to thank C. Cramphorn
1000-3000 km. Increasing the central and external temperand U. Degenhardt for making their equilibrium models and their ex-
ture and decreasing the height and the effective density contiastence available to them.

results in an increase of the critical width. The effective density
contrast Eq[(1]8) contains the influence of the real density ¢
trast, the external magnetic field and the external gas press
Decreasing the real density contrast and the external plashie coefficients of the stability equatién {25) are determined by
beta stabilizes the prominence. the equilibrium model (subscript “0") and thus are functions of

The critical widths we obtained are too small comparatie unperturbed arclength or alternatively of the unperturbed
to observational data showing typical widths in the range bbrizontal distance;. In the latter case they read in detail:
5000 km to 15 000 km. s

The periods of the oscillations for stable models are in googl — _ %A {—02T (Zg/ _ 3%% > + 2520 go-
agreement with observed prominence oscillations. (1+ ’2)3/2 1+ 2

The thin flux tube approximation represents an extreme of (1 e)

©o

uﬁlpgaendlx A: coefficients of the stability equation

. . . . 2
modeling solar prominences. Useful to describe fibril structures T+ ¢C ) + (1 + 24 ) Jo

along the magnetic field lines it is an oversimplification when (
a whole prominence is to be described. Another extreme is the lge 902 <

2
description with a continuous magnetic field, where the global 00 ¢ + UA j ) ] } (A1)
stability analysis is more complicated than in the case of flux 00 A
tubes. We found an external field to have a stabilizing effegt = — —2° chg 5 [ | 9—2 (1+ )} (A2)
on flux tube models. However, in contrast to a model with a (1+ 2% ‘s
continuous magnetic field, an interaction between the flux tube C 00Aogo oo 907 (& /
and the external plasma is not considered in the thin flux tutée = T a1z 0 2 102 + 09 o2 Qe
approximation. Thus itis interesting to compare our results with (1 + 20 ) Lo s TlA 4
the stability of such a model. DeBruyne & Hood (1993) anal- 2 ( 3 CQTQe)} (A3)
ysed the stability of the prominence model developed by Hood 1+ 2 v% 00
& Anzer (1990), which is the “continuous counterpart” of our 00Agc2
flux tube model. They found stability for prominences with rea = ———"=75 (Ad)
sonable widths ot 000—6 000 km only below a height of about (1+25°)
7000 km. Using the parameters of their most stable models and 0040 22 i (i -c%)
taking into account that they adopted= 1 inside the promi- - (1+ Z,2)3/2 1+22 3+ — %0 90"
nence angt = 0.6 in the corona, we obtain a critical width of 0 )
only about2 700 km for a height off 000 km in our models. This (1 + 296) ‘T + (14 22) 90&.
shows that the coupling of the whole field in a continuous model Qo Q0
stabilizes the configuration. This can be understood intuitively g0 =
on the basis of Fig.11. The vertical displacement would cause a 2 403 —H,, )} (AS)
compression (on the left side) or a decompression (on the right A2
side) of external field lines resulting in an increase or a decregge= 020YA (A6)

of the magnetic pressure, thus implying an additional restoring (1+ 2'2)1/2
force, which stabilizes the config_urgtion. _ P = oo (1+ 2’2)1/2 (A7)

In Sect.2 we showed that it is not possible to explain
the observed prominence widths in terms of an equilibriumith the path of the flux tubey(zy), ' = d/dzg, the cross-
model which makes use of the thermal equilibrium describséction 4y, the sound speeds = (’ypo/go)l/2, the Alfvéen
by Eq.[7). The stability analysis we presented here is basedspeedv, = By /(000)'/? and the tube speedr, given by
equilibrium models which exclude the thermal equilibrium in% = (c% v%)/(c% + v%). The subscript ‘e’ corresponds to the
order to be able to describe prominences with realistic widths byternal plasmai,, denotes the density scale height, given by
using temperature profiles with reasonable prominence propErQ:e1 = —dln p./dzp. Note that7 is a constant.
ties. As the stability analysis is only dependent on the tempera-
ture profiles and not on the thermal equilibrium which is used
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