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Abstract. In the theory of diffusive acceleration at oblique
shock fronts the question of the existence of a discontinuity
of energetic particle density is contentious. The resolution of
this problem is interesting from a theoretical point of view,
and potentially for the interpretation of observations of parti-
cle densities at heliospheric shocks and of high-resolution radio
observations of the rims of supernova remnants. It can be shown
analytically that an isotropic particle distribution at a shock front
implies continuity of the particle density – whether or not the
shock is oblique. However, if the obliquity of the shock induces
an anisotropy, a jump is permitted. Both semi-analytic compu-
tations and Monte-Carlo simulations are used to show that, for
interesting parameter ranges, a jump is indeed produced, with
accelerated particles concentrated in a precursor ahead of the
shock front.
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1. Controversy – general description

In the test-particle theory of diffusive shock acceleration, the
phase-space spectral indexs of accelerated particles depends
solely on the compression ratior = ρ′/ρ of the shock (whereρ
andρ′ are the upstream and downstream densities respectively):
s = 3r/(r − 1), which results ins = 4 for a strong shock in
an ideal gas withcp/cV = 5/3 (Axford et al. 1977; Krymskii
1977; Bell 1978; Blandford & Ostriker 1978). This result, like
many other analytical predictions (for a review see Drury 1983;
Blandford & Eichler 1987), depends on the assumption that
the phase space density is close to being isotropic, even at the
shock front. In this case, the density profile of accelerated test
particles is a continuous function of position (e.g., Kirk et al.
1994, page 262). In planar symmetry, the density is constant
downstream and drops off exponentially upstream of the shock.
This situation applies to both parallel and oblique shocks, as
was pointed out by, for example, Axford (1981).
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Recently, a discussion has arisen in the literature concerning
the occurrence of discontinuities in the density of accelerated
particles at an oblique shock front. Whereas Ostrowski (1991)
(hereafter O91) finds a substantial effect, Naito & Takahara
(1995) (hereafter N&T95) assert that the density is continu-
ous. Both of these papers present Monte-Carlo simulations of
particle acceleration in which the velocity of the shock front is
a significant fraction of the speed of light, and take explicit ac-
count of a possible anisotropy of the particle distribution. From
the theory of diffusion, it is well-known that the anisotropy of
particles of speedv is of the order ofu/v, whereu is the speed
at which the shock sweeps through the medium responsible for
making the particles diffuse. At an oblique shock front, the speed
relevant for particles diffusing along a magnetic field line is the
velocity of the intersection point of the shock front and a given
field line, u = us/ cos Φ, whereus is the inflow speed along
the shock normal andΦ is the angle between the shock normal
and the magnetic field, measured in the upstream rest frame of
the plasma. Thus, if the field is oblique, even a relatively slow
shock front can produce a substantial anisotropy. The question
which we address in this paper is whether or not this anisotropy
leads to a discontinuity in the particle density and under what
conditions such an effect could be observed.

An approximation which is often used in treating oblique
shocks is that in which a particle crossing the shock conserves
its magnetic moment (also referred to as the first adiabatic in-
variant; e.g., Webb et al. 1983). This approximation is valid
for non-relativistic perpendicular shocks (Whipple et al. 1986).
Terasawa (1979) and Decker (1988) have performed numeri-
cal simulations which confirm its accuracy at non-relativistic
oblique shocks and Begelman & Kirk (1990) have conducted
tests at relativistic shocks. It is important to bear in mind, how-
ever, that this approximation breaks down for sufficiently fast
shocks (see, for example, Kirk et al. 1994, page 241). Conserva-
tion of magnetic moment implies that a particle can be reflected
by the magnetic compression at a fast-mode shock front, and the
question of the existence of a discontinuity in the particle density
is intimately connected with the phenomenon of reflection, as
pointed out in an early paper on this subject (Achterberg & Nor-
man 1980). If this approximation is adopted, the problem of ac-
celeration at an oblique shock of particles which undergo pitch-
angle diffusion along field lines can be solved semi-analytically
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(Kirk & Heavens 1989, hereafter K&H89), at least for the case
in which the accelerated particles are ultra-relativistic (v = c)
and build a power-law distribution in momentum. In Sect. 3, we
address the question of the existence of a discontinuity using a
new Monte-Carlo code incorporating the assumption of conser-
vation of magnetic moment (Gieseler 1998). Since there already
exist contradictory simulations in the literature, we take particu-
lar care to check the results obtained with this new code against
the analytic results of K&H89. Both the code and the analysis
find a discontinuity. However, although N&T95 also adopted
the assumption of conservation of magnetic moment in their
simulations, they did not find a discontinuity. We show that this
can be caused by low spatial resolution of the simulation and
does not necessarily invalidate results concerning the spectrum
of accelerated particles. Ostrowski (1991), on the other hand,
did find a discontinuity, without implementing the conservation
of magnetic moment. In Sect. 2 we argue that Liouville’s the-
orem in fact guarantees continuity in this case. This result can
once again be caused by a rapidly varying density profile which
is sampled at low spatial resolution; in this case it appears be-
cause the length scale of a gyration radius was not resolved.
However, Ostrowski’s results do indicate that the accumulation
of particles upstream of a relativistic shock front is an important
physical effect, even though there may not be a discontinuity in
the strict sense.

At non-relativistic shocks, such as those observed in the so-
lar system, the analytic method of K&H89 fails, and one must
rely on simulations. Here again the situation is not clear-cut.
Monte-Carlo simulations by Ellison et al. (1996) do not show
discontinuities or a jump across the shock front, whereas re-
cent numerical solutions using the finite difference method have
found such effects (Ruffolo 1999). In Sect. 3.3 we present high
resolution test-particle simulations using parameters appropri-
ate for solar system shocks and demonstrate the existence of
accumulated particles in the precursor of the shock.

The resolution of this question is not only of formal interest,
but is also relevant for the interpretation of data taken by the
Ulysses spacecraft and of observations of the radio emission of
supernova remnants. These applications are discussed briefly in
Sect. 4.

2. Analytical considerations

The system we consider consists of energetic particles which
move in two half-spaces separated by a shock front. Plasma
flows into and out of the shock front carrying with it a uniform
magnetic field. In addition to the uniform field, we assume there
exist magnetic fluctuations static in the rest frame of the plasma
on each side of the shock whose effect on the particle motion
may be described via a scattering operator. Two levels of approx-
imation are important. In the first, the particle is described by
its full six-dimensional phase space coordinates. The trajectory
is integrated in an explicit realisation of the stochastic magnetic
field, taking full account of the gyration phase. Upon crossing
the shock front, the trajectory experiences no forces other than
those exerted by the magnetic field. This is the approach used by

O91. The second level of approximation is one in which the par-
ticle is described by five coordinates: the position of the guiding
centre, the magnitude of the momentum and the pitch angle. The
magnetic field is assumed uniform and the guiding centre fol-
lows a field line except when crossing the shock. The magnetic
moment is conserved in between scattering events, which are
assumed to change only the pitch angle, and also upon crossing
the shock front. This is the approximation used by K&H89 and
N&T95. It is generally referred to in the literature as the ‘drift
approximation’, and we adopt this terminology here, although
we do not explicitly consider the drifts themselves.

In both levels of approximation a discontinuity can in prin-
ciple arise in the formal description of the dependence of the
distribution function on the spatial coordinate along the shock
normal. However, the physical interpretation of a mathematical
discontinuity is different in each case.

In the first approximation, the shock front is taken to have
zero thickness. In reality, the shock transition will extend over a
finite region in space, which is assumed to be small compared to
the other length scales of interest, for example the gyration ra-
dius of the energetic particles. Thus, if the acceleration process
were to produce a significant change in the energetic particle
density over a length scale smaller than the gyration radius, but
perhaps comparable to the shock thickness, this would appear
as a discontinuity in simulations such as those of O91. However,
since particles do not suffer impulsive deflection at the shock
front, i.e., the momentum coordinates of a particle are in general
continuous functions of position even at the shock front itself,
it follows from Liouville’s theorem that the phase-space dis-
tribution function, which is constant along trajectories, is also
a continuous function of position across the shock front. The
particle density is simply an integral of this function over all
momenta, so that it is also continuous, provided the momen-
tum is measured in the same frame of reference both upstream
and downstream of the shock. Thus, there can be no formal
discontinuity in this approach. Of course, the density may vary
smoothly on the length scale of the gyration radius, so that we
can interpret Ostrowski’s result as due to a strong gradient in
the density on this length scale.

The drift approximation, however, can only resolve changes
which occur on length scales longer than a gyration radius, so
that the distribution found by Ostrowskimustappear as a dis-
continuity in simulations which use this approximation. There is
a close relationship between such a discontinuity and the angu-
lar distribution, which can be understood as follows. Consider
an oblique shock viewed in the de Hoffmann-Teller (hereafter
dHT) frame (de Hoffmann & Teller 1950; Kirk et al. 1994), in
which the electric field vanishes and the shock is stationary. A
particle trajectory is now described by only five coordinates, of
which the magnetic moment is conserved both between scatter-
ings and on encountering the shock front. Denoting byp⊥ the
component of the particle momentum perpendicular to the mag-
netic fieldB, the magnetic moment isp2

⊥/B. Becausep = |p|
is also conserved in the dHT frame (in which the electric field
vanishes) this leads to
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1 − µ2

B
=

1 − (µ′)2

B′ , (1)

where a prime denotes downstream quantities. Rearranging, the
downstream pitch angle is given by

µ′ = (µ/|µ|)
√

(µ2 − µ2
crit)/(1 − µ2

crit) , (2)

where the cosine of the of the loss-cone angle is given byµcrit =√
1 − B/B′. Thus, according to its pitch angle, an upstream

particle may be reflected or transmitted, and we can divide phase
space on the upstream side of the shock into four regions:

(a) µcrit < µ < 1, particles approaching the shock which will
be transmitted (i.e., in the loss cone);

(b) 0 < µ < µcrit, particles approaching the shock which will
be reflected;

(c) −µcrit < µ < 0, particles leaving the shock after reflection;
(d) −1 < µ < −µcrit, particles leaving the shock after trans-

mission from downstream.

The phase space downstream splits into just two regions,µ′ > 0
andµ′ < 0, since no trajectories incident from downstream are
reflected.

In the drift approximation, the phase-space distribution
function is independent of gyration phase to lowest order (e.g.,
Spatschek 1990, page 145), so that application of Liouville’s
theorem yields

f(p, µ) = f(p, −µ) for |µ| < µcrit (reflection) , (3)

f(p, µ) = f ′(p, µ′) for |µ| > µcrit (transmission) , (4)

where conservation of the momentump in the dHT frame is
used.

The upstream and downstream densities are given by

n =

−µcrit∫

−1

dµ nt(µ) +

µcrit∫
−µcrit

dµ nr(µ) +

1∫
µcrit

dµ nt(µ) , (5)

n′ =

1∫

−1

dµ′ n′
t(µ

′) , (6)

where we have defined the quantities

nt,r(µ) :=
∫

f(p, µ) 2π p2 dp , (7)

n′
t(µ

′) :=
∫

f ′(p, µ′) 2π p2 dp = nt(µ) , (8)

such that the suffix r refers to particles which are or will be
reflected (i.e.,|µ| < µcrit) and the suffix t to ones which are or
will be transmitted (|µ| > µcrit, or −1 < µ′ < 1). The second
relation in Eq. (8) follows from Eq. (4).

A continuous density distribution at the shock front (n = n′)
is in general not guaranteed. This can be seen by using specific
assumptions about the density of transmitted and reflected parti-
cles and Eqs. (5)–(6) (Gieseler 1998). For the physical distribu-
tion of Fig. 4, the values of the density which can be calculated

from Eq. (5) and Eq. (6) are quite different, as discussed be-
low. The reason for the upstream and downstream densities to
be different can be understood from Eq. (8), which preserves
a ‘balance’ of the transmitted particles, whereas the reflected
particles contribute only to the upstream density. A continuous
density is obtained if there is no compression of the magnetic
field (B = B′). In this case no particles are reflected (µcrit = 0)
and Eqs. (5)–(8) then given = n′. This is valid for a parallel
shock and the trivial case in which no shock front is present.
If the pitch-angle distribution is isotropic at an oblique shock
front, then one again findsn = n′ by integration of Eqs. (5)
and (6). Noting that in this casent(µ) andnr(µ) have the same
constant value, continuity follows from Eq. (8). In other words,
the contribution of the reflected particles upstream exactly bal-
ances the compression of the transmitted ones downstream in
this case.

To summarise this section, in general the density of acceler-
ated test particles at oblique shocks will vary on the length scale
of the gyration radius across the shock front. This variation is
closely connected with the anisotropy of the angular distribu-
tion. It should appear as a discontinuity in treatments which use
the drift approximation to the particle motion. However, when
conditions are such that the theory of diffusive acceleration ap-
plies, i.e., the particle velocity is much larger than the shock
speed projected along the magnetic field (v � us/ cos Φ), then
the anisotropy and the associated density variation are small.

3. Monte-Carlo simulations

We now present results from test-particle simulations of accel-
erated particles at shock fronts. The key aspects of the technique
have been used and described by several authors (e.g., Kirk &
Schneider 1987; O91; Baring et al. 1993; N&T95), so that a
brief description suffices. We consider oblique shocks, where
the magnetic field is inclined at an angleΦ with respect to the
shock normal in the upstream rest frame, and has no dynamical
effect on the plasma flow. The shock speed in this frame isus.
We consider (in principle) the whole range ofΦ for subluminal
shocks, e.g.us ≤ us/ cos Φ < 1 (here and below:c = 1). The
gyration centre of a particle’s trajectory is followed in the up-
stream and downstream rest frames of the background plasma.
In these frames, as in the dHT frame, the momentump = |p|
is constant. Particles move along the magnetic field under the
influence of small scale irregularities which lead to pitch-angle
scattering. We do not investigate the effect of transport of par-
ticles perpendicular to the mean magnetic field. We use an al-
gorithm for calculating a pitch angleµnew from a given pitch
angleµ which was given by O91 (see Fig. 1 therein). From two
random numbersR1 andR2 which are uniformly distributed on
the interval[0, 1], the new pitch angle is given by

cos ∆Ω = 1 − (1 − cos ∆Ωmax) R1 , (9)

µnew = µ cos ∆Ω +
√

1 − µ2 sin ∆Ω cos(2πR2) , (10)

where we have chosen∆Ωmax = 0.1 for most of the simulations
shown below. This gives a very good approximation of pitch-
angle scattering with an infinitesimal amplitude. The results (at
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least for the spectral index and the density distribution) do not
change substantially for a factor of 5 higher or lower value of
∆Ωmax.1 The time step∆t for successive scatterings is kept
constant. These scatterings are performed in the upstream and
downstream rest frames. At a shock crossing, we transform the
particle momentump and the pitch angleµ into the dHT frame,
which is always possible at subluminal oblique shocks (for a de-
scription of the Lorentz transformations between these frames
see K&H89 or Gieseler 1998), and apply the conservation of
magnetic moment (Eq. 1) to find the new downstream pitch an-
gle in the dHT frame. Transformation into the downstream rest
frame then gives the new values of the momentum and pitch an-
gle. This method is also used by K&H89 and N&T95, to which
we compare our results.

The validity of the assumption of conservation of the mag-
netic moment can be evaluated as follows. First, consider a
‘strict’ condition which can be applied to a single particle cross-
ing the shock (Kirk et al. 1994, page 241). The number of times
a trajectory intersects the shock front can be estimated as

Ncross ≈ tanα tan ΦdHT , (11)

whereα = cos−1 µ is the pitch angle, andΦdHT is the an-
gle between the upstream field and the shock normal mea-
sured in the dHT frame.2 Adiabatic behaviour is expected
when Ncross � 1. An accurate separation between transmit-
ted and reflected particles is guaranteed if we demand this
condition to be valid for at least all particles outside the loss
cone, i.e.,|µ| ≤ µcrit ≡ cos αcrit =

√
1 − B/B′, where

B/B′ = [(1 + tan2 ΦdHT)/(1 + r2 tan2 ΦdHT)]−1/2 andr is
the compression ratio. Inserting the critical pitch angleαcrit in
Eq. (11) and expanding in powers of1/Ncross , we get a condi-
tion for the upstream inclination angle in the dHT frame which
is independent of the fluid speed:

tan ΦdHT � √
r − 1 . (12)

For the non-relativistic shock speedus = 0.01, Eq. (12) is ful-
filled for essentially the whole parameter range inus/ cos Φ
considered here. For shock speeds in the mildly relativistic
region, Eq. (12) always holds in an (albeit small) region at
us/ cos Φ → 1.

The conditionNcross � 1 is, however, much too strict. A less
conservative approach is to assume validity of the approxima-
tion in an average (over phases) sense. This has been shown by
simulations as mentioned above. For example Decker (1988)
finds that for non-relativistic shocks the results compare well
with adiabatic behaviour over the whole range ofΦ. In particu-
lar, the data shown in his Fig. 8 show close agreement concern-
ing the reflection probability for the approximate and numerical
results. Ostrowski (1991) used an extended Monte-Carlo code
which does not assume adiabatic behaviour. He was thus able
to check the quality of the approximation at mildly relativistic
shock speeds. His Fig. 3 shows good agreement with K&H89

1 O91 used∆Ωmax = 0.3 as an approximation for infinitesimal
pitch-angle scattering.

2 Note thatcos2 Φ = (1 + u2
s tan2 ΦdHT)/(1 + tan2 ΦdHT) .

for the spectral index. Departures start to occur atus = 0.5,
but always diminish asus/ cos Φ → 1. Furthermore, we have
directly compared our simulations with his forus = 0.3 at
Φ = 60◦ and70◦ and found the same density discontinuity (see
below).

To test the accuracy of our scheme against the calculation
of K&H89, particles are injected in the upstream plasma with
a velocity corresponding toγv = p/m ≥ 2, which means
that they are already relativistic at injection. For intersection
speeds of shock and magnetic field ofus/ cos(Φ) ≥ 0.9 the
injection momentum has to be even higher. We are interested
in particles with momenta where the distribution has attained
a pure power law, and especially in the spectral index of this
power law. Only particles from the power-law region in the mo-
mentum distribution are used for the pitch-angle and density
distributions. Within this region we found that the angular dis-
tribution is independent of the momentum range chosen, and
the power-law index is thus independent of angle. Simulation
of an individual particle terminates when a maximum momen-
tum is reached (two orders of magnitude higher than the upper
limit of Fig. 1), or when the particle reaches a distance from
the shock on the downstream side which is three times greater
than the left boundary of Fig. 5, at which the density distribution
has already reached its constant downstream value. These lim-
its vary with the parametersus andΦ, and were always chosen
such that boundary effects are not important. The results from
Monte-Carlo simulations and semi-analytical computations are
shown (with the exception of Fig. 8) for a compression ratio of
r = 4.

The three main aspects of the results are spectral index,
angular distribution and spatial distribution, and these are pre-
sented in turn.

3.1. Spectral index

The momentum distribution of particles is measured at the shock
front in the upstream rest frame. An example is shown in Fig. 1,
where106 independent particles were simulated. The plot also
contains a fit to the functiony = 10p1+p2x, together with the
values of the fit parameters and their statistical errors. The spec-
tral index can be calculated from∆N/∆ log(p/m) ∝ p−s+3;
this givess = 3 − p2. The statistical error of the fit to the spec-
tra is less than1% for all spectral indices discussed below. To
achieve maximum accuracy from the Monte-Carlo simulations,
we fit the spectrum over a large finite range of momentum and
did not include loss mechanisms. Fors < 3.2 the statistical
errors are less than0.1%. For spectral indices nears ' 3 the
statistics are very much better, because particles then gain en-
ergy mainly due to reflection. This means that not much time
is taken in following the particle trajectories in those parts of
the downstream region where the particle has a low chance of
returning to the shock front. As a result, the error ins is less than
0.01% for spectral indices corresponding tous/ cos Φ > 0.8.
Fig. 2 shows the spectral indices for non-relativistic and mildly
relativistic shock velocities and a wide range of inclination an-
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Fig. 1. Monte-Carlo simulation of a momentum spectrum for com-
pression ratior = 4, shock speedus = 0.4 and an angle of the
magnetic field ofΦ = 45◦. The speed of the intersection of mag-
netic field and shock is thenus/ cosΦ = 0.5657 (same parameters as
for Fig. 4 and Fig. 5). The spectral index of the phase space density is
s = 3.1709 ± 0.0004.

Fig. 2.Comparison of the spectral index from Monte-Carlo simulations
for infinitesimal pitch-angle scattering with∆Ωmax = 0.1 (dots, stars,
squares) with semi-analytical results from K&H89 (solid line:us =
0.5; dashed line:us = 0.3; dotted line:us = 0.01).

glesΦ. The lines in this plot are taken from Fig. 2 and Fig. 6 of
K&H89 and are in precise agreement with the simulations.

Very important for an understanding of the spectral index
and the density profile is the effect of the underlying scatter-
ing law. The results become quite different for isotropisation
after each scattering, given by∆Ωmax = π. Although this does
not correspond exactly to the simulation of large-angle scat-
tering on point-like scattering centres (for which it would be
necessary to choose exponentially distributed time steps, and
consider cross field diffusion), the effects it produces should
be qualitatively similar. Using a scattering law in the transi-
tion regime between infinitesimal pitch-angle scattering and
isotropisation after each scattering allows an investigation of
this dependence. We focus on one example with∆Ωmax = 1.0
(intermediate pitch-angle scattering). This kind of scattering can
have a very big influence on the precursor of accelerated par-

Fig. 3. Comparison of the spectral index forintermediatepitch-angle
scattering with∆Ωmax = 1.0 from Monte-Carlo simulations (dots,
stars, squares) withinfinitesimalpitch-angle scattering (lines) which
are semi-analytical results from K&H89 (solid line:us = 0.5; dashed
line: us = 0.3; dotted line:us = 0.01).

ticles. Under pitch-angle scattering with∆Ωmax
>∼ 1 particles

have a higher escape probability from the shock because they
are free to change their pitch angle to a value in the loss cone
(µcrit < µ < 1) within a few scatterings, and may then be trans-
mitted through the shock. This reduces the upstream density, as
we will see later, but also leads to a steeper spectrum for accel-
erated test particles. Fig. 3 shows a comparison of the spectral
index for intermediate and infinitesimal pitch-angle scattering.
The stars, squares and dots show Monte-Carlo results for in-
termediate pitch-angle scattering with∆Ωmax = 1.0, whereas
the lines are (as in Fig. 2) results from K&H89 for infinitesimal
pitch-angle scattering (∆Ωmax � 1). It can be seen that even for
a relatively large value of∆Ωmax = 1.0, the effect is very small
for most intersection velocities of magnetic field and shock.

For infinitesimal pitch-angle scattering andus/ cos Φ >
0.8, a flats ' 3 spectrum is achieved. In the standard picture,
this spectrum corresponds to acceleration with vanishing escape
probability. Here it is associated with a very strong pile-up (see
Fig. 6). A large (∼ 1) value of∆Ωmax reduces the pile-up (see
Fig. 7) and effectively increases the escape probability, leading
to the steeper spectrum shown in Fig. 3 forus/ cos Φ > 0.95.
For∆Ωmax = π (isotropisation at each scattering) the spectrum
becomes steeper for all inclination angles. This point was noted
by N&T95 (their Fig. 7), and our results for the spectral index
are in good agreement with theirs.

3.2. Pitch-angle distribution

As shown in Sect. 2, the pitch-angle distribution of accelerated
particles plays a crucial role in determining whether the den-
sity distribution has a jump at the shock front. For every set of
parameters we have measured the pitch-angle distribution and
present an example of the results in Fig. 4. The lines represent the
distributions calculated semi-analytically by K&H89, whereas
the discrete symbols show the contents of the ‘bins’ filled in the
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Fig. 4a and b.Pitch-angle distribution at the shock front for∆Ωmax =
0.1 and compression ratior = 4. a and b show the distribution at
the upstream and downstream side of the shock. In each figure the
lines are from K&H89 and the discrete symbols display the ‘bins’ of
the Monte-Carlo simulations. The solid lines and the circles show the
distribution in the dHT frame, and the dashed lines and the triangles
show the distributions in the upstreama and downstreamb rest frame.
See text for the normalisation. The shock speed isus = 0.4, and the
upstream inclination angle of the magnetic fieldΦ = 45◦ (compare
Fig. 1 and Fig. 5).

above described Monte-Carlo method. The four representations
of the pitch-angle distribution at the shock shown in Fig. 4 are:
1. Upstream of the shock in the upstream rest frame (Fig. 4a
dashed line and open triangles). 2. Upstream of the shock in the
dHT frame (Fig. 4a solid line and open circles). 3. Downstream
of the shock in the downstream rest frame (Fig. 4b dashed line
and open triangles). 4. Downstream of the shock in the dHT
frame (Fig. 4b solid line and open circles). The upstream distri-
butions (Fig. 4a) are normalised to their maximum value. The
normalisation at the downstream side of the shock are as fol-
lows: the Monte-Carlo distribution in the dHT frame has the
same normalisation as the corresponding upstream one, to al-
low a direct comparison between the two (see below); however,
the Monte-Carlo distribution in the downstream rest frame is
normalised to a maximal value of 0.4 to enable it to be dis-
played in the same figure. In each case, the normalisation of the
semi-analytical results of K&H89 are chosen to provide the best
fit to the Monte-Carlo distributions. Comparison of the pitch-
angle distributions from the two methods in Fig. 4 confirms that
they are in close agreement.

Particles with pitch angleµ > 0 in the dHT frame move
in the downstream direction. From Eq. (1) we can calculate
a critical pitch angle cosine below which these particles will
be reflected upstream of the shock. Forr = 4, Φ = 45◦ and
us = 0.4 we getµcrit = 0.826. Reflected particles contribute
symmetrically aboutµ = 0 and constitute the major part of the
distribution (see solid line of Fig. 4a), indicating that repeated
reflections are effective in keeping particles upstream. The par-
ticles withµ < −µcrit = −0.826 in the dHT frame are particles

Fig. 5. Monte-Carlo Simulation of the density profile at an oblique
shock with compression ratior = 4, maximal scattering angle
∆Ωmax = 0.1, shock speedus = 0.4 and inclination angleΦ = 45◦

(compare Fig. 1 and Fig. 4). The solid line shows the ‘bins’ of a posi-
tion measurement of particles, whereas the filled dots show a density
measured through the flux through a surface with constant distance up-
stream of the shock. The filled square indicates a measurement down-
stream of the shock.

which cross the shock from the downstream side. A Lorentz
transformation3 of the critical angle−µcrit = −0.826 into the
upstream rest frame gives(−µcrit)∗ = −0.949. At the down-
stream side of the shock the distribution in the dHT frame (solid
line of Fig. 4b) is simply divided into particles going upstream
(−1 ≤ µ < 0) and those going downstream (0 < µ ≤ 1).
The boundaryµb = 0 between these regions is transformed to
µ?

b = −0.446 in the downstream rest frame.

3.3. Density profile

From the pitch-angle distributions one can calculate the density
using Eqs. (5) and (6), which is the integration of the pitch-
angle distributions in the dHT frame. From Fig. 4 we see that
the distribution immediately downstream of the shock is<∼ 0.38
(open circles in Fig. 4b), compared to≤ 1 for the upstream
distribution (open circles in Fig. 4a). By comparing the upstream
and downstream distributions in the dHT frame, it is obvious
that the downstream integral is less than upstream, and therefore
the density is discontinuous at the shock.

In planar symmetry, the density distribution of accelerated
test particles is a function of the distance from the shock front.
We use the dHT frame in order to compare the densities up-
stream and downstream directly, as in Sect. 2. In this frame the
shock is stationary (atx = 0). We normalise the distancex
perpendicular to the shock as the dimensionless variableξ ac-
cording to

ξ =
us

κ‖ cos2 Φ
x , (13)

whereΦ is the upstream inclination angle of the magnetic field
as defined above, andκ‖ the parallel diffusion coefficient (e.g.

3 For particles with velocityv = c.
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Jokipii 1971; Skilling 1975; Decker 1988):

κ‖ =
v2

4

1∫

−1

dµ
1 − µ2

νs
, νs =

1
1 − µ2

〈(∆µ)2〉
∆t

, (14)

whereνs is the scattering frequency and we have usedv = c in
the normalisation. Note thatκ‖, while convenient for the deter-
mination of a length scale, does not describe the transport of par-
ticles for the anisotropic distributions discussed here. The mean
squared variation inµ can easily be calculated from Eqs. (9) and
(10). Definingδµ0 := cos(∆Ωmax), then

〈(∆µ)2〉 =
1
2
(
1 − δµ0

)(
1 − δµ0µ

2) − 1
6
(
1 − δµ0

)2
. (15)

Fig. 5 shows the steady-state density in the dHT frame for a
shock with velocityus = 0.4, compression ratior = 4 and
inclination angleΦ = 45◦. The upstream plasma velocity in
the dHT frame is thenus/ cos Φ = 0.5657. The plot shows
the densityn(ξ) as a function of the distance to the shockξ.
Contributions to this density were limited to particles from the
power law part of the spectrum, indicated by the fit in Fig. 1. Be-
cause the question of spatial resolution is of crucial importance
to our discussion, we use two independent methods to evaluate
the density. The solid line shows the contents of spatial ‘bins’,
where particles simply contribute after every time step to the
‘bin’ at their actual position. These ‘bins’ are located such that
the shock lies at the border between two of them. An indepen-
dent way of measuring the density is to count particles which
cross a plane at a certain position. The count rate is proportional
to the flux through this plane; to obtain the density, one divides
this quantity by the relative velocity of the binned particle and
the plane. The shock plane and other planes at constantξ are
stationary in the dHT frame, so that the particle velocity relative
to the planes isvµ cos ΦdHT in the upstream region (see foot-
note 2 for the relation betweenΦ andΦdHT), where the particle
velocity v is multiplied by the cosine of the angle with respect
to the magnetic fieldµ and the cosine of the inclination angle
of the magnetic field relative to the normal of the plane. The
three filled dots atξ = 0, 0.5 and 1 show the density in the
upstream region, whereas the filled square shows the density at
the downstream side of the shock atξ = 0. In particular, the two
values atξ = 0 are calculated from the integration of Eqs. (5)
and (6) over the dHT distributions shown in Fig. 4 (open cir-
cles). The normalisation is in each case such as to give unity far
downstream of the shock.

Both methods display a discontinuous density profile in
Fig. 5. However, finite spatial resolution means that the binning
method systematically underestimates the value of the density
when approaching the shock front from either side. The second
method, on the other hand, is a precise measure of the density at
ξ = 0. For the example of Fig. 5 (106 independent particles) we
getn/n′ = 3.641 ± 0.004, wheren represents the filled circle,
andn′ represents the filled square atξ = 0. Fig. 6 shows the
ratio n/n′ for various shock velocities and inclination angles.
(The number of particles lies between6 · 103 to 5 · 106 and the
statistical error ofn/n′ is< 5%). ForΦ = 0 (parallel shock) we

Fig. 6. Ratio of the upstream to the downstream density at the shock
front vs. the intersection velocity of the shock and the magnetic field for
infinitesimalpitch-angle scattering with∆Ωmax = 0.1, compression
ratio r = 4 and three different shock speeds. The values ofn/n′ are
taken from flux measurements at the shock front, exemplified by the
filled circle and square atξ = 0 in Fig. 5.

Fig. 7. Ratio of the upstream to the downstream density at the shock
front vs. the intersection velocity of the shock and the magnetic field for
intermediatepitch-angle scattering with∆Ωmax = 1.0, compression
ratio r = 4 and three different shock speeds. The values ofn/n′

are taken from flux measurements at the shock front. For values of
us/ cosΦ <∼ 0.8, the results are essentially the same as those shown
in Fig. 6.

get a continuous density (n = n′) for all shock speeds, because
here no reflection can occur (see Sect. 2). If the velocity of the
intersection point of the shock and the magnetic field exceeds
0.8 of the particle velocity (in the casev = c discussed here), the
upstream density becomes more than 10 times the downstream
density at the shock front. This ratio increases very rapidly for
higher intersection velocities. Our calculations are performed
for test particles, but in reality such particles may exert a substan-
tial pressure, which would be important in calculations which
include the back-reaction of the particles on the flow, as pointed
out by O91. However (as discussed in Sect. 3.1), increasing the
magnitude of the maximal change in pitch angle (∆Ωmax) leads
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Fig. 8. Monte-Carlo Simulation of the density profile at an oblique
shock (Φ = 60◦) with compression ratior = 3.5 and shock speed
us = 300 km s−1, for various regions of the particle velocity. The
normalisation of each plot is chosen to avoid overlap. The maximal
scattering angle is∆Ωmax = 0.5. The filled dots show the upstream
density measured from the flux at the shock and normalised to the value
of the corresponding plot far downstream.

to a strong reduction of the highest possible upstream densities.
This can be seen very clearly from Fig. 7, where the maximal
change in pitch angle is∆Ωmax = 1.0, and arises because in this
case the angular distribution cannot develop a sharply peaked
structure such as that shown in Fig. 4. For isotropisation of the
pitch angle after each scattering event, the ration/n′ for r = 4
is always smaller than 2 for all inclination angles which are
possible for subluminal oblique shocks (us < cos Φ).

Finally, in Fig. 8 we show the density profile for an oblique
shock (Φ = 60◦) with non-relativistic shock velocityus =
300 km s−1. We have simulated the acceleration of test particles
at an unmodified low Mach-number shock with compression ra-
tio r = 3.5, typical for shocks in the solar wind. The pitch-angle
scattering is described by Eqs. (9) and (10) with∆Ωmax = 0.5.
This plot shows the density for 4 different velocity regimes
of the accelerated particles, which were injected with velocity
p/m = 2.1 · 10−3, just higher than the intersection velocity of
shock and magnetic field (us/ cos Φ = 2 · 10−3). The density
is normalised such that overlap of the four plots is avoided. For
each plot in Fig. 8 the filled dot represents the density measured
at the shock front on theupstream side from the flux at the shock
plane (compare Fig. 5 and the corresponding text). For the low-
est energy particles shown in Fig. 8, which would correspond
to protons with a kinetic energy between 12 and 19 keV, the
density upstream of the shock exceeds the density far down-
stream by more than a factor of 3, and the ratio of the density
upstream relative to downstreamat the shock front is given by

n/n′ = 2.81 ± 0.02 at this ‘energy band’ (note that the error
represents only the statistical fluctuation). It can be seen from
Fig. 8 that these ratios depend on the velocity of the particles. If
the particle velocity exceeds the velocity of shock and magnetic
field intersection by an order of magnitude, the distribution be-
comes more isotropic and therefore the density jump tends to
disappear, as discussed in Sect. 1 and 2.

4. Discussion

We have presented an analysis of particle acceleration at oblique
shocks, with special emphasis on the density of accelerated test
particles. It was shown analytically that in general a density
jump can occur at an oblique shock front. This was done on
the basis of Liouville’s theorem and by integrating the phase
space density, without the a priori assumption of an isotropic
pitch-angle distribution. It turns out that for situations in which
the pitch-angle distribution is non-isotropic, a density peak at
the shock front can appear. This peak has a discontinuity at the
position of the shock, if the adiabatic treatment is used. One
can describe the resulting precursor of upstream accelerated
particles as due to reflections at the shock front.

We used Monte-Carlo simulations to calculate the spectral
index and the pitch-angle distribution. These results are in good
agreement with semi-analytical calculations from K&H89. The
corresponding density profile shows a pronounced discontinu-
ity for a large range of parameters, which was also found by
O91 (see Fig. 6 therein), and our results are quantitatively in
very good agreement (r = 5.28, us = 0.3, ∆Ωmax = 0.1,
us/ cos Φ = 0.6 ⇒ n/n′ = 6.31 ± 0.04; andus/ cos Φ =
0.8771 ⇒ n/n′ = 393±7). This discontinuity results from the
larger density of reflected particles as compared to transmitted
ones than is found in the isotropic case. Especially in the case
of infinitesimal pitch-angle scattering, the particles undergo re-
peated reflections (by which they are accelerated) before they
reach a pitch angle at which they are able to cross the shock into
the downstream region.

Allowing for a larger maximum value in the change of the
pitch angle increases the probability of entering the loss cone per
scattering event, and therefore crossing the shock from upstream
to downstream. This reduces the density contrast (Fig. 7). The
effect on the spectral index is restricted to a small region in the
parameterus/ cos Φ (the intersection velocity of magnetic field
and shock) (Fig. 3). The reason for this steepening is that the
acceleration due to reflections becomes less effective. For large
pitch-angle scattering where the pitch angle is randomised after
every scattering event, the pile-up effect is almost absent, and
the minimal spectral index (the flattest spectrum) which can be
reached at oblique shocks with non-relativistic shock velocities
is s >∼ 3.4 (see also N&T95).

In the case of non-relativistic particles accelerated at solar
system shocks, a significant density peak can occur only for
highly oblique magnetic fields for particles whose velocity is
less than an order of magnitude greater than the intersection
velocity of shock and magnetic field. The occurrence of a den-
sity peak of accelerated particles at the shock front could in
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principle be detected in situ by space observations in the so-
lar system, so that it is important to determine whether effects
such as modification of the velocity profile by the pressure of
accelerated particles can affect our results. Simulations of this
nonlinear problem have been performed by Ellison et al. (1996).
However, they detect no difference in the spectral index between
runs with infinitesimal and large pitch-angle scattering, whereas
we predict that a difference should accompany a high density
peak ahead of the shock front, as discussed in Sec. 3.1. Very re-
cently, numerical solutions of the transport equation for mildly
relativistic particles at solar system shocks have found a density
peak at the shock front (Ruffolo 1999).

A pile-up of electrons ahead of the blast-wave associated
with a supernova remnant could cause a synchrotron flux which
decreasesdownstream of the shock instead of increasing due
to the compression of the magnetic field (O91). Whereas this
could always happen at a shock which propagates in an inho-
mogeneous medium, such a signature could be also produced
by a shock moving in a homogeneous interstellar medium with
an oblique magnetic field as a result of a pile-up of reflected
particles.

The synchrotron emission as a function of frequency scales
asε(ν) ∝ n ν−α Bα+1, whereα = (s − 3)/2. Because of the
enhanced synchrotron emission due to the increasing magnetic
field downstream of the shock, the observation of the density
peak upstream of an oblique shock would be possible only for
very high obliquities observed at high angular resolution. For
a typical supernova shock velocity ofus = 7000 km s−1, an
upstream inclination angle ofΦ >∼ 88◦ leads to an upstream
density (of highly relativistic particles) which exceeds by more
than a factor 10 the downstream densityn/n′ >∼ 10 (see Fig. 6
for infinitesimal, and Fig. 7 for intermediate pitch-angle scat-
tering). At the same time the very flat spectrum produced by
these particles (s ≈ 3) leads to only a linear enhancement of
the downstream synchrotron emission due to the compressed
magnetic field,(B/B′)α+1 ≈ 1/4 (for r = 4). This means that
the synchrotron emission upstream would exceed the emission
downstream. We estimate that such an effect could be resolved
in the radio range and for parameters typical of a young SNR
such as Tycho if the scattering frequencyνs, defined in Eq. (14),
is smaller than the gyro-frequency by a factor of roughly103.

Observations of the Tycho supernova remnant have revealed
a density peak in the vicinity of the blast wave (Reynoso et al.
1997), which cannot be understood by the theory of an unmodi-
fied parallel shock moving in a homogeneous medium. At least
oneof these assumptions must be dropped in a model of that part
of the remnant which shows this feature. A highly oblique shock
is a possibility, especially if nonlinear effects in the precursor
cause preferential alignment of the field in the plane of the shock,
as suggested by recent simulations (Bell, private comm.). How-
ever, the observed spectral indices of young shell-like supernova
remnants are in the range0.5 <∼ α <∼ 0.8 (Reynolds & Ellison
1992), which corresponds to4 <∼ s <∼ 4.6 and deviates from the
standard result for compressionr = 4 at a highly oblique shock.
Spectral indices in this regime can be produced by stochastic
perpendicular magnetic fields (Kirk et al. 1996; Gieseler 1998)

or strongly modified oblique shocks (Reynolds & Ellison 1992).
Whereas in the former case a density peak ahead of the shock
does not arise (Gieseler 1998), in the latter case the pile-up of
accelerated particles may be an important effect. Alternatively,
nonlinear hydrodynamic effects of the accelerated particles can
create an unstable density spike downstream of the shock, as
shown by Jun & Jones (1997), which may be responsible for
the enhancement in the synchrotron emission.

We have shown that highly oblique shocks can produce a
pronounced density peak due to a pile-up of accelerated particles
ahead of the shock front. In Monte-Carlo simulations, this might
appear as a discontinuity or even be overlooked, depending on
the method used and the spatial resolution achieved. We point
out that the nonlinear effects of such a pile-up could be signif-
icant, so that it is important to locate this effect in simulations
which incorporate the reaction of the pressure of accelerated
particles on the plasma dynamics.
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