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Abstract. This paper presents results of modelling light vari-
ations of a freely precessing asteroid, assuming its ellipsoidal
shape and a geometric light scattering law. The method is based
on numerical integration of Euler equations, combined with the
explicit expression of an asteroid’s brightness as a function of
Euler angles. Modelling is applied to simulate the lightcurve of
4179 Toutatis according to its triaxial ellipsoid shape and spin
state given by Hudson & Ostro (1995). A good agreement is ob-
tained between the frequencies of the simulated and observed
lightcurves. The results explain some apparent discrepancies
between the periods obtained from photometric and radar ob-
servations.
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1. Introduction

In December 1992 the asteroid 4179 Toutatis passed within
0.0242 AU of the Earth and its photometric observations were
obtained by the observers from 25 sites around the World within
the international campaign. The observed lightcurve of this as-
teroid is very unusual and does not appear to have a single period.
Lightcurve analysis carried out by Spencer et al. (1995) gave
two main periods of about 7.3 and 3.1 days, however they did not
explain what phenomena they are connected with. The photo-
metric data were supplemented with radar observations of Ostro
et al. (1995) performed during the 1992 approach. The periods
derived from the radar data appeared to be inconsistent with the
values obtained by Spencer et al. (1995). According to Hudson
and Ostro (1995), the asteroid rotates in a long axis mode with
periods of 5.41 days (rotation about the long axis) and 7.35 days
(long axis precession about the angular momentum vector). Re-
cently Hudson & Ostro (1998) used optical lightcurve reported
by Spencer et al. (1995) and radar derived shape and spin state
model to estimate Hapke parameters of this asteroid. Their syn-
thetic lightcurves fit the optical data with rms residual of 0.12
mag.

The Fourier spectrum of the optical data of Spencer et al.
(1995) has a significant noise and only the period of 7.3 days
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can be considerd reliable. To circumvent the insufficiency of
the observational data we have developed an algorithm com-
bining both the kinematics and the light scattering aspects of
the problem. The algorithm applied to simulate the lightcurve
of 4179 Toutatis has helped to resolve and explain the apparent
discrepancies between the periods obtained from optical and
radar data.

2. Simulation method

The most common approximation of an asteroid’s shape is a
triaxial ellipsoid with the semiaxesa ≥ b ≥ c and the principal
moments of inertiaI1 ≤ I2 ≤ I3, respectively. Let us introduce
an inertial reference frameXY Z with the origin at the ellipsoid
centre. TheZ axis is parallel to the angular momentum vector
M of the rotating body, and theXZ plane contains a vector
directed towards an observer. To simplify the situation, let us
assume that the solar phase angle is equal to zero. A second
reference framex1x2x3 has the same origin asXY Z, but the
axesx1, x2, x3 corresponds to the semiaxesa, b andc, respec-
tively. The orientation of the body with respect toXY Z can be
described with standard Euler anglesφ, ψ andθ (Fig. 1).

A body is said to be in a free precession state if it rotates in
the absence of external torques, so that its angular momentum
vector M remains fixed inXY Z. The spin vectorω of an
ellipsoid is not parallel toM and its orientation changes in
both the body-fixedx1x2x3 and the inertialXY Z frames.

Numerical integration of Euler equations:

I1
dω1

dt
+ (I3 − I2)ω2 ω3 = 0,

I2
dω2

dt
+ (I1 − I3)ω3 ω1 = 0, (1)

I3
dω3

dt
+ (I2 − I1)ω1 ω2 = 0,

and

dφ

dt
=

ω1 sinψ + ω2 cosψ
sin θ

,

dψ

dt
= ω3 − cos θ (ω1 sinψ + ω2 cosψ)

sin θ
, (2)

dθ

dt
= ω1 cosψ − ω2 sinψ,
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Fig. 1.Euler anglesφ, ψ, θ describing the orientation of the body-fixed
x1, x2, x3 reference frame with respect to the inertial reference frame
XY Z.

gives the position of an asteroid with respect to the inertialXY Z
frame (Landau & Lifshitz 1976). The spin vectorω is periodic in
the body-fixed frame but not in the inertial frame, so in general
the body never repeats any particular orientation.

Assuming the geometric scattering of light the brightness
of an ellipsoid observed from the direction of illumination is
proportional to its cross-section. It can be described by a simple
equation (Connelly & Ostro 1984):

V = −2.5 log
(
π
√

eT
x1x2x3

Qex1x2x3/ |Q|
)
, (3)

where

Q =




1/a2 0 0
0 1/b2 0
0 0 1/c2


 ,

andex1x2x3 is a vector to the observer. There exists another
form of Eq. (3) describing the case of non-positional geometry.
It is much more complicated however, and does not introduce
any changes (for phase angles smaller than30◦) as far as basic
periodicities are concerned.

Eqs. (1), (2), and (3) are sufficient to calculate the brightness
V of the ellipsoid as a function of time. However, to get a better
understanding of the problem, we can explicitly expressV in
terms of Euler angles:

V = −2.5 log
(
π
√
S(φ, ψ, θ )

)
. (4)

FunctionS is a trigonometric polynomial in variablesφ, ψ, θ,
with the coefficients depending ona, b, c. Eq. (5) lists some of
the terms which proved to be significant in the discussion of the
Toutatis case.

S =
3
8
a2b2 +

3
8
a2c2 +

1
4
b2c2 +

+
1
8
(a2c2 + a2b2 − 2 b2c2) cos(2φ) +

+
3
16
a2(b2 − c2) cos(2φ− 2ψ) +

+
1
8
a2(b2 − c2) cos(2ψ) + (5)

+
3
16
a2(b2 − c2) cos(2φ+ 2ψ) +

+
1
16

(−a2b2 − a2c2 + 2 b2c2) cos(2φ− 2θ) +

+
1
32
a2(b2 − c2) cos(2φ− 2ψ − 2θ) + ...

The contribution of various terms ofS to a lightcurve depends
on the particular values ofa, b, c. The advantage of using triaxial
ellipsoid model is a simple form of Eq. (5), clearly indicating
which frequencies should be present in a simulated lightcurve.
On the other hand it was the only model of Toutatis available to
the authors.

3. Modelled lightcurves of 4179 Toutatis

The shape of Toutatis, as revealed by radar observations, is very
irregular. The triaxial ellipsoid model presented above is too
simplified to describe Toutatis’ lightcurve in detail. However,
it is the elongation of the body that affects its brightness vari-
ation in the first place. This can be sufficiently modelled by a
triaxial ellipsoid. Other effects, like nonconvex shape, scatter-
ing properties of the surface and the orientation of a body with
respect to the direction to the Sun and the Earth play a secondary
role at small phase angles (< 30◦ − 40◦) (see e.g. review pa-
per by Barucci & Fulchignoni 1985). Being interested only in
main frequencies of the brightness variations, we assumed the
ellipsoidal shape with the principal axes equal to4.26, 2.03 and
1.70 km (Hudson & Ostro 1995). The initial conditions for the
Euler equations at the epoch 1992 Dec 11.4 were taken from
Hudson & Ostro (1995). This allowed us to model the aster-
oid’s rotation and lightcurve for a time from 20 Dec 1992 to 23
Jan 1993, covering the interval of the best photometric results
available. In this period the phase angle was smaller than40◦.

The evolution of the Euler angles is presented in Fig. 2. The
precession angleφ circulates with an average period of 7.25
days. The rotation angleψ also circulates with an average period
of 5.4 days. These periods are in agreement with radar data. The
angleθ librates around the value130◦ with an amplitude37◦

with a period of 7.25 days. The frequencies of rotation and
precession angles arėφ = 0.138 cycle/day andψ̇ = 0.185
cycle/day.

Takingg into account all the simplifications of our model,
one should not expect the amplitudes of a simulated lightcurve
to be more than qualitatively correct. Indeed, the curve presented
in Fig. 3 is arbitrarily scaled in brightness by factor 2. A good
agreement in the epochs of the observed and modelled extrema
is better visible for the vertically stretched curve. The observed
brightness of Toutatis presented in Fig. 3 is reduced to zero phase
angle.
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Fig. 2. Euler angles as functions of time starting from 20 Dec 95.

Fourier analysis of the simulated lightcurve reveals 3 main
frequencies. The power spectrum is presented in Fig. 4. We have
identified the frequencies which correspond to

φ̇ = 0.136 ± 0.002cycle/day,
2φ̇ = 0.276 ± 0.002cycle/day,

2φ̇+ 2ψ̇ = 0.642 ± 0.002cycle/day.

The first two frequencies are the precession rate and its second
harmonic. Thus, the precession period isT1 = 7.3 ± 0.1 days.
The last one implies a periodT3 = 1.558 ± 0.005 days which
is equivalent to the distance between consecutive maxima or
minima. Following the tradition established in studying simpler
lightcurves, Spencer et al. (1995) evaluated the periods counted
between two succesive pairs of maxima or minima. Thus, to
compare our results with Spencer et al. (1995) we should double
T3. The value2T3 ≈ 3.12 days is very close to their period of
3.1 days.

4. Conclusions

According to our results a proper physical interpretation of pho-
tometric periodicities necessarily requires the knowledge of an
asteroid’s rotation, at least in more complicated cases like 4179
Toutatis. We have demonstrated that the lightcurve of Toutatis
is dominated by the effects of precession and the superposition
of precession and rotation. The frequency of the rotation alone
is not visible on the lightcurve, which makes Toutatis an inter-
esting exception in the photometry of asteroids. Our results show
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Fig. 3. Comparison of the modelled (line) and observed – stars (1995)
lightcurves of Toutatis
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Fig. 4. Power spectrum of Toutatis simulated lightcurve.

that the apparent contradiction between the photometric results
of Spencer et al. (1995) and the radar observations of Hudson &
Ostro (1995) resulted from a misinterpretation of frequencies.

Acknowledgements.Part of this work was supported by the Polish
KBN Grant No 2 P03D024 09.

References

Barucci M.A., Fulchignoni M., 1985, Numerical and Laboratory Simu-
lations of Photometric Properties of Asteroids. In: Lagerkvist C.-I.,
Lindblad B.A., Lundstedt H., Rickman H. (eds.) Asteroids Comets
Meteors II. Uppsala University, 45

Connelly R., Ostro S.J., 1984, Geometriae Dedicata 17, 87
Hudson R.S., Ostro S.J., 1995, Sci 270, 84
Hudson R.S., Ostro S.J., 1998, Icarus 135, 451
Landau L.D, Lifshitz E.M., 1976, Mechanics. Pergamon, New York
Ostro S.J., Hudson R.S., Jurgens R.F., et al., 1995, Sci 270, 80
Spencer J.R., Akimov L.A., Angeli C., et al., 1995, Icarus 117, 71


	Introduction
	Simulation method
	Modelled lightcurves of 4179 Toutatis
	Conclusions

