![]() | ![]() |
Astron. Astrophys. 346, 652-662 (1999) 4. Possible regions of escapeFrom relative distances of the participating bodies for small value
of t, it may be possible to point out the body which is likely
to escape with the formation of a binary. We may have
Case (I) : when It means Case (II) : when Thus we have Case (III) : when We cannot take a decision as it is not possible to point out the smallest distance. Case (IV) : when Thus we have Case (V) : when Now there are three possibilities according as
Case (VI) : when Thus we get Case (VII) : when Here, we can not take a decision due to equality sign. Case (VIII) : when It means Case (IX) : when Here, we cannot take a decision due to equality sign. The above results may change for higher values of t corresponding to certain directions of the perturbing velocities given to the participating bodies but escaper must be opposite to the smallest relative distance of the participating bodies. From the above analysis, we conclude that out of the 9 cases, we may be able to take a decision only in 6 cases. In the literature, many escape conditions exist. By Sundman (1912), it is sufficient for escape that According to the above escape condition,
In our case, the above condition is satisfied and escape does occur
for sufficiently small values of ![]() ![]() ![]() ![]() © European Southern Observatory (ESO) 1999 Online publication: May 21, 1999 ![]() |