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Abstract. We present a new way of modeling deflagration
fronts in reactive fluids, the main emphasis being on turbulent
thermonuclear deflagration fronts in white dwarfs undergoing a
Type Ia supernova explosion. Our approach is based on a level
set method which treats the front as a mathematical discontinu-
ity and allows full coupling between the front geometry and the
flow field (Smiljanovski et al., 1997). With only minor modi-
fications, this method can also be applied to describe contact
discontinuities. Two different implementations are described
and their physically correct behaviour for simple testcases is
shown. First results of the method applied to the concrete prob-
lems of Type Ia supernovae and chemical hydrogen combustion
are briefly discussed; a more extensive analysis of our astro-
physical simulations is given in Reinecke et al. (1998).
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1. Introduction

Numerical simulations of turbulent combustion have always
been a challenge, mainly because of the large range of length
scales involved. In astrophysics, prominent examples are Type
Ia supernovae, where the length scales of relevant physical pro-
cesses range from 10−4 cm to several 108 cm). In the currently
favoured scenario the explosion starts as a deflagration in the
flamelet regime near the center of the star. At the correspond-
ing densities, the typical width of the conductive flame is less
than 1mm (Timmes & Woosley, 1992). Rayleigh-Taylor unsta-
ble blobs of hot burnt material are thought to form which rise
and lead to shear-induced turbulence at their interface with the
unburnt gas. This turbulence increases the effective surface area
of the flamelets and thereby the rate of fuel consumption over its
laminar value; the hope is that finally a fast deflagration might
result, in agreement with phenomenological models of Type Ia
explosions (Nomoto et al., 1984).

A multidimensional direct numerical simulation of such an
event is – and will always be – computationally infeasible; there-
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fore, small scale effects like turbulence, diffusion and heat con-
duction need to be incorporated in form of phenomenologi-
cal models. Despite considerable progress in the field of mod-
eling turbulent combustion for astrophysical flows (see, e.g.,
Niemeyer 1995), the correct numerical representation of the
thermonuclear deflagration front is still a weakness of Type Ia
simulations; this is mainly due to the fact that in those simula-
tions the conductive flame is not properly resolved, but must be
made several orders of magnitude thicker than in reality. The
artificially increased width of the reaction zone is a prerequisite
for the reactive-diffusive flame model (Khokhlov, 1993), which
has been used by most authors so far. In this approach the burn-
ing region is stretched out over several grid zones to ensure an
isotropic flame propagation speed. Typical values for the numer-
ical flame width range from 4–5 (Khokhlov, 1993) to 8–10 grid
cells (Niemeyer, 1994). However, the artificially soft transition
from fuel to ashes stabilizes the front against hydrodynamical
instabilities on small length scales, which in turn results in an
underestimation of the flame surface area and – consequently –
of the total energy generation rate.

The front tracking method described in this paper is based
on the so-calledlevel set techniquethat has been in use for
several years in the engineering sciences. It was introduced
by Osher & Sethian (1988) who used the zero level set of a
n-dimensional scalar function to represent(n−1)-dimensional
front geometries. Sussman et al. (1994) give equations for the
time evolution of such a level set which is passively advected
by a flow field; this approach can be used to track contact dis-
continuities, for example. Smiljanovski et al. (1997) extend this
method to allow the tracking of fronts additionally propagat-
ing normal to themselves, e.g. deflagrations and detonations. In
contrast to the artificial broadening of the flame in the reaction-
diffusion-approach, their algorithm is able to treat the front as an
exact hydrodynamical discontinuity. Considering the fact that
the real width of the conductive flame in a Type Ia supernova
is several orders of magnitude smaller than the typical grid cell
sizes in multidimensional simulations, this is a very good ap-
proximation.

The outline of this paper is as follows: In Sect. 2 we present
the main ideas and governing equations of our approach. Two
different implementations of the flame model are described in
detail in Sect. 3. Sect. 4 is dedicated to the results of simple
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testcases, whereas Sect. 5 lists some results of the application
of our numerical scheme to “real world” problems. Finally, we
give a summary of open issues and an outlook on future work
in Sect. 6.

2. The level set method

The central aspect of our front tracking method is the association
of the front geometry (a time-dependent set of pointsΓ) with
an isoline of a so-called level set functionG:

Γ := {r | G(r) = 0} (1)

SinceG is not completely determined by this equation, we can
additionally postulate thatG be negative in the unburnt and
positive in the burnt regions, and thatG be a “smooth” func-
tion, which is convenient from a numerical point of view. This
smoothness can be achieved, for example, by the additional con-
straint that

|∇G| ≡ 1 (2)

in the whole computational domain, with the exception of pos-
sible extrema and kinks ofG. The ensemble of these conditions
produces aG which is a signed distance function, i.e. the abso-
lute value ofG at any point equals the minimal front distance.

The normal vector to the front is defined as

n := − ∇G

|∇G| (3)

and thus points towards the unburnt material.
The task is now to find an equation for the temporal evolution

of G such that the zero level set ofG behaves exactly as the
flame. Such an expression can be obtained by the consideration
that the total velocity of the front consists of two independent
contributions: it is advected by the fluid motions at a speedv
and it propagates normal to itself with a burning speeds.

Since for deflagration waves a velocity jump usually occurs
between the pre-front and post-front states, we must explicitly
specify which statev ands refer to; traditionally, the values for
the unburnt state are chosen. Therefore, one obtains for the total
front motion

Df = vu + sun. (4)

The total temporal derivative ofG at a pointP attached to the
front must vanish, sinceG is, by definition, always 0 at the front:

dGP

dt
=

∂G

∂t
+ ∇G · ẋP =

∂G

∂t
+ Df · ∇G = 0 (5)

This leads to the desired differential equation describing the
time evolution ofG:

∂G

∂t
= −Df · ∇G (6)

This equation, however, cannot be applied on the whole
computational domain: Firstly,Df has a physical meaning in
the immediate vicinity of the front only and may be undefined
elsewhere. Secondly, using this equation everywhere will in
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Fig. 1. Illustration of the basic principles of the level set method ac-
cording to Smiljanovski et al. (1997): The piecewise linear front cuts
the mixed cells into burnt and unburnt parts.α is the unburnt volume
fraction of a cell,β is the unburnt area fraction of a cell interface. The
fluxesF u andF b are calculated from the reconstructed states.

most cases destroyG’s distance function property (Eq. 2). As
a consequence, this might lead to the buildup of very steep
slopes inG which are likely to cause numerical problems
(Sussman et al., 1994). Therefore additional measures must be
taken in the regions away from the front to ensure a “well-
behaved”|∇G| (for implementation details, see Sect. 3.1.2).

The situation is further complicated by the fact that the quan-
tities vu and su which are needed to determineDf are not
readily available in the cells cut by the front. In a finite volume
context, these cells contain a mixture of pre- and post-front states
instead. Nevertheless one can assume that the conserved quan-
tities (mass, momentum and total energy) of the mixed state
satisfy the following conditions:

ρ = αρu + (1 − α)ρb (7)

ρv = αρuvu + (1 − α)ρbvb (8)

ρe = αρueu + (1 − α)ρbeb (9)

Hereα denotes the volume fraction of the cell occupied by the
unburnt state. In order to reconstruct the states before and behind
the flame, a nonlinear system consisting of the equations above,
the Rankine-Hugoniot jump conditions and a burning rate law
must be solved. The technical details are described in Sect. 3.2.2.

Having obtained the reconstructed pre- and post-front states
in the mixed cells, it is not only possible to determineDf ,
but also to separately calculate the fluxes of burnt and unburnt
material over the cell interfaces. Consequently, the total flux
over an interface can be expressed as a linear combination of
burnt and unburnt fluxes weighted by the unburnt interface area
fractionβ:

F̄ = βF u + (1 − β)F b (10)

(see Fig. 1).

3. Implementation

In this section we concentrate on the case of a deflagration wave,
but the modifications needed to model contact discontinuities
are straightforward: for this case, the front propagation speed
(s or su) and the formation enthalpy (q) have to be zero in all
following equations, which leads to an overall simplification of
the numerical scheme.

For our calculations, the front tracking algorithm was im-
plemented as an additional module for the hydrodynamics code
PROMETHEUS (Fryxell et al., 1989). Two independent and
completely different implementations were realized:



726 M. Reinecke et al.: A new model for deflagration fronts in reactive fluids

– In the simpler approach, theG-function plays a somehow
passive role: It is advected by the fluid motions and by burn-
ing and is only used to determine the source terms for the
reactive Euler equations. We will refer to this algorithm as
passive implementation. It must be noted that there exists
no real discontinuity between fuel and ashes in this case;
the transition is smeared out over about three grid cells by
the hydrodynamical scheme, and the level set only indicates
where the thin flame frontshouldbe. However, the numer-
ical flame is still considerably thinner than in the reaction-
diffusion approach.

– The second implementation (calledcomplete implementa-
tion) contains in-cell-reconstruction and flux-splitting as
proposed by Smiljanovski et al. (1997); therefore it should
exactly describe the coupling between the flame and the
hydrodynamic flow.

3.1. Passive implementation

3.1.1.G-transport

Since the front motion consists of two distinct contributions, it
is appropriate to use an operator splitting approach for the time
evolution ofG. The advection term due to the fluid velocityvF

can be written as

∂G

∂t
= −vF ∇G, (11)

or in conservative form∫
V

∂(ρG)
∂t

d3r +
∮

∂V

−vF ρGdf = 0 (12)

(Mulder et al., 1992). This equation is identical to the advection
equation of a passive scalar, like the concentration of an inert
chemical species. Consequently, this contribution to the front
propagation can be calculated by PROMETHEUS itself with-
out requiring complicated modifications. As a consequence, the
discrete values of the level set function have to be stored at the
centers of the grid cells, like the hydrodynamical variablesρ,
T , etc.

The additional flame propagation due to burning is calcu-
lated at the end of each time step according to the following
procedure:

First the four discrete spatial derivatives ofG are obtained
in each cell:

D+
x,ij :=

Gi+1,j − Gi,j

xi+1 − xi
D−

x,ij :=
Gi,j − Gi−1,j

xi − xi−1
(13)

D+
y,ij :=

Gi,j+1 − Gi,j

yj+1 − yj
D−

y,ij :=
Gi,j − Gi,j−1

yj − yj−1
(14)

At the boundaries of the computational domain some of the
above equations cannot be applied (e.g.D−

x,1j). In these cases,
the gradient is set to 0 for reflecting boundaries and extrapolated
in zeroeth order for outflow boundaries.

Afterwards, the relevant derivatives are determined by sim-
ple upwinding with respect to the propagation direction of the
front:

Dx,ij =




D+
x,ij for D+

x,ij > 0 and D−
x,ij > 0

D−
x,ij for D+

x,ij < 0 and D−
x,ij < 0

D̄x,ij for (D−
x,ij · D+

x,ij) ≤ 0
(15)

whereD̄x,ij := 0.5(|D−
x,ij | + |D+

x,ij |).
The newG-value is then defined by

G′
ij = Gij + ∆tsij

√
D2

x,ij + D2
y,ij . (16)

3.1.2. Re-initialization

As was mentioned in Sect. 2, an additional correction step has
to be applied in the regions away from the front in order to keep
G a signed distance function. This task can be accomplished
in several ways. Sussman et al. (1994), for example, suggest a
pseudo-time approach, where the equation

∂G

∂τ
=

G

|G| + ε
(1 − |∇G|) (17)

is solved iteratively until convergence is obtained. Here,ε de-
notes an empirical quantity with a value comparable to the length
of a grid cell. While being quite efficient, this method has the
drawback that it changesall G-values, even those near the front;
consequently, the front might be moved by small amounts dur-
ing the re-initialization (Sethian, 1996).

This potential problem is avoided by the following algorithm
which we used for our simulations:

– The coordinates of all zero crossings ofG between neigh-
bouring grid points are calculated by linear interpolation; if,
e.g.,Gi,j > 0 andGi+1,j < 0, the zero crossing is at

xz = xi +
∣∣∣∣ Gi,j

Gi+1,j − Gi,j

∣∣∣∣ (xi+1 − xi) (18)

and

yz = yj (19)

The ensemble of all points (xz, yz) is a discrete representa-
tion of the zero level set.

– For all grid points, the minimum distance to one of the points
(xz, yz) is determined:

dij = minn

√
(xi − xz,n)2 + (yj − yz,n)2 (20)

– The corrected value forGij is a weighted average of the
original value anddij , such that

G′
ij := H(dij)Gij + (1 − H(dij))sgn(Gij)dij . (21)

H denotes a function, which is essentially 1 for small ar-
guments and smoothly drops to 0 near a given threshold. In
this work, we used the expression

H(d) =
(

1 − tanh
d − d0

δ/3

) / (
1 − tanh

−d0

δ/3

)
. (22)

For this equation, the transition takes place in a region of
the widthδ aroundd0. Satisfying results have been obtained
for d0 ≈ 3∆ andδ ≈ ∆, where∆ represents the width of a
grid cell.
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The weighting withH(d) has the effect that values near the
flame are practically left unchanged, while the values farther
away represent a distance function in good approximation.

3.1.3. Source terms

After the update of the level set function in each time step, the
change of chemical composition and total energy due to burning
is calculated in the cells cut by the front. In order to obtain these
values, the volume fractionα occupied by the unburnt material
is determined in those cells by the following approach: from
the valueGij and the two steepest gradients ofG towards the
front in x- andy-direction a first-order approximatioñG of the
level set function is calculated; then the area fraction of cellij
whereG̃ < 0 can be found easily. Based on these results, the
new concentrations of fuel, ashes and energy are obtained:

X ′
Ashes = max(1 − α, XAshes) (23)

X ′
Fuel = 1 − X ′

Ashes (24)

e′
tot = etot + q(X ′

Ashes − XAshes) (25)

In principle this means that all fuel found behind the front is
converted to ashes and the appropriate amount of energy is re-
leased. The maximum operator in Eq. (23) ensures that no “re-
verse burning” (i.e. conversion from ashes to fuel) takes place
in the cases where the average ash concentration is higher than
the burnt volume fraction; such a situation can occur in a few
rare cases because of unavoidable discretization errors of the
numerical scheme.

3.2. Complete implementation

In this approach the discrete values ofG are defined on the
cell corners instead of the cell centers, because this simplifies
the calculation of the geometrical quantitiesα and β, which
are needed for the reconstruction and flux-splitting steps. In
the following sections all quantities defined on cell corners are
described by fractional indices: e.g.Gi+1/2,j+1/2 denotes the
G value in the top right corner of cellij.

3.2.1. Geometrical quantities

The knowledge of the front normaln and the unburnt volume
fractionα in the mixed cells is a prerequisite for the reconstruc-
tion of burnt and unburnt hydrodynamical states. The normal is
derived from the discrete gradient
(

∂G

∂x

)
ij

= 1
2

(
Gi+1/2,j+1/2 − Gi−1/2,j+1/2

xi+1/2 − xi−1/2
+

Gi+1/2,j−1/2 − Gi−1/2,j−1/2

xi+1/2 − xi−1/2

)
(26)

(
∂G

∂y

)
ij

= 1
2

(
Gi+1/2,j+1/2 − Gi+1/2,j−1/2

yj+1/2 − yj−1/2
+

Gi−1/2,j+1/2 − Gi−1/2,j−1/2

yj+1/2 − yj−1/2

)
. (27)
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Fig. 2. Determination ofα in a mixed cell. The signs on the cell cor-
ners denote the sign of theG function. The rightmost sketch shows a
situation where two different geometrical interpretations are possible
andα is not uniquely defined.

According to Eq. (3),nij is then given by

nij = − (∇G)ij

|(∇G)ij | . (28)

The value forα is found by determining the zeros ofG on all
cell edges, connecting them with straight lines and calculating
the surface area behind this approximated flame. Fig. 2 shows
all topologically different situations. While calculatingα in the
first three cases is trivial, the fourth case is ambiguous since
two different front geometries are possible; for this situation,
we setα to the mean value of the two possibilities. Fortunately,
such a geometrical constellation is quite rare in hydrodynamical
simulations.

3.2.2. Reconstruction

In order to obtain the hydrodynamical state vectorsUu andU b

from the averagēU in the mixed cells, a nonlinear equation
system has to be solved. The first three equations have already
been presented in Sect. 2 (Eqs. 7–9). It is convenient to split the
velocity vector into a normal and a tangential part with respect
to the front; Eq. (8) then reads

ρ̄v̄n = αρuvn,u + (1 − α)ρbvn,b (29)

and

vt,u = vt,b = v̄t. (30)

Further, the reconstructed states must satisfy the Rayleigh
criterion and the Hugoniot jump condition for the internal en-
ergy:

(ρusu)2 = − pb − pu

Vb − Vu
(31)

ei,b − ei,u = q − (pb + pu)
2

(Vb − Vu) (32)

Here,ei is defined asetot − v2/2 andV := 1/ρ. The pres-
sures are given by the equation of state:

pu = pEOS(ρu, ei,u,Xu) (33)

and

pb = pEOS(ρb, ei,b,Xb) (34)

Additionally, the jump condition for the normal velocity
component reads

vn,b − vn,u = su

(
1 − ρu

ρb

)
. (35)
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To complete the system, a burning rate law is required.
Usually this will be the equation for the laminar burning
speed, depending on the unburnt state variables. In our case
of highly turbulent burning in the flamelet regime, the flame
speed can be derived from the turbulent kinetic sub-grid energy
esg (Niemeyer & Hillebrandt, 1995a,b):

su =
√

2esg (36)

The ensemble of all the equations above can be solved
with any of standard iterative method. Our implementation
uses a globally converging Broyden solver (Broyden, 1965;
Press et al., 1992). In contrast to the popular Newton-Raphson
approach, this algorithm converges even for relatively bad initial
guesses, which is important for our application.

3.2.3. Transport

The algorithms presented in the three following subsections are
designed for use with adirectional splittingscheme and are
thus orientation independent. Therefore we will only describe
the numerical procedure for thex-sweeps.

For the complete implementation a simple, non-conserva-
tive approach is used to obtain theG-values at the new time
level:

Gn+1 = Gn − ∆tDn
x

∂Gn

∂x
(37)

Several complications arise from the fact that values forDx,
which is defined in the center of the mixed cells, are needed
at the cell corners. SinceD only has a physical meaning in the
mixed cells, its value in all other cells may be chosen arbitrarily.
It can be shown analytically that the distance function property
of G is preserved if the condition

n∇(Dn) = 0 (38)

is satisfied, i.e. if the flame propagation velocity is constant
along the “field lines” ofG. Consequently, the values forD in
the whole computational domain are obtained by spreading out
the values in the mixed cells in the direction ofn and−n.

In the next step,Dx in the middle of the cell interfaces is
calculated by simple averaging

Dx,i,j+1/2 =
1
2
(Dx,i,j + Dx,i,j+1), (39)

and the corner valuesDx,i+1/2,j+1/2 are determined by upwind-
ing. Depending on the sign ofDx at the corner, the appropriate
discrete derivative ofG is chosen; ifDx is negative, one takes
(∂G/∂x) at the right side, and vice versa. Now all quantities
needed in Eq. (37) are known.

Because of the discrete nature of the grid, it is in most
cases impossible to satisfy condition (38) exactly; therefore a
re-initialization step is required for the complete implementa-
tion also. This is done in exactly the same fashion as described
in Sect. 3.1.2.

unburnt part

burnt part

Fig. 3.Splitting of a state vector containing burnt and unburnt cells into
partial vectors with only fuel or ashes. The necessary ghost cells at the
artificial boundaries are calculated by zeroeth order extrapolation.

t t
βn+1 βn+1

=0

βnβn

β∆

β∆

∼

∼

x x

t

t

Fig. 4. Determination of the average unburnt interface area fractionβ̃
for two different cases. As can be seen, simply taking the average of
old and new time level does not always produce the correct result.

3.2.4. Flux-splitting

In order to compute the total fluxes across a mixed cell interface,
it is necessary to solve the Riemann problems for burnt and un-
burnt states separately. To achieve this, each grid vector is split-
ted into a sequence of completely burnt and unburnt partial vec-
tors. During this process, artificial boundaries are created at the
front location for which boundary conditions must be specified.
Following Smiljanovski et al. (1997), this is done by zeroeth or-
der extrapolation of the cells at the boundary (see Fig. 3 for illus-
tration). The PPM algorithm implemented in PROMETHEUS is
then used to calculate the hydrodynamical fluxes for the partial
vectors.

Now Eq. (10) is applied to compose the total fluxes. How-
ever, it is in many cases insufficient to use the unburnt interface
fractionβ at the beginning of the time step in this formula, es-
pecially when the flame enters or leaves a cell during the time
step. Therefore we calculate the average ofβ over the time step
(see also Fig. 4):

β̃ =
1

∆t

∫ tn+1

tn

βdt (40)

The composed flux then reads

F̄ = β̃Fu + (1 − β̃)Fb. (41)

3.2.5. Source terms

The amount of matter consumed by the flame in a mixed cell
during a time step is given by
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 passive implementation
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Fig. 5. Time dependent position of a planar flame propagating in pos-
itive x-direction for both implementations of the front tracking algo-
rithm. The lines indicate the theoretically predicted behaviour.

∆m =
∫ tn+1

tn

Asuρudt, (42)

whereA denotes the flame surface in this cell. For thex-sweep
in a directional splitting scheme one obtains

∆mx =
∫ tn+1

tn

n2
xAsuρudt. (43)

The factorn2
x is introduced by the projection of the flame on

they-axis (or on theyz-plane in three dimensions) and by the
projection of the burning speed on thex-axis. In thei-th cell,
the ratio of the projected flame surface and the surface of a cell
interface is approximately given by|β̃i+1/2− β̃i−1/2|. Thus one
obtains for the source terms

∆XAshes,i =
∆t

∆xi

ρu,i

ρ̄i

∣∣∣su,inx,i(β̃i+1/2 − β̃i−1/2)
∣∣∣ (44)

∆XFuel,i = −∆XAshes,i (45)

∆etot,i = q∆XAshes,i. (46)

4. Numerical tests

A set of testcases was run with both of the implementations pre-
sented above to determine the ability of the numerical schemes
to represent thermonuclear flames. Our main criteria were the
reproduction of a given burning velocity and the isotropy of the
front propagation. Additionally, we investigated the behaviour
of the algorithms for complex situations, like the merging of two
flame kernels and cusp formation in a sinusoidally perturbed
flame.

At t = 0, the thermodynamical state of the unburnt matter
was characterized byρu = 5 · 108g/cm3, Tu = 5 · 108 K, and
X12C,u = X16O,u = 0.5. The energy release for the fusion to
56Ni is q = 7 · 1017 erg/g, and the burning speedsu was set to
3 · 107 cm/s.

For all tests we used a cartesian grid with a cell size of
1.5 · 106 cm.

4.1. 1D flames

In a first test we investigated a planar flame propagating in
positivex-direction with reflecting boundaries at the left, top
and bottom edges of the computational domain and an outflow
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Fig. 6. Planar flame propagation test: Temperature, nickel concentra-
tion, fluid velocity and density att = 1s for the passive implementation.
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Fig. 7. Planar flame propagation test: Temperature, nickel concentra-
tion, fluid velocity and density att = 1s for the complete implementa-
tion.

boundary to the right. The grid consisted of 128x4 cells. Under
these circumstances the material behind the front should be at
rest and the absolute front velocity with respect to the grid is
expected to be

sb := suρu/ρb, (47)

which corresponds to about4.4 · 107 cm/s for our initial condi-
tions.

As can be seen in Fig. 5, the agreement of simulation and pre-
dictions is excellent for the complete implementation, whereas
the passive implementation underestimates the flame velocity
by about 20%. Figs. 6 and 7 show the profiles of temperature,
nickel concentration, velocity and density for both algorithms
at t = 1s. Again, the complete implementation gives exactly
the expected results: two constant states that are separated by
a mixed cell. With the exception of the fluid velocity, the pic-
ture is nearly the same for the passive implementation; here the
transition is smeared out over about three grid cells by PPM.
The velocity profile shows strong oscillations in this case; one
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also notes that the average fluid motion in the unburnt material
is noticeably slower than for the complete implementation.

All the deviations in the passive approach can be explained
by the fact that the flame is not advected with the speed of
the unburnt matter as postulated in Eq. (4), but by theaverage
speed in the burning cells. Depending on whether the flame just
entered the cell or is about to leave it, this quantity is closer to
the unburnt resp. the burnt velocity but never reaches the desired
vu. As a consequence, the flame propagates too slowly and at a
non-uniform speed, thereby causing fluctuations in the velocity
field.

To further investigate this behaviour of the passive imple-
mentation, two additional tests withρu = 3 · 109g/cm3 and
ρu = 5 · 107g/cm3 were performed. In these cases the flame
propagation speed was underestimated by 14% and 28%, re-
spectively. Since the error grows roughly proportionally with
the density jump, these observations support our interpretation.

However, for the special case of turbulent burning in the
interior of white dwarfs, these seemingly large errors can be
tolerated: firstly, the velocity jump across the flame is quite small
compared to the burning velocity; secondly, our model for the
turbulent burning speed is based on dimensional analysis and
thereforesu itself could carry an uncertainty much larger than
the 28% mentioned above.

A first order correction for the underestimation of the burn-
ing speed in the passive implementation can be done in a quite
straightforward way for this concrete physical problem and will
be incorporated in future versions of the code.

4.2. 2D flames

4.2.1. One circular flame

To test the isotropy of both algorithms, the propagation of an
initially circular flame was simulated on a grid of 50x50 cells
with outflow boundaries; some snapshots of the front geometry
are shown in Fig. 8. While deviations from the circle shape do
occur, they are sufficiently small for both implementations. The
difference in the flame propagation speed is still present and
nearly of the same size as in the one-dimensional simulation.

4.2.2. Two merging circular flames

On the same grid as in the simulation above, the merging of
two circular flame kernels was investigated to demonstrate the
ability of the level set approach to handle topological changes.
As the results indicate, the formation of a single front happens
smoothly and without numerical difficulties (see Fig. 9). The
slight deformation of the fronts before the merging can be ex-
plained by the interaction of the velocity fields generated by
both flames.

4.2.3. Perturbed planar flame

Fig. 10 shows the temporal evolution of a sinusoidally perturbed
flame propagating in positivex-direction. As expected, the trail-
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Fig. 10. Evolution of the front geometry for a sinusoidally perturbed
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ing part of the front becomes narrower until a cusp is formed;
afterwards, the flame geometry remains practically unchanged.
The short vertical section of the flame that can be seen in the
right panel of Fig. 10 is an artifact of the rather poor resolution:
since the (expected) cusps are located exactly at they-position
of the cell centers and the level set is stored at the cell corners,
they cannot be seen in this discretization.

4.3. Sensitivity of the reconstruction equations

The results of all tests described above show that both imple-
mentations of the level set method can be used to model tur-
bulent thermonuclear combustion in Type Ia supernovae. Since
the complete version is more accurate, it would be the method
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Fig. 11.Reconstructed temperature of the unburnt material for varying
deviations inα. Belowα/α0 < 0.98, the reconstruction fails.

of choice. Unfortunately, however, it has turned out that the
straightforward implementation of the reconstruction as de-
scribed above leads to numerical difficulties when applied to
the “real” situation in a white dwarf including density and pres-
sure gradients and gravitational forces. In our supernova simu-
lations with the complete implementation, after a few time steps
the reconstruction in many mixed cells failed because the inter-
nal energy of the unburnt state reached values for which the
equation of state is undefined:

ei,u < eEOS(ρu, T = 0K, Xfuel) (48)

Discretization errors in the input values are the most likely
reason for this divergence. To test the reaction of the reconstruc-
tion algorithm on such uncertainties, the following experiment
was performed:

From a given pre- and post-front state that exactly fulfill
the Rankine-Hugoniot jump conditions a mixed state is syn-
thesized according to Eqs. (7)-(9) for anα0 equal to 0.5. Then
a reconstruction is tried for this mixed state, but for a slightly
different α (i.e. for anα with some uncertainty). In Fig. 11,
the reconstructed temperature of the unburnt material is plotted
against the introduced error inα. It can be easily seen that for
α/α0 < 0.98 a reconstruction of pre- and post-front states be-
comes impossible. For highly curved fronts, as they are expected
in Type Ia supernovae, the deviations ofα from the exact value
can become much higher than that, becauseα is obtained for a
piecewise linear approximation of the front. At first glance, one
would expect an improvement if the front geometry was mod-
eled with higher accuracy, e.g. by approximation with quadrics.
But in this case, other problems appear: the number of different
topological configurations in a cell explodes, and, most impor-
tantly, there is no way to define the normaln that is required by
the reconstruction equations.

Because of these numerical problems, we have not yet been
able to simulate Type Ia supernovae with the complete imple-
mentation of the front tracking scheme. An investigation of the
properties of the reconstruction equations and, if possible, cre-
ation of a more robust system is subject of future work. However,
introducing just an artificial viscosity to limit the curvature of

the flame front may be an easy way to stabilize the numerical
scheme.

5. Applications

5.1. Type Ia supernovae

The passive implementation of the level set method has been
used to model the turbulent flame front in the early stages
of Type Ia supernova explosions. To allow direct compar-
ison with the reaction-diffusion model, our initial condi-
tions were chosen as similar as possible to the simulations
done by Niemeyer & Hillebrandt (1995b). Our results show a
flame which is perturbed due to Rayleigh-Taylor- and Kelvin-
Helmholtz-instabilities on all scales down to a few grid cells
(see Fig. 12). An extensive discussion of this simulation as well
as simulations with other initial conditions can be found in
Reinecke et al. (1998).

5.2. Chemical hydrogen combustion

The complete implementation has already been successfully
used to model turbulent flame fronts in lean hydrogen-air mix-
tures. Fig. 13 shows the merging of three flame parts in a mix-
ture of 15% hydrogen in air in a box with an outflow boundary
to the right and reflecting boundaries elsewhere. Since small
disturbances are amplified by material diffusion in the case of
hydrogen flames, the burning speed was modified depending on
the curvature of the front.

6. Conclusions

We have presented a numerical model to describe deflagration
fronts with a reaction zone much thinner than the cells of the
computational grid. In contrast to the currently favoured method
for astrophysical simulations (Khokhlov, 1993), our approach
provides a considerably sharper transition from fuel to ashes,
thereby allowing the growth of hydrodynamical instabilities on
smaller scales and generally the evolution of small features in
the flame.

Two different implementations of the model have been de-
veloped and tested; for simple initial conditions, both versions
produce results acceptable for our needs. However, because
of the mentioned numerical problems the complete implemen-
tation cannot be employed for supernova simulations without
modification.

In addition to modeling flames, the level set method de-
scribed in this paper can also be used for tracking contact dis-
continuities with only minor modifications; therefore, any ap-
plication in astrophysical hydrodynamics dealing with one of
these phenomena might benefit from this numerical scheme.
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Fig. 12. Temporal evolution of front geometry and
velocity field after igniting a single, circular bubble
near the center of the white dwarf. Note that the
scales change from snapshot to snapshot.
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